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Abstract

Modern photo editing tools allow creating realistic manipulated images easily.
While fake images can be quickly generated, learning models for their detection
is challenging due to the high variety of tampering artifacts and the lack of large
labeled datasets of manipulated images. In this paper, we propose a new framework
for training of discriminative segmentation model via an adversarial process. We
simultaneously train four models: a generative retouching model GR that translates
manipulated image to the real image domain, a generative annotation modelGA that
estimates the pixel-wise probability of image patch being either real or fake, and two
discriminatorsDR andDA that qualify the output ofGR andGA. The aim of model
GR is to maximize the probability of model GA making a mistake. Our method
extends the generative adversarial networks framework with two main contributions:
(1) training of a generative model GR against a deep semantic segmentation
network GA that learns rich scene semantics for manipulated region detection, (2)
proposing per class semantic loss that facilitates semantically consistent image
retouching by the GR. We collected large-scale manipulated image dataset to
train our model. The dataset includes 16k real and fake images with pixel-level
annotations of manipulated areas. The dataset also provides ground truth pixel-
level object annotations. We validate our approach on several modern manipulated
image datasets, where quantitative results and ablations demonstrate that our
method achieves and surpasses the state-of-the-art in manipulated image detection.
We made our code and dataset publicly available 1.

1 Introduction

While every image captured by the human eye is real, digital photos can be easily manipulated to
present scenes that never existed in reality. Such manipulated image can be easily generated by
copying the part of one image into another. This image manipulation is called an image splice and
can be used maliciously to create fake news or change historical photos [1]. Recent research [1, 2]
suggests that training a model for splice localization is more challenging than other types of object
detection problems as the domain of manipulated images is extensive and diverse. Therefore, the
collection of the representative training dataset is difficult. Moreover, the forger can adapt to the
detection algorithm by changing the manipulation technique. This principle is used in Generative
Adversarial Networks (GANs) to train a generator network to synthesize images from noise [3], text
descriptions [4], scene graphs [5] or by image-to-image translation [6, 7, 8, 9]. Fake images produced
by the generator are evaluated against real images by an adversarial discriminator network that learns
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Figure 1: Comparison against two state-of-the-art methods on our FantasticReality dataset (Sec-
tion 3.3). Our results are shown in the last column. Zoom in for details.

to classify them as ‘real’ or ‘fake.’ Even though no ‘fake’ images exist in the training dataset, the
discriminator successfully learns to detect them during the training process. We hypothesize that
adversarial training of an image-to-image translation generator against a splice localization generator
can improve the splice localization accuracy.

In this paper, we propose a Mixed Adversarial Generators (MAG) framework, in which we simultane-
ously train four models: a generative retoucher GR, an adversarial generative annotator GA, and two
discriminators DR and DA that qualify the output of GR and GA. The aim of our retoucher GR is
suppressing image tampering artifacts in the input image splices from the training dataset. We train
our adversarial annotator GA to predict splice localization masks in the ‘retouched’ images generated
by the retoucher GR. The adversarial loss provided by the annotator GA forces the retoucher GR
to mask those particular tampering artifacts that allow GA to detect the image splice. Unlike other
splice detection models, our annotator GA learns to adapt to changing tampering techniques of the
retoucher GR. Therefore, our annotator GA receives a new sample from the manipulated image
domain every iteration. Moreover, with the increasing epoch samples are becoming more complex.
To further increase the splice localization rate, we train our annotator GA to predict object classes for
the input image. Resulting semantic labeling is used to provide a semantic consistency loss for the
retoucher GR. The semantic loss forces the output of the retoucher GR to present objects of the same
semantic classes as the input image.

Our adversarial generators extend the GAN framework with two key contributions: (1) training of a
generative model GR against a deep semantic segmentation network GA that learns rich scene seman-
tics for manipulated region detection, (2) proposing per class semantic loss that facilitates semantically
consistent image retouching by the GR. Unlike the recently proposed Sem-GAN model [11], we do
not use the pertained segmentation model but train it adversarially. We perform a comprehensive
evaluation of our MAG framework, where quantitative results and ablations demonstrate that our
annotator GA achieves and surpasses the state-of-the-art in splice localization on several challenging
image splice datasets (see Figure 1 and 3).

We evaluate our retoucher GR on image-to-image translation tasks to demonstrate that our MAG
framework is not limited to the splice localization task. Semantic loss function allows us to train
challenging image-to-image translation tasks that are unfeasible for baselines. We also introduce a
new FantasticReality dataset that includes 16k image splices with pixel-level ground truth annotations
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of manipulated areas, and instance and class labels for ten object categories. We made our code and
the dataset publicly available.

2 Related Work

Splice detection. Modern splice detection methods fall into three categories: tampering artifacts-
based approaches leverage local discrepancies in image noise [12, 13, 14, 15, 16, 17, 18], compression
artifacts [19, 20, 21, 22], or camera’s color filter array inconsistencies [10, 23, 24, 25, 26, 27, 28, 29,
30, 31] to detect tampered image regions; consistency-based methods [32, 1] compare pairs of local
image patches to localize image areas, where predicted camera model [33, 32] or image metadata [1]
are inconsistent with the rest of the image; deep learning-based methods [34, 35, 1, 2, 36] detect
image splice regions either by comparison of local patches in a siamese network [1] or using fully
convolutional networks [2] to predict labeling of the tampered regions. While many digital image
forensic datasets were introduced recently [37, 38, 39, 40, 41], they usually include only several
hundreds of photos and do not provide enough of training data for modern methods. Related to our
multi-task annotation prediction, Salloum et al. [2] have proposed multi-task training to localize
tampered regions and their edges.

Image-to-image translation. Modern methods for image generation conditioned by an input image
are trained in either supervised [6, 42, 43, 11, 44], unsupervised [7, 8, 9, 45, 46, 47] or mixed [48]
setting. Unsupervised approaches are trained on an unpaired dataset leveraging the latent space
assumption [8], the cycle consistency loss [7] or other criteria to learn a mapping from source
to target domain. Recent research demonstrates exciting progress in multimodal image-to-image
translation [49, 42]. Related to our semantic consistency loss function are the loss functions proposed
in Sem-GAN [11] and InstaGAN [50] models. Unlike our MAG framework Sem-GAN model leverages a
pretrained segmentation model to provide semantic loss. Unlike InstaGAN [50] model, our retoucher
generator GR does not require instance masks as an input. Closely related to our retoucher generator
GR, Mejjati et al. [9] propose to use attention guided training to perform translation only for the
target object.

Most of the modern approaches in the image-to-image translation are based on Generative Adversarial
Networks [3], which can capture the sample distribution in the target domain using an adversarial game
of two players. Recent research demonstrates that GANs can solve more challenging tasks than image-
to-image translation. They can learn complex transforms between physically different domains such as
image-to-thermal translation [51, 52, 53, 54, 55], image-to-voxel model transformation [56, 57], and
image synthesis from audio data [58]. In our MAG framework, we replace the discriminator network
with an adversarial annotator generator GA. While the discriminator predicts a scalar probability of
an input image being either real or fake, our annotator generator GA predicts a pixel-level probability
map of an image patch being either authentic image or splice.

3 Mixed Adversarial Generators

Our goal is training two generator networks adversarially: a splice retoucher GR and a splice
localization annotatorGA. We consider three domains: the input domainA ∈ RW×H×3 of potentially
manipulated images, the authentic domain B ∈ RW×H×3 of untampered images, and the output
domain C ∈ [0, 1]W×H×(2+K) of splice localization and class segmentation masks, where K is the
number of predicted object classes. While an image A ∈ A may be either authentic or tampered,
all images B ∈ B are authentic, B ⊂ A. We use assumptions made by Salloum et al. [2] as the
starting point for our generator GA. Specifically, we train our generator GA for multi-task prediction
of splice segmentation mask Cm ∈ [0, 1]W×H , splice edge mask Ce ∈ [0, 1]W×H , and object class
segmentation Cs ∈ [0, 1]W×H×K . Therefore, we learn a mapping GA : (A)→ C, where A ∈ A
is an input potentially manipulated image, C ∈ C is an output tensor obtained by concatenation
of Cm,Ce,Cs. The goal of our retoucher generator GR is learning a mapping from manipulated
image domain A to the authentic domain B. To this end, the aim of adversarial training of the
GR is maximizing the probability of an annotator GA making a mistake in splice detection of the
retouched image B̂. We believe that the retoucher GR in the training loop facilitates our annotator
GA to learn complicated splice retouching approaches. We use attention-guided learning assumption
made by Mejjati et al. [9] as the starting point for our retoucher GR. We observe the similarity
between the attention map proposed by Mejjati et al. [9] and the alpha channel used for the splice
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Figure 2: Our proposed pipeline: We want our annotator GA to predict annotations correctly for
three kinds of images: retouched spliced images B̂ = GR(A) (1), original spliced images A ∈ A
from the training dataset (2), and authentic images B ∈ B (3). Our retoucher GR learns to hide a
wide range of tampering artifacts such as modern-to-retro photo translation, blurring of tampering
edges, and compensating light source inconsistencies. During the training, we feed manipulated
images A, retouched images B̂, and authentic images B to our splice localization annotator GA.

generation. We hypothesize that attention-guided learning of our retoucher GR allows us to model
splice generation with layers in photo-editing applications, e.g., GIMP or Photoshop. We learn a
mapping GR : (A)→ (B̂rgb, B̂α), where B̂rgb ∈ RW×H×3 is an image with the retouched splice
area, and B̂α ∈ [0, 1]W×H is the attention map. We obtain the target retouched splice image B̂
similarly to [9] by

B̂ = B̂α � B̂rgb + (1− B̂α)�A, (1)

where � is an element-wise product. Our proposed pipeline is presented in Figure 2. We train two
discriminator networks DR, DA to provide adversarial losses for the output of our generators GR
and GA. The architecture and the loss function of the retoucher GR are presented in Section 3.1,
whereas the structured loss function of the annotator GA is described in Section 3.2.

3.1 Retoucher Generator GR

Architecture. We use the U-Net generator architecture [59] as the starting point for our retoucher
GR. While skip connections of the U-Net generator facilitate robust learning of tampering techniques
by our retoucher GR, deconvolutional layers often introduce checkerboard artifacts in output images.
Our annotator GA quickly learns checkerboard features to detect images produced by our retoucher
GR. To avoid such a scenario, we replaced deconvolutional layers with an upsample layer followed by
a convolutional layer, inspired by the architecture proposed in [60]. We term the resulting architecture
that is free from the checkerboard artifacts as U-Net-UC (see supplementary material Table 1).

Loss function. Three loss functions govern the training process for our retoucher GR: LGA
sem,L

GA

adv,
and LDR

adv, where a superscript indicates the network providing the loss. The aim of our semantic
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consistency loss function LGA
sem is to make the classes of objects in the output image B̂ recognizable

by our annotator GA

LGA
sem(Cs, Ĉs) = EB∼p(B)

[∣∣∣∣∣∣Cs − Ĉs

∣∣∣∣∣∣
1

]
, (2)

where Ĉs = GA(B̂)s is the class segmentation produced by our annotator GA, Cs is the ground
truth class segmentation. Our adversarial annotator loss LGA

adv stimulates our retoucher GR to mask
tampering artifacts in the input sliced images. In other words, we want to maximize the probability of
our annotator GA making a mistake in splice localization Ĉm = GA(B̂)m

LGA

adv(Cm, Ĉm) = EB∼p(B)

[∣∣∣∣∣∣0W,H − Ĉm

∣∣∣∣∣∣
1

]
, (3)

where 0W,H is the a splice localization filled with zeros. Finally, we use a discriminator’s DR

adversarial loss function to make our image realistic globally

LDR

adv(B̂) = EB∼p(B)

[
log(1−DR(B̂))

]
. (4)

We obtain the final energy to be optimized by combining all losses

LR(Cs, Ĉs,Cm, Ĉm, B̂) = λGA
sem · LGA

sem + λGA

adv · L
GA

adv + λDR

adv · L
DR

adv, (5)

where we use the loss hyper-parameters λGA
sem = 10, λGA

adv = 10, λDR

adv = 0.25 in our experiments.

3.2 Annotator Generator GA

Loss function. We train our annotator GA utilizing a combination of our balanced L1 loss function
Lbal and an adversarial loss LDA

adv . We observe that training our annotator GA using the L1 distance
||C − Ĉ|| between the ground-truth and predicted annotations results in a large number of false
negatives in splice localizations. We hypothesize that making the penalty for false negatives and false
positives equal for each image can improve the overall splice localization score. We implement this
hypothesis in our balanced loss function based on the Dice loss [61]

Lbal(C, Ĉ) =

2+K∑
i=1

|Ci ∩ (1− Ĉi)|
|Ci|︸ ︷︷ ︸

False negatives

+

2+K∑
i=1

|(1−Ci) ∩ Ĉi|
|1−Ci|︸ ︷︷ ︸

False positives

, (6)

where i is the index of an annotation channel. Channel C1 provides a splice mask annotation Cm,
channel C2 provides a splice edges annotation Ce. The predicted class labels are given by Ci for
i ∈ {3, 4, . . . , 2 +K}, where K is the number of classes (K = 10 in our experiments). The area of
predicted annotations (white area) in the channel Ci is given by |Ci|, the background area (black
area) in the channel Ci is given by |1−Ci|.
We want our annotator GA to predict annotations correctly for three kinds of images: original spliced
images A ∈ A from the training dataset, retouched spliced images B̂ = GR(A), and authentic
images B ∈ B. Therefore, for each iteration, we evaluate the loss Lbal on three pairs of ground
truth and predicted annotations: (CA′, ĈA), (CA′, ĈB̂), (CB, ĈB). We use the superscript to
denote the corresponding color image for the annotation. Please, note that both original spliced
image A and the retouched spliced image B̂ have the same annotation CA′ with an adversarial class
segmentation mask CA

s
′
= CA

s � (1 − CA
m). We want to train our annotator GA to predict class

segmentation adversarially: it must generate the correct class annotations only for authentic image
areas and predict empty class annotations for manipulated regions. Specifically, we multiply our
ground truth semantic segmentation CA

s by an inverted splice localization mask (1 − CA
m). The
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multiplication by the inverted mask leaves authentic areas untouched and removes annotations for
manipulated regions.

The aim of our adversarial loss LDA

adv is to avoid blurry output splice localization masks [6]. It is
provided by a conditional discriminator DA with PatchGAN architecture [6]

LDA

adv(B̂, Ĉ
B̂) = EB∼p(B)

[
log(1−DA(B̂, Ĉ

B̂))
]
. (7)

We obtain the resulting energy to optimize by combining four loss functions

LA = λbal

(
Lbal(CA′, ĈA) + Lbal(CA′, ĈB̂) + Lbal(CB, ĈB)

)
+ λDA

adv · L
DA

adv(B̂, Ĉ
B̂), (8)

where we use the loss hyper-parameters λbal = 1, λDA

adv = 1 in our experiments.

3.3 FantasticReality Dataset

We collected large-scale image tampering dataset with 16k authentic and 16k tampered images to
perform extensive training and evaluation of our MAG model. Compared to previous datasets [37, 38,
39, 40], our FantasticReality dataset is more extensive in terms of scene variety and image count.
To the best of our knowledge, it is the first tampering dataset that provides both tampering masks
and instance and class labels for each image. For each authentic and tampered image, we manually
generated instance and class segmentation for ten object classes: person, car, truck, van, bus, building,
cat, dog, tram, boat. Examples from the dataset are presented in Figure 1 in the supplementary
material.

4 Experiments

We perform extensive experiments to evaluate our MAG model on splice localization. We compare
our model to three modern state-of-the-art deep learning splice detection frameworks: ManTra [62],
LSC [1], MFCN [2]. We provide a comparison to non-deep learning methods to be consistent with LSC:
NOI [18], CFA [10], DCT [19]. ManTra-Net (ManTra) [62] is a self-supervised model that learns
to classify 385 image manipulation types. Learned Self-Consistency (LSC) [1] is a self-supervised
model. Multi-Task Fully Convolutional Network (MFCN) [2] leverages a deep two-stream architecture
to predict splice mask and splice edge mask. Noise Variance (NOI) [18] leverages wavelet analysis
to detect inconsistency in noise patterns. Color Filter Array (CFA) [10] searches for inconsistencies
in artifacts of demosaicking algorithm to detect tampered regions. JPEG DCT [19] leverages incon-
sistencies of JPEG blocking artifacts to detect tampered image regions. For the LSC algorithm, we
use a pertained model provided by authors. We implemented the MFCN model and train it on the
training split of our FantasticReality dataset. We train our MAG model on the ‘Rough’ split of our
FantasticReality dataset. We use a batch size of one and an Adam solver with initial learning rate of
2 · 10−4. We trained our MAG model for 400 epochs.

We perform evaluation on five manipulated image datasets CASIA v2.0 [37], Carvalho [38],
Columbia [39], Realistic Tampering [40] and our FantasticReality dataset. For the fair evalua-
tion, we downscale all images to match the input size 512× 512 of our annotator generator GR. We
use the downscaled images to evaluate all baselines and our framework. If two images are used for
splice generation, the choice of ‘authentic’ and ‘tampered’ regions is ambiguous. To avoid ambiguity,
we follow the method proposed in [1]. Namely, we compare the areas of the ‘background’ image
and the ‘pasted’ images. We define the smaller region as the tampered. If the regions are equal, we
calculate the mAP score for the original tampering mask and an inverted mask. We use the higher
score and term it permuted mAP (p-mAP) similar to [1]. For additional details on the evaluation
protocol, please, refer to the supplementary material. Furthermore, we perform ablation studies to
demonstrate the influence of each component of our framework on the resulting performance.

4.1 Annotator Generator GA Evaluation

Splice Localization. We evaluate our model and baselines on the task of splice localization using
ground-truth masks of spliced regions. Specifically, we want our model to predict a per-pixel
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Figure 3: Comparison against the state-of-the-art methods on image splices from CASIAv2, Carvalho
and Realistic Tampering datasets. Our results are shown in the last row. Zoom in for details.

Dataset CASIA v2.0 [37] Columbia [39] RT [40] Carvalho [38] FantasticReality

Metric mAP p-mAP cIOU mAP p-mAP cIOU mAP p-mAP cIOU mAP p-mAP cIOU mAP p-mAP cIOU

LSC 0.32 0.41 0.47 0.25 0.44 0.41 0.33 0.47 0.52 0.15 0.33 0.24 0.17 0.45 0.36
CFA 0.37 0.40 0.42 0.39 0.44 0.44 0.45 0.48 0.49 0.32 0.32 0.33 0.45 0.50 0.48
NOI 0.29 0.45 0.46 0.26 0.43 0.40 0.48 0.45 0.50 0.21 0.31 0.21 0.18 0.49 0.29
LSC 0.35 0.39 0.35 0.22 0.42 0.43 0.37 0.49 0.48 0.16 0.37 0.25 0.26 0.51 0.41
MFCN 0.36 0.41 0.48 0.27 0.45 0.42 0.41 0.51 0.36 0.42 0.36 0.37 0.40 0.51 0.46
ManTra 0.40 0.40 0.45 0.48 0.48 0.58 0.50 0.50 0.54 0.33 0.33 0.38 0.57 0.57 0.73

No GR 0.41 0.35 0.12 0.34 0.32 0.29 0.28 0.35 0.18 0.20 0.37 0.29 0.27 0.45 0.36
Single-task 0.12 0.15 0.24 0.11 0.19 0.21 0.17 0.16 0.14 0.19 0.15 0.18 0.12 0.17 0.21

Ours 0.74 0.74 0.76 0.69 0.69 0.77 0.50 0.51 0.55 0.48 0.48 0.56 0.61 0.61 0.76

Table 1: Splice Localization: We evaluate our model on 5 datasets using mean average precision
(mAP, permuted-mAP) over pixels and per class IOU (cIOU).

probability of an image patch being tampered. We present results in terms of mAP, permuted
mAP [1], and per class Intersection over Union (cIOU) in Table 1 and in Figure 3. Our MAG model
achieves state-of-the-art in splice localization on all datasets. The LSC model fails to detect splices
when authentic and spliced regions originate from the same camera model and share similar camera
metadata.

Ablation Study. We evaluate the necessity of all components of our MAG framework by comparing the
splice localization accuracy of several ablated versions of our model presented in Table 1 and Figure 4.
Firstly, we evaluate the performance of annotator GA trained without retoucher GR (No GR). Both
qualitative and quantitative results demonstrate that the competition of two generators is the critical
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Manipulated Image Ground Truth No GR Single-task Original

Figure 4: Qualitative results for ablated versions of our MAG framework evaluated on Realistic
Tampering dataset.

component of our MAG framework. Secondly, we evaluate our framework trained for the single task
of predicting splice area annotations. The results prove that multi-task training outperforms the
single-task version of our model (Single-task).

4.2 Semantic-guided Retoucher Generator GR Evaluation

Examples in Figures 5 and 6 demonstrate how our retoucher GR gradually removes the tampering
artifacts in the input splice A with an increasing epoch. While other deep learning splice detection
methods receive both realistic and rough splices from the first training epoch, our annotator GA
sees only rough splices at the first epoch. With an increasing epoch, retoucher GR produces more
complicated splices, which allows GA to focus attention on the sophisticated tampering techniques
that could appear in real splices. We believe that this is the main reason why our MAG framework
achieves state-of-the-art results and outperforms other deep learning methods.

A B̂=GR(A) GT Ĉ=GA(B̂)

R
ou

gh
R

ea
lis

tic

Figure 5: Performance for retoucherGR on rough
and realistic splices.

Epoch 100 Epoch 300
B̂ Ĉ B̂ Ĉ

Figure 6: Adaptation of annotator GA over time.

5 Conclusion

We showed how adversarial training based on a learning retoucher generator in the loop could help
a splice localization model to learn a wide range of image manipulations. Our mixed adversarial
generators extend the generative adversarial networks framework by replacing a scalar value fake
prediction discriminator with a pixel-level fake region annotator. The proposed retoucher generator
is trained simultaneously with an annotator generator trying to maximize the probability of the
annotator to make a mistake. Such adversarial training improves the annotator splice localization rate
as it observes changing image manipulation techniques through the training process. Furthermore,
the competition of two generators allows the retoucher generator to achieve the state-of-the-art
performance in image-to-image translation tasks. Our main observation is that semantic-guided
training allows our splice localization annotator to reason explicitly about splices and their semantic
consistency, and achieve and surpass the state-of-the-art methods in splice localization on several
challenging datasets.
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