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Abstract

Neural network models of memory and error correction famously include the Hop-
field network, which can directly store—and error-correct through its dynamics—
arbitrary N -bit patterns, but only for ∼ N such patterns. On the other end of
the spectrum, Shannon’s coding theory established that it is possible to represent
exponentially many states (∼ eN ) using N symbols in such a way that an optimal
decoder could correct all noise upto a threshold. We prove that it is possible to
construct an associative content-addressable network that combines the properties
of strong error correcting codes and Hopfield networks: it simultaneously possesses
exponentially many stable states, these states are robust enough, with large enough
basins of attraction that they can be correctly recovered despite errors in a finite
fraction of all nodes, and the errors are intrinsically corrected by the network’s
own dynamics. The network is a two-layer Boltzmann machine with simple neural
dynamics, low dynamic-range (binary) pairwise synaptic connections, and sparse
expander graph connectivity. Thus, quasi-random sparse structures—characteristic
of important error-correcting codes—may provide for high-performance computa-
tion in artificial neural networks and the brain.

1 Introduction

Neural systems must be able to recover stored states from partial or noisy cues (pattern completion
or cleanup), the definition of an associative memory. If the memory state can be addressed by its
content, it is furthermore called content-addressable. The classic framework for neural associative
content-addressable (ACA) memory is the conceptually powerful Hopfield network [1–3].

Here, we are motivated by both the Hopfield network and by strong error-correcting codes (ECCs).
ECCs are simultaneously compact, allowing the specification of exponentially many coding states
using codewords that grow only linearly in size; and well-separated or robust, permitting the correction
of relatively large errors by an appropriate decoder. Specifically, ECCs can use strings of N bits to
encode exponentially-many messages (∼ 2αN , 0 < α < 1), and to retrieve them in the presence of
noise that corrupts a finite fraction of bits [4, 5].

However, in ECCs, the decoder is external to the system and its costs (in time, space, and computa-
tional complexity) are not taken into account when determining the capacity of the code. By contrast,
the simple neural dynamics of Hopfield networks permits them to cleanup or decode their own states,
though only for a small number of such states. Here we pose (and answer) the question of whether
it is possible to build simple, Hopfield-like neural networks that can represent exponentially many
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well-separated states using linearly many neurons, and perform error-correction or decoding on these
states in response to errors on a finite fraction of all neurons.

Very generally, in any representational system there is a tradeoff between capacity and noise
robustness[4]: a robust system must have redundancy to recover from noise, but the redundancy
comes at the price of fewer representational states. Conversely, a system with a large number of
coding states leaves less room for redundancy or surrounding basins for robustness. The entire state
space of a neural network with N binary nodes is 2N , thus the goal of achieving exponentially many
stable coding states or codewords—the same scaling as the total number of states—simultaneously
with large basin sizes around each codeword for robust correction of errors that occur at a finite rate
at every neuron (for a total number of errors linear in network size) is highly non-trivial.

We show that a bipartite neural network and its stochastic equivalent, a Boltzmann machine[6]—
when equipped with random expander-graph connectivity between layers and clustered inhibition in
the hidden layer—achieves the desiderata of strong error-correcting codes with built-in decoding,
meaning that the network exhibits exponential capacity, robustness to large errors, and self decoding
or clean-up of these errors. By forging connections between the theory of low-density parity-check
(LDPC) codes on expander graphs [7], and robust representation in neural networks, this construction
leads to ACA networks with an unprecedented combination of robustness and number of states.

2 Results

For this work, we define a Hopfield network to have N binary neurons, symmetric (undirected)
weights, and asynchronous updates of a single randomly selected neuron at each discrete time-step:
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Here W is the weight matrix, b is a vector of biases, and Bern(0.5) is 0 or 1 with equal probability.

The neuron sums its inputs and turns on (off) if the sum exceeds (falls short of) a threshold. The
network dynamics lead it to some stable fixed point, determined by the connection weights and initial
state. Stable fixed points are minima of a generalized energy function:
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We define a high pattern number (HPN) network as one with exponentially many stable states (i.e.,
C ∼ 2αN , for some constant 0 < α ≤ 1 with N neurons). A HPN network retains a non-vanishing
information rate (ratio of log number of coding states to total possible states; log(C)/ log(2N ) = α)
even as the network grows in size. Note that, as with the codewords of a good ECC, the stable states
of a HPN network cannot be arbitrarily chosen (and theoretical results show that there can be at most
O(N) arbitrarily chosen stable states in a Hopfield network[8–10]).

We define a robust system as one that can recover the original (or nearest Hamming distance)
codeword from a perturbed version with a constant error rate (p) in each node. Robust networks must
thus tolerate a number of errors (pN ) proportional to network size, which requires the memory states
to be surrounded by attracting basins that grow sufficiently fast with network size.

To our knowledge, no existing neural network model has been shown to combine the two capabilities
of exponential capacity and high robustness, in addition to performing self-decoding (see Discussion
for more details on previous work).

In the main paper, our focus is on the mapping between ECCs and Hopfield networks, and on the
intuition behind why the network combines exponentially-many fixed points with large basins of
attraction. Proofs and more technical results are in the SI. In particular, S3–4 prove that general
linear codes can be partially mapped onto Hopfield networks but the complete mapping fails, S7–9
prove that expander codes can be mapped to Hopfield networks and provide further details on the
construction, S10–11 consider extensions to weaker constraints and noisy updates, and S12 describes
a self-organization rule that generates the network.
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2.1 Using ECCs to construct Hopfield networks with exponentially many well-separated
minima and failure of decoding

First, we consider how to directly embed the codewords of a linear ECC into fixed points of a neural
network to generate well-separated stable states [11, 12].

Linear ECCs consist of binary codewords of length K +K ′ = N that satisfy K ′ constraint parity
equations, for a total of 2K codewords separated from each other by up to K ′ bits. These codes can
permit correction of errors on up to (K ′ − 1)/2 bits (see SI S2 for a brief pedagogical overview of
ECCs), by an appropriate decoder.

We demonstrate the embedding using the classic (7,4) Hamming code[13], which consists of 24
codewords of length 7, including 3 parity check bits, Fig. 1a (see SI S3 for the embedding of more
general linear ECC codewords into neural network fixed points). The 3-bit separation of codewords
means that all single bit flips should be corrected by an optimal decoder. The correct codeword is the
one that is closest in Hamming distance to the single-bit corrupted state.

The Hamming code can be mapped into the fixed points of an ACA network using a Hopfield network
of 7 neurons and 4th-order weights, Fig. 1b [11]: The binary state of one neuron represents one bit
(letter) in the codeword while each weight represents a 4-way constraint on the nodes, Figure 1b. By
construction, the minimum energy states are the Hamming codewords (SI S3 for a proof).

We achieve the same result more realistically, using only pairwise rather than K-th order connections,
by introducing a bipartite architecture: Each hidden node can connect pairwise with multiple (K)
input neurons to enforce the appropriate K-th order relationships among the input neurons, Fig. 1c.

Though the well-separated codewords are well-separated minima of the network dynamics, running
the dynamics does not appropriately correct a flipped bit, Fig. 1d. Starting one bit-flip from a
codeword (at x1), there are many paths for the network to move downhill in energy (energy function
in Fig. 1b). One is to appropriately correct the error bit. But, in general, there is only one downhill
and correct direction, and many more (∼ N/2) ways to move downhill in energy that correspond to
steps away in Hamming distance (e.g. by flipping bits x3 or x7), producing wrong decoding. For
network embeddings of longer Hamming codes, error probability approaches unity (SI S4). Indeed,
we expect similar decoding failures for a large class of error-correcting codes (SI S4).

The network’s failure should not be surprising, since decoding strong ECCs is computationally
hard [14], involving more complex message-passing dynamics than the local sums and pointwise
nonlinearities of neural networks. The failure is one of credit assignment: the network cannot identify
the actual flipped bit, and flips a different bit to move downhill in energy. A successful solution must
solve the credit-assignment problem.

2.2 Exponential-capacity robust error-correcting ACAs

The central contribution of the present work is to show, we believe for the first time, that it is possible
to implement strong error correcting codes with self-decoding in Hopfield networks. Our solution is
based on recent developments in graph theory and coding theory that led to ECCs that can be decoded
by simple greedy algorithms[7].

These ECCs rely on a constraint structure determined by an expander graph. In an expander graph,
all small subsets of vertices are connected to relatively large numbers of vertices in their complements.
For instance, a subset of 4 vertices, each with out-degree 3, shows good expansion if it projects to 12
other vertices, Figure 2a (top).

We construct a neural network embedding by constructing a bipartite expander graph, consisting of
N,NC input and hidden (constraint) nodes (NC / N ), respectively. Each input node is a neuron
while each hidden node is a small network of neurons interacting competitively through inhibition,
whose size K does not grow with N . Different neurons in a constraint node are connected to the
same input subset, but differ in their weights; the competitive interactions serve to separate stable
states within the constraint node.

At the level of nodes, connections run between input and constraint layers but not between nodes in a
layer, as in a restricted Boltzmann machine [15]. The input and constraint nodes have degrees z, zC
respectively (thus Nz = NCzC ; for expositional simplicity we assume fixed degree; see SI S6-9
for generalization to variable degree). We are interested in sparse networks, where the number of
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Figure 1: Successful embedding but incorrect decoding of ECC codewords in Hopfield net-
works. (a) Codewords of the (7,4) Hamming code are binary strings of length 7 (right) that satisfy
3 constraint equations (bottom left; sums are modulo 2). (b) The codewords are embedded as the
stable states of a Hopfield network with 7 nodes (circles) and 4th-order edges (lines of a single
color represent a single 4th-order edge; the edge weight between nodes i, j, k, l is Jijkl; binary
Hamming states are mapped to {−1, 1} in the Hopfield network for notational convenience). Each
edge implements one constraint equation. Bottom: The energy function E; it is minimized at each
codeword. (c) The 4th-order edges can be replaced by conventional pairwise edges if the recurrent
network is transformed into a network with a hidden layer. A constraint node (square) is not a single
neuron but a small network that implements a parity operation on its inputs (e.g. as in Fig. 3). (d)
Schematic showing decoding error. The initial state −1111111 (lavender cross), one flip from the
closest codeword (1111111; blue) can proceed along multiple trajectories that decrease energy, either
to the correct codeword (blue) or to a codeword two flips away (black). Solid lines show regions in
state space closest to a particular codeword.

connections the input and hidden nodes each make does not increase with network size. This bipartite
graph is a (γ, (1 − ε)) expander if every sufficiently small subset S (of size |S| < γN , for some
fixed γ < 1) of input vertices has at least (1− ε)z|S| neighbors among the hidden vertices[7, 16–18]
(0 ≤ ε < 1 is some constant, with ε→ 0 corresponding to increasing expansion).

Surprisingly, and helpfully in the neural context, sparse random bipartite graphs even with small
degree yield good expansion (with ε < 1/4 generically) [7, 16–18]. Thus we choose connections
between layers randomly, and verify that they are indeed good expanders (SI S5 and Figure S1).

The Lyapunov (generalized energy) function of the network is:

E(x,h) = −
(
xTUh+ bTh+

1

2
hTWh

)
. (3)

Here x and h are vectors of input and constraint neuron activity respectively, U is a sparse matrix
with non-zero entries determined by an expander graph, W is a block-diagonal matrix of inhibitory
connections and b is a vector of fixed background inputs to the constraint neurons (for further details
see SI S8).

The network capacity is exponential, Figure 2b: the number of stable states grows exponentially in
the total size of the network (total number of neurons in input and constraint nodes). Moreover, the
network dynamics appropriately moves perturbed states back to their closest (in Hamming distance)
stable states, correcting a number of errors that increases in proportion to the number of input nodes
(and thus also total network size), Figure 2c-e (proofs in SI, S6-9).

Specifically, if each constraint node contains at most Kmax neurons (independent of N ; thus the total
network size is Ntotal ≤ N +KmaxNC ), we prove that the expected total number of energy minima
and the total number of correctable errors are given by

Nstates ≥ 2αNtotal and Nerrors ≥ βN (4)
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where α = (1−〈r〉ẑ)
(1+Kmaxẑ)

and β = γ(1 − 2ε) are both finite constants. ẑ = 〈z〉
〈zC〉 is the ratio of the

average input and hidden layer degrees across nodes (= z/zC for a regular network) and −〈r〉 is the
average across nodes of the log ratio of permitted states to all states for a constraint node (SI S8 for
more details). The number of minimum energy states is exponential in total network size because
α is independent of N,Ntotal. We need only be concerned with errors in the inputs because the
initial conditions in the constraint nodes are set by relaxation after briefly clamping the input nodes
(equivalently, all errors in the constraint neurons are irrelevant/correctable).

Given any per-neuron error probability smaller than β, the network corrects all errors (with probability
→ 1 as N →∞). Typical of strong ECCs, the probability of correct inference is step-like: all errors
smaller than a threshold size are corrected, while those exceeding the threshold result in failure.

The results of Figure 2 involve an expansion coefficient ε > 1/4; constraint nodes that only permit
input configurations that differ in the states of at least two neurons (described below); and noise-free
(Hopfield-like) update dynamics (beyond the randomness present from the asynchronous nature of
the updates). In SI S10 and 11 we extend these results to less stringent conditions on the constraint
nodes and show that analogous results, up to small fluctuations around the noiseless stable state, hold
for stochastic dynamics in a Boltzmann Machine (Fig. S2).

2.3 Compositional structure and dynamics of the robust high-capacity ACA

We next examine the structure and dynamics of this network, to explain how it works. In the
section after, we examine why, by virtue of its sparse expander structure, it does not fall prey to the
credit-assignment errors exhibited by neural network implementations of Hamming codes.

Within a constraint node, a small network of K neurons with recurrent inhibition attempts to drive
the input states to a smaller set of permitted states.1 Thus, although the network has a restricted
Boltzmann machine architecture at the level of input neurons and constraint nodes, the constraint
neurons in a given node interact through lateral inhibition. All neurons in one constraint node connect
to the same subset of zC input neurons, Figure 3a, but each will prefer a different configuration of
states on these input neurons, as determined by its weights. For our construction, it is important that
these preferred configurations differ from one another in at least two bits or two input neuron states.
We will show below a simple self-organized way for these well-separated configurations to emerge,
but for the moment will simply assume that these hidden node preferred states are at least two bits
apart. Then, there are at most 2zC−1 preferred states (out of 2zC possible states for the input subset)
requiring K ≤ 2zC−1 neurons in a constraint node (Figure 3b). Operationally, zC can be small
(between 2 and 6 in Figure 2 ). For simplicity in Figure 2, 3, we choose the preferred states to be
even parity states of the input, by setting weights appropriately (see SI S6, S8-10 for generalizations).

By virtue of their shared inputs, neurons in a constraint node could be viewed as a glomerulus (this
describes connectivity and need not imply physical clustering as for olfactory or cerebellar glomeruli;
it also does not perform amplification as in sensory glomeruli). While input-to-constraint node
connectivity is random, connectivity of individual neurons within a constraint node is correlated since
these neurons receive the same set of inputs — the network is therefore not fully random.

Taken together, the stable states of the network are compositions or combinations of the preferred
input configurations of the different constraint nodes. In the absence of constraints, the input layer
has 2N possible states. Each constraint node cuts in half the number of possible states (if preferred
patterns in the constraint node are based on parity; see SI S6, S8-10 for generalizations); thus, with
NC constraints there are 2N−NC stable states. Since NC is a fraction of N , the number of stable
states is exponential in N (and in total network size; see above). By virtue of the ≥ 2 separation
in patterns per constraint node and the expansion property of the connectivity, the stable states are
separated by at least γN , which is linear in N (recall that γ is the expansion coefficient).

To understand how the network works, first consider the activity of a constraint node. Constraint
nodes are conditionally independent of each other given the inputs; thus each constraint node can
be studied individually, with its inputs. When a neuron within a constraint node receives an input
that exactly matches its preferred configuration, it becomes active and silences the others through
strong inhibition, Figure 3a. This is a low-energy state for that node (SI S8), which we will refer to as

1Within-node inhibition can be replaced by common global inhibition across all neurons and constraint
nodes, slowing convergence dynamics but not affecting the overall quality of the computation.
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Figure 2: ACA network with exponential capacity and robust error correction. (a) Good (top) vs.
poor (bottom) expansion in bipartite graphs. Input nodes each send z = 3 edges to the constraint layer.
Subsets of input neurons (one subset highlighted by dashed line) have many (few) neighbors in good
(poor) expanders. (b) Network capacity is exponential. Gray line: Derived theoretical lower bound
on number of robust stable states versus the number of input neurons (N ). Open circles: Number of
robust stable states in simulated networks (100 simulations for each point). Since constraint nodes
apply parity constraints (see SI S6, S8-10 for generalizations), we numerically calculate the number
of stable states as the dimension of the null space of the constraint matrix in the binary field F2. The
slight scatter of points reflects occasional duplicate constraints in small random networks (vanishingly
rare for largeN ). (c) Fraction of times the network converges to the correct state when a finite fraction
of nodes (thus a linearly growing number of nodes with network size) is corrupted. The increasingly
sharp transition between recovery and failure (as N increases) is characteristic of ECCs. Error bars:
standard error. Minimum of 25 runs for each data point. (d) Energy (gray) and number of node flips
(black) over time in an N = 500 neuron network with 4% initial corruption, as the network relaxes
to the closest stable state. Energy always decreases monotonically, but the number of node flips need
not. For panels (b-d), NC = 0.95N , 5 ≤ z ≤ 10 and 2 ≤ zC ≤ 6 (see SI S8 for further details). (e)
Network state-space trajectories (projected onto 2D space) in a simulated small network. Black dots:
two stable states. Different initial states (with 1-5 nodes corrupted, purple, gray, and orange dots) in
the vicinity of the stable state to the left and their flows to the stable states. All initial states within a
threshold Hamming distance of the original stable state flow to it (purple dots). Those not within that
distance (gray and orange dots) flow to other stable states including spurious states. The trajectories
that end in the adjacent stable state shown at right are in orange. N = 18, NC = 15, z = 5, zC = 6.
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Figure 3: Architecture and dynamics of a robust exponential capacity ACA. (a) A constraint
node (square box) is a small subnetwork of 2zC−1 neurons, with global inhibition within the node
(hashed node is inhibitory). Recall that zC is very small (typically 5-10) and does not change with
network size. (b) Single constraint node: All neurons in one constraint node connect to the same
inputs, but with different binary weights (+’s and −’s shown above a few neurons) that determine
which input pattern a constraint neuron prefers. E.g. (first example, top row) a constraint neuron with
input weights −−++ prefers 0011 and wins the competition to be active for that input (on state:
white fill), silencing the rest (off state: gray). Green check-mark (red cross) shows the constraint
node in a (un)satisfied state. Here, even-parity patterns (an even number of 1’s) are the only preferred
input states. (c) Top left: network with both satisfied and unsatisfied constraints. Flipping an input
attached to more unsatisfied than satisfied constraint nodes (red arrow, bottom) lowers the energy of
the network when it flips, by flipping the status of all its constraint nodes (top right). Bottom: The
problem of poor expansion: if two constraints have overlapping input states, they cannot identify the
source of multiple shared errors. A single error in the shared inputs violates both constraints (center),
and if a second shared input is corrupted (right) both constraints are satisfied and the iteration process
from above fails.

“satisfied”, Figure 3b (left, green). If the input exactly matches none of the preferred configurations,
more than one constraint neuron will receive equal drive, Figure 3b (right, red); inhibition is strong
enough that no more than two among the equally-driven constraint neurons can be active. Such a
state corresponds to a higher energy, “unsatisfied” configuration. The overall energy of this network
is proportional to the total number of unsatisfied constraint nodes (SI S3 and S9), allowing local
energy-minimizing dynamics to successfully correct errors as we describe below.

2.4 Credit assignment with expander graph architecture

Heuristically, the network solves credit assignment as follows. For networks with sparse and expansive
connectivity, any small set of input neurons shares few common constraint nodes (Fig. 2a and 3c).
Thus, if a small fraction of input nodes is wrong, each constraint node will typically receive one
or zero wrong inputs. The total number of unsatisfied constraints, which is proportional to the
energy of the network, reflects the number of corrupted inputs, aligning the metrics of energy and
corrupted input bits. In addition, the specific constellation of unsatisfied constraint nodes for codes
on sparse expander networks (but not in standard ECC embeddings into a neural network, including
the Hamming code implementations above) is a detailed fingerprint of the pattern of input errors; this
fingerprint determines which specific input neurons are in error and should be flipped.

Specifically, for a sufficiently small input error rate (< γ(1− 2ε)), a majority of the constraint nodes
that receive any corrupted inputs are connected to only one corrupted input. These constraint nodes
are appropriately unsatisfied. Next, the network dynamics highly preferentially updates inputs that are
connected to more unsatisfied than satisfied constraint nodes (for proofs, see SI, S6-9 and [7]); this
process both reduces the energy of the network and the number of corrupted inputs: all unsatisfied
constraints connected to the flipped input bit will now be satisfied, and vice versa. The network thus
iteratively reduces unsatisfied constraints and, doing so, corrects errors.

2.5 Self-organization to robust exponential capacity

Robust exponential capacity requires that preferred patterns at each constraint node differ by at least
two bits. The neurons within each constraint node, connected to the same subset of input neurons, can
come to prefer sufficiently non-overlapping patterns through a simple self-organization rule. Briefly,
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the self-organization rule proceeds by pairing very-sparse random activation of the constraint neurons
in a node with random activation of the inputs, together with inhibition within the constraint node.
An active constraint neuron wires with strength +1 to co-active inputs and -1 to inactive inputs, in a
Hebbian-like one-shot modification. Lateral inhibition prevents constraint neurons from becoming
activated by too-similar patterns. We prove that this self-organization rule leads each constraint node
to come to prefer a set of input states that differ in at least two entries, and does so in a time that
scales only logarithmically in network size (SI S12 and Fig. S3 for further details).

3 Discussion

We leveraged recent constructions of low-density parity check codes based on expander graphs
(expander codes), which admit decoding by simple greedy algorithms [7, 16], to show that ACA
networks with quasi-random connectivity can have and decode exponentially-many robust stable
states. In sum, we have constructed simple ACA networks with capacity and robustness comparable to
state-of-the-art codes in communications theory, moreover with the decoder built into the dynamics.

Spin glasses (random-weight symmetric Hopfield networks) possess exponentially many (quasi)stable
fixed points [19] but these energy minima have not been shown to have large basins of attraction.
Instead, most minima are not observable in numerical explorations [20], suggesting small basins
of attraction. Hopfield networks designed for constraint satisfaction problems have ∼ 2

√
N stable

states [21–23]; a recent construction with hidden nodes has capacity that is exponential in the ratio
of the number of hidden to input neurons[24]; and a network based on a sparse bipartite graph with
integer-valued neural activity shows exponentially many stable states [25]. However, in all cases the
fraction of correctable errors either vanishes with network size or is negligible to begin with. Thus
none of these networks are robust to noise.

The first attempts to link ECCs with spin glasses and Hopfield networks were by Sourlas [11, 12],
where the goal was to use the relationship to decode noisy messages. However, these studies construct
a separate neural network (with different weights and energy function) for decoding inputs in the
neighborhood of each codeword. Thus, each network carries out decoding specific to a particular
input and does not possess exponentially-many stable states with large basins of attraction that
appropriately decode states near any of the robust stable states.

Near-exponential capacity was recently realized in Hopfield networks with clique structures. Hillar
& Tran [26] construct a network whose stored patterns correspond to the cliques of an abstract
graph, with capacity C =∼ eα

√
N . Fiete et. al [27] divide a network of N neurons into N/ log(N)

non-overlapping binary switches, for capacity C =∼ eN/ log(N). These networks have multiple nice
features: they have large basins of attraction, converge rapidly and are easy to construct. However,
their information rate (ρ ≡ ln(C)/N ) still vanishes asymptotically in N and thus does not match
good error-correcting codes. They are also susceptible to sub-linear sized adversarial patterns of error.
Our network, which does not break into distinct sub-linear sized subnetworks due to the intermeshed
expander graph structure is not similarly susceptible.

The network has a two-layer restricted Boltzmann machine-like architecture and can be represented
as a factor graph (constraint modules are factors), undirected graphical model (clique potentials
are indicator functions on visible neurons in a constraint) and Bayes net (in several different ways).
Our network can be made structurally similar to the Bayes nets used to decode ECCs [28, 29] by
adding an input layer with fixed noisy inputs and slightly rewriting constraint modules. The primary
difference is dynamical rather than structural. Expander codes permit simple local decoding [7] and
thus we are able to use Hopfield dynamics as the decoding rule in the network. These dynamics are
significantly simpler than belief propagation (BP). In general, codes that can be decoded by BP do
not admit simple network decoding by the energy-based Hopfield rule and we do not expect general
ECC decoding to be performed by Hopfield dynamics. In the SI we make preliminary attempts to
characterize when ECCs can be mapped to neural networks. It will be interesting, in future work, to
determine when the mapping is possible and to analyze a broader set of ECCs as neural networks.

Hopfield networks of N neurons cannot store for full recall more than O(N) arbitrary patterns [8, 9].
The patterns stored in our exponential capacity network are not arbitrary and satisfy a conjunction of
many sparse constraints. Given these restrictions, how might these (or any other supralinear capacity
networks[26, 27]) be used?
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One possibility is that the networks are used in the traditional Hopfield network sense, as content-
addressable memories to recall entire input patterns, but with very high capacity for inputs with
appropriate structure. Indeed, natural inputs that are stored well by brains are not random. For
example, natural images are generated from latent causes or sources in the world, each imposing
constraints on a sparse subset of the retinal data we receive, and might be reasonable candidates to
store in such a Hopfield network [30]. Alternatively, processing the data to decorrelate lower moments
[31–33] while preserving or adding information in higher moments might produce appropriate
structure. It is an open question what stimuli might either be already described within this framework
or be naturally transformed to acquire the appropriate structure.

A second possibility is to use these networks as high-capacity pattern labelers or locality-sensitive
hash functions. Here input patterns in a very high-dimensional space (possibly neocortex) are mapped
to the exponentially-many stable states of a HPN attractor network (possibly hippocampus), which
serve as memory labels for the patterns. The connectivity matrix can be constructed in a simple,
online, Hebbian way. When presented with a noisy version of an input pattern, the memory network
robustly retrieves the correct label (and maintains it in the absence of input). Such a pattern labeler can
be used for recognition or familiarity detection, template matching, classification, locality-sensitive
hashing and nearest neighbor computations, and could also play a role in memory consolidation and
learning conjunctive representations.

Our network is structurally simple, apart from the modular organization of the constraints: con-
nectivity is pairwise and random, and weights have low dynamic range (in fact they are binary).
This simplicity suggests that such error-correction strategies may be used in the brain, and it will
be interesting to look for signatures of them in neural data. One signature is that the network has
many more constraint cells than input cells. Constraint cells are very sparsely active because only
those few which receive their preferred input are driven, along with some others that are transiently
active to correct errors. The smaller number of constraint cells that receive their preferred inputs,
together with the input cells that carry the actual representation will respond stably. Consequently,
representations are predicted to contain a dense but small stable core, with many other neurons that
are transiently active and not reliably responsive across repeats of a pattern (because errors might
be different each time). This is reminiscent of observations in place cell populations [34] and the
sparse, heavy-tailed distribution of population activities across hippocampus and neocortex [35, 36].
A second signature of these strategies is that representations in the stably active neurons should have
decorrelated second-order (i.e. pairwise) statistics but contain structure in higher-order moments that
the network exploits for error correction.

Our results generalize along multiple directions, and provide several insights into the structure of
sparse neural networks. We show many other results in the supplement, including that: 1) The same
principles carry over to stochastic Boltzmann machines (SI S11). 2) Sparse random higher-order
Hopfield networks, even without hidden nodes, are isomorphic to expander codes (SI S7). Thus,
higher-order Hopfield networks generically have exponential capacity with high robustness, if they are
sparse and random. Higher-order Hopfield networks are used to model disordered systems in physics,
often under the name of p-spin infinite-range models[37]. The connection to expander codes may lead
to further insights into these models. 3) Energy-based decoding is likely to generically fail on dense
networks, suggesting that sparsity may be necessary, not merely sufficient, for high-capacity neural
networks (SI S4). 4) We extend the finding that the total capacity (the product of information per
pattern times number of patterns) of any Hopfield network with pairwise connections is theoretically
bounded at O(N) arbitrary dense patterns [8–10] and O(N2) arbitrary sparse patterns[38–40], to
show that these bounds also hold for architectures with hidden nodes (SI S13).

Expander graph neural networks combine many weak constraints and exploit properties that are rare
in low dimensions but generic in high dimensions, both common tropes in modern computer science
and machine learning[41–44]. Expander graphs have found widespread recent use in designing
algorithms[17, 7, 45]. Because neural networks are large and sparse, and because large sparse random
networks are good expanders[17, 18], expander architectures may provide broader insight into the
computational capabilities of the brain. Our results may bridge problems in neural networks and a
growing body of powerful expander-graph-based techniques and algorithms in computer science.

Code availability All simulations were run using scripts written in Python 2.7, along with standard
packages. Code is available at https://chaudhurilab.ucdavis.edu/code.
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