
Learning Compositional Neural Programs
with Recursive Tree Search and Planning

Thomas Pierrot
InstaDeep

t.pierrot@instadeep.com

Guillaume Ligner
InstaDeep

g.ligner@instadeep.com

Scott Reed
DeepMind

reedscot@google.com

Olivier Sigaud
Sorbonne Université

olivier.sigaud@upmc.fr

Nicolas Perrin
CNRS, Sorbonne Université
perrin@isir.upmc.fr

Alexandre Laterre
InstaDeep

a.laterre@instadeep.com

David Kas
InstaDeep

d.kas@instadeep.com

Karim Beguir
InstaDeep

kb@instadeep.com

Nando de Freitas
DeepMind

nandodefreitas@google.com

Abstract

We propose a novel reinforcement learning algorithm, AlphaNPI, that incorpo-
rates the strengths of Neural Programmer-Interpreters (NPI) and AlphaZero. NPI
contributes structural biases in the form of modularity, hierarchy and recursion,
which are helpful to reduce sample complexity, improve generalization and in-
crease interpretability. AlphaZero contributes powerful neural network guided
search algorithms, which we augment with recursion. AlphaNPI only assumes
a hierarchical program specification with sparse rewards: 1 when the program
execution satisfies the specification, and 0 otherwise. This specification enables
us to overcome the need for strong supervision in the form of execution traces
and consequently train NPI models effectively with reinforcement learning. The
experiments show that AlphaNPI can sort as well as previous strongly supervised
NPI variants. The AlphaNPI agent is also trained on a Tower of Hanoi puzzle with
two disks and is shown to generalize to puzzles with an arbitrary number of disks.
The experiments also show that when deploying our neural network policies, it is
advantageous to do planning with guided Monte Carlo tree search.

1 Introduction

Learning a wide variety of skills, which can be reused and repurposed to learn more complex skills
or to solve new problems, is one of the central challenges of artificial intelligence (AI). As argued in
Bengio et al. [2019], beyond achieving good generalization when both the training and test data come
from the same distribution, we want knowledge acquired in one setting to transfer to other settings
with different but possibly related distributions.

Modularity is a powerful inductive bias for achieving this goal with neural networks [Parascandolo
et al., 2018, Bengio et al., 2019]. Here, we focus on a particular modular representation known as
Neural Programmer-Interpreters (NPI) [Reed and de Freitas, 2016]. The NPI architecture consists
of a library of learned program embeddings that can be recomposed to solve different tasks, a core
recurrent neural network that learns to interpret arbitrary programs, and domain-specific encoders
for different environments. NPI achieves impressive multi-task results, with strong improvements in

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



generalization and reductions in sample complexity. While fixing the interpreter module, Reed and
de Freitas [2016] also showed that NPI can learn new programs by re-using existing ones.

The NPI architecture can also learn recursive programs. In particular, Cai et al. [2017] demonstrates
that it is possible to take advantage of recursion to obtain theoretical guarantees on the generalization
behaviour of recursive NPIs. Recursive NPIs are thus amenable to verification and easy interpretation.

The NPI approach at first appears to be very general because as noted in [Reed and de Freitas, 2016],
programs appear in many guises in AI; for example, as image transformations, as structured control
policies, as classical algorithms, and as symbolic relations. However, NPI suffers from one important
limitation: It requires supervised training from execution traces. This is a much stronger demand for
supervision than input-output pairs. Thus the practical interest has been limited.

Some works have attempted to relax this strong supervision assumption. Li et al. [2017] and Fox
et al. [2018] train variations of NPI using mostly low-level demonstration trajectories but still require
a few full execution traces. Indeed, Fox et al. [2018] states “Our results suggest that adding weakly
supervised demonstrations to the training set can improve performance at the task, but only when the
strongly supervised demonstrations already get decent performance”.

Xiao et al. [2018] incorporate combinatorial abstraction techniques from functional programming into
NPI. They report no difficulties when learning using strong supervision, but substantial difficulties
when attempting to learn NPI models with curricula and REINFORCE. In fact, this policy gradient
reinforcement learning (RL) algorithm fails to learn simple recursive NPIs, attesting to the difficulty
of applying RL to learn NPI models.

This paper demonstrates how to train NPI models effectively with RL for the first time. We remove
the need for execution traces in exchange for a specification of programs and associated correctness
tests on whether each program has completed successfully. This allows us to train the agent by telling
it what needs to be done, instead of how it should be done. In other words, we show it is possible to
overcome the need for strong supervision by replacing execution traces with a library of programs we
want to learn and corresponding tests that assess whether a program has executed correctly.

The user specifying to the agent what to do, and not how to do it is reminiscent of programmable
agents Denil et al. [2017] and declarative vs imperative programming. In our case, the user may also
define a hierarchy in the program specification indicating which programs can be called by another.

The RL problem at-hand has a combinatorial nature, making it exceptionally hard to solve. Fortunately,
we have witnessed significant progress in this area with the recent success of AlphaZero [Silver et al.,
2017] in the game of Go. In the single-agent setting, Laterre et al. [2018] have demonstrated the
power of AlphaZero when solving combinatorial bin packing problems.

In this work, we reformulate the original NPI as an actor-critic network and endow the search process
of AlphaZero with the ability to handle hierarchy and recursion. These modifications, in addition to
other more subtle changes detailed in the paper and appendices, enable us to construct a powerful RL
agent, named AlphaNPI, that is able to train NPI models by RL1.

AlphaNPI is shown to match the performance of strongly supervised versions of NPI in the ex-
periments. The experiments also shed light on the issue of deploying neural network RL policies.
Specifically, we find that agents that harness Monte Carlo tree search (MCTS) planning at test time
are more effective than plain neural network policies.

2 Problem statement and definitions

We consider an agent interacting with an environment, choosing actions a and making observations e.
An example of this is bubble sort, where the environment is represented as a list of numbers, and the
initial actions are one-step pointer moves and element swaps. We call this initial set of actions atomic
actions. As training progresses, the agent learns to profit from atomic actions to acquire higher-level
programs. Once a program is learned, it is incorporated into the set of available actions. For example,
in bubble sort, the agent may learn the program RESET, which moves all pointers to the beginning of
the list, and subsequently the agent may harness the program RESET as an action.

1The code is available at https://github.com/instadeepai/AlphaNPI

2

https://github.com/instadeepai/AlphaNPI


In our approach, a program has pre-conditions and post-conditions, which are tests on the environment
state. All pre-conditions must be satisfied before execution. A program executes correctly if its
post-conditions are verified. For example, the pre-condition for bubble sort is that both pointers are
positioned at the beginning of the list. The post-condition is a test indicating whether the list is sorted
upon termination. A program terminates when it calls the atomic action STOP, which is assumed to
be available in all environments. A level is associated with each program, enabling us to define a
hierarchy: Atomic actions have level 0 and any other program has a positive level. In our work, a
program can only call lower-level programs or itself.

We formulate learning a hierarchical library of programs as a multi-task RL problem. In this setting,
each task corresponds to learning a single program. The action space consists of atomic actions and
learned programs. The reward signal is 1 if a program executes correctly, and 0 otherwise. The
agent’s goal is to maximize its expected reward over all the tasks. In other words, it has to learn all
the programs in the input specification.

3 AlphaNPI

Our proposed agent, AlphaNPI, augments the NPI architecture of Reed and de Freitas [2016] to
construct a recursive compositional neural network policy and a value function estimator, as illustrated
in Figure 1. It also extends the MCTS procedure of Silver et al. [2017] to enable recursion. The

Figure 1: AlphaNPI modular neural network architecture.

AlphaNPI network architecture consists of five modules: State (or observation) encoders, a program
embedding matrix, an LSTM [Hochreiter and Schmidhuber, 1997] interpreter, a policy (actor)
network and a value network. Some of these modules are universal, and some are task-dependent.
The architecture is consequently a natural fit for multi-task learning.

Programs are represented as vector embeddings p indexed by i in a library. As usual, we use an
embedding matrix for this (Mprog). The observation encoder produces a vector of features s. The
universal LSTM core interprets and executes arbitrary programs while conditioning on these features
and its internal memory state h. The vector p corresponding to index i (stored in Mprog) is used by the
LSTM core to know which program is being executed. A one-hot encoding of i could have been used
instead, but the vector representation is more compact, and furthermore, since the components of p
are parameters of the network updated during training, their optimization can lead to generalization
properties, as intuitively two programs with similar vector embeddings would yield relatively similar
action decisions. The policy network converts the LSTM output to a vector of probabilities π over
the action space, while the policy network uses this output to estimate the value function V . The
architecture is summarized by the following equations:
st = fenc(et), pt = Mprog[it, :], ht = flstm(st, pt, ht−1), πt = factor(ht), Vt = fvalue(ht). (1)

The neural nets have parameters, but we omit them in our notation to simplify the presentation. These
parameters and the program embeddings are learned simultaneously during training by RL.

3



1. Execution Trace Generation

2. Neural Network Training

Alpha NPI

TOWEROFHANOI
index 

Alpha NPI

TOWEROFHANOI
index 

Alpha NPI

TOWEROFHANOI
index 

Figure 2: Execution trace generation with AlphaNPI to solve the Tower of Hanoi puzzle. 1. To execute
the i-th program, TOWEROFHANOI, AlphaNPI generates an execution trace (a1, . . . , aT ), with observations
(e1, . . . , eT ) produced by the environment and actions at ∼ πmcts

t produced by MCTS using the latest neural
net, see Figure 3. When the action STOP is chosen, the program’s post-conditions are evaluated to compute the
final reward r. The tuples (et, i, ht, π

mcts
t , r) are stored in a replay buffer. 2. The neural network parameters

are updated to maximise the similarity of its policy vector output π to the search probabilities πmcts, and to
minimise the error between the predicted value V and the final reward r. To train the neural network, shown in
Figure 1, we use the data in the replay buffer.

When this AlphaNPI network executes a program, it can either call a learned sub-program or itself
(recursively), or perform an atomic action. When the atomic action is STOP, the program terminates
and control is returned to the calling program using a stack. When a sub-program is called, the stack
depth increases and the LSTM memory state h is set to a vector of zeroes. This turns out to be very
important for verifying the model [Cai et al., 2017].

To generate data to train the AlphaNPI network by RL, we introduce a variant of AlphaZero using
recursive MCTS. The general training procedure is illustrated in Figure 2, which is inspired by
Figure 1 of Silver et al. [2017], but for a single-agent with hierarchical structure in this case. The
Monte Carlo tree search (MCTS) guided by the AlphaNPI network enables the agent to “imagine”
likely future scenarios and hence output an improved policy πmcts, from which the next action is
chosen2. This is repeated throughout the episode until the agent outputs the termination command
STOP. If the program’s post-conditions are satisfied, the agent obtains a final reward of 1, and 0
otherwise.

The data generated during these episodes is in turn used to retrain the AlphaNPI network. In particular,
we record the sequence of observations, tree policies, LSTM internal states and rewards. We store the

2A detailed description of AlphaNPI is provided in Appendix A.

4



1. Select 2. Tree Recursion 3. Expand and Evaluate 4. Backup 5. Act

observation

internal state

program index
Alpha NPI

Alpha NPI

Figure 3: Monte-Carlo tree search with AlphaNPI for the Tower of Hanoi puzzle. 1. Each simulation
traverses the tree by finding the actions that maximize the sum of the action value Q, an upper confidence bound
U and a term L that encourages programs to call programs near the same level. 2. When the selected program is
not atomic and the node has never been visited before, a new sub-tree is constructed. In the sub-tree, the LSTM
internal state is initialized to zero. When the sub-tree search terminates, the LSTM internal state is reset to its
previous calling state. 3. The leaf node is expanded and the associated observation e and program index i are
evaluated by the AlphaNPI network to compute action probabilities P = π and values V . 4. The quantities Q
and U are computed using the network predictions. 5. Once the search is complete, the tree policy vector πmcts

is returned. The next program in the execution trace is chosen according to πmcts, until the program STOP is
chosen or a computational budget is exceeded.

experience tuples (e, i, h, πmcts, r) in a replay buffer. The data in this replay buffer is used to train
the AlphaNPI network, as illustrated in Figure 2 .

The search approach is depicted in Figure 3 for a Tower of Hanoi example, see also the corresponding
Figure 2 of Silver et al. [2017]. A detailed description of the search process, including pseudo-code,
appears in Appendix A. Subsequently, we present an overview of this component of AlphaNPI.

For a specific program indexed by i, a node in the search tree corresponds to an observation e and an
edge corresponds to an action a. As in AlphaZero, the neural network outputs the action probabilities
and node values. These values are used, in conjunction with visit counts, to compute upper confidence
bounds U and action-value functions Q during search. Unlike AlphaZero, we add terms L in the node
selection stage to encourage programs not to call programs at a much lower level. In addition, we use
a different estimate of the action-value function that better matches the environments considered in
this paper. Actions are selected by maximizing Q+ V + L.

Also unlike AlphaZero, if the selected action is not atomic but an already learned program, we
recursively build a new Monte Carlo tree for that program. To select a trajectory in the tree, that is
the program’s imagined execution trace, we play nsimu simulations and record the number of visits
to each node. This enables us to compute a tree policy vector πmcts for each node, as detailed in
Appendix A.5, which favours actions that have been most selected during the simulations.

The major feature of AlphaNPI is its ability to construct recursively a new tree during the search to
execute an already learned program. This approach enables to use learned skills as if they were atomic
actions. When a tree is initialized to execute a new program, the LSTM internal state is initialized
to zero and the environment reward signal changes to reflect the specification of the new program.
The root node of the new tree corresponds to the current state of the environment. When the search
process terminates, we check that the final environment state satisfies the program’s post-conditions.
If unsatisfied, we discard the full execution trace and start again. When returning control to an

5



upper-level program, we assign to the LSTM the previous internal state for that level and continue
the search process.

We found that discarding execution traces for programs executed incorrectly is necessary to achieve
stable training. Indeed, the algorithm might choose the correct sequence of actions but still fail
because one of the chosen sub-programs did not execute correctly. At the level we are trying to learn,
possibly no mistake has been made, so it is wise to discard this data for training stability.

Finally, we use AlphaNPI MCTS in two different modes. In exploration mode, we use a high budget
of simulations, final actions are taken by sampling according to the tree policy vectors and we add
Dirichlet noise to the network priors for better exploration. This mode is used during training. In
Exploitation mode, we use a low budget of simulations, final actions are taken according to the tree
policy vectors argmax and we do not add noise to the priors. In this mode, AlphaNPI’s behavior is
deterministic. This mode is used during validation and test.

3.1 Training procedure

During a training iteration, the agent selects a program i to learn. It plays nep episodes (See Appendix
E for specific values) using the tree search in exploration mode with a large budget of simulations.
The generated experiences, (e, i, h, πmcts, r), where r is the episode final reward, are stored in a
replay buffer. The agent is trained with the Adam optimizer on this data, so as to minimize the loss
function:

` =
∑
batch

−
(
πmcts

)T
log π︸ ︷︷ ︸

`policy

+ (V − r)2︸ ︷︷ ︸
`value

. (2)

Note that the elements of a mini-batch may correspond to different tasks and are not necessarily
adjacent in time. Given that the buffer memory is short, we make the assumption that the LSTM
internal states have not changed too much. Thus, we do not use backpropagation through time to
train the LSTM. Standard backpropagation is used instead, which facilitates parallelization.

After each Adam update, we perform validation on all tasks for nval episodes. The agent average
performance is recorded and used for curriculum learning, as discussed in the following subsection.

3.2 Curriculum learning

As with previous NPI models, curriculum learning plays an essential role. As programs are organized
into levels, we begin by training the agent on programs of level 1 and then increase the level when
the agent’s performance is higher than a specific threshold. Our curriculum strategy is similar to the
one by Andreas et al. [2017].

At each training iteration, the agent must choose the next program to learn. We initially assign equal
probability to all level 1 programs and zero probability to all other programs. At each iteration, we
update the probabilities according to the agent’s validation performance. We increase the probability
of programs on which the agent performed poorly and decrease the probabilities of those on which
the agent performed well. We compute scores ci = 1−Ri, for each program indexed by i, where Ri
is a moving average of the reward accrued by this program during validation. The program selection
probability is then defined as a softmax over these scores. When min

i
Ri becomes greater than some

threshold ∆curr, we increase the maximum program level, thus allowing the agent to learn level 2
programs, and so on until it has learned every program.

4 Experiments

In the following experiments, we aim to assess the ability of our RL agent, AlphaNPI, to perform the
sorting tasks studied by Reed and de Freitas [2016] and Cai et al. [2017]. We also consider a simple
recursive Tower of Hanoi Puzzle. An important question we would like to answer is: Can AlphaNPI,
which is trained by RL only, perform as well as the iterarive and recursive variants of NPI, which are
trained with a strong supervisory signal consisting of full execution traces? Also, how essential is
MCTS planning when deploying the neural network policies?

6



Length Iterative BUBBLESORT Recursive BUBBLESORT
Net with planning Net only Net with planning Net only

10 100% 85% 100% 70%
20 100% 85% 100% 60%
60 95% 40% 100% 35%

100 40% 10% 100% 10%
Table 1: Performance of AlphaNPI, trained on BUBBLESORT instances of length up to 7, on much longer input
lists. For each BUBBLESORT variant, iterative and recursive, we deployed the trained AlphaNPI networks with
and without MCTS planning. The results clearly highlight the importance of planning at deployment time.

Length Sorting without a hierarchy
Net with planning Net only

3 94% 78%
4 42% 22%
5 10% 5%
6 1% 1%

Table 2: Test performance on iterative sorting with no use of hierarchy. The AlphaNPI network is trained to
sort using only atomic actions on lists of length up to 4, and tested on lists of length up to 6. The training time
without hierarchy scales quadratically with list length, but only linearly with list length when a hierarchy is
defined.

4.1 Sorting example

We consider an environment consisting of a list of n integers and two pointers referencing its elements.
The agent can move both pointers and swap elements at the pointer positions. The goal is to learn a
hierarchy of programs and to compose them to realize the BUBBLESORT algorithm. The library of
programs is summarized in Table 4 of the Appendix.

We trained AlphaNPI to learn the sorting library of programs on lists of length 2 to 7. Each iteration
involves 20 episodes, so the agent can see up to 20 different training lists. As soon as the agent
succeeds, training is stopped, so the agent typically sees less than 20 examples per iteration.

We validated on lists of length 7 and stopped when the minimum averaged validation reward,
among all programs, reached ∆curr. After training, we measured the generalization of AlphaNPI, in
exploitation mode, on test lists of length 10 to 100, as shown in Table 1. For each length, we test on
40 randomly generated lists.

We observe that AlphaNPI can learn the iterative BUBBLESORT algorithm on lists of length up to
7 and generalize well to much longer lists. The original NPI, applied to iterative BUBBLESORT,
had to be trained with strong supervision on lists of length 20 to achieve the same generalization.
As reported by Cai et al. [2017], when training on arrays of length 2, the iterative NPI with strong
supervision fails to generalize but the recursive NPI generalizes perfectly. However, when training
the recursive NPI with policy gradients RL and curricula, Xiao et al. [2018] reports poor results.

To assess the contribution of adding a hierarchy to the model, we trained AlphaNPI with atomic
actions only to learn iterative BUBBLESORT. As reported on Table 2, this ablation performs poorly in
comparison to the hierarchical solutions.

We also defined a sorting environment in which the programs RESET, BUBBLE and BUBBLESORT are
recursive. This setting corresponds to the “full recursive” case of Cai et al. [2017]. Being able to
learn recursive programs requires adapting environment. For instance, when a new task (recursive
program) is started, the sorting environment becomes a sub-list of the original list. When the task
terminates, the environment is reset to the previous list.

We trained the full recursive BUBBLESORT on lists of length 2 to 4 and validated on lists of length
7. After training, we assessed the generalization capabilities of the recursive AlphaNPI in Table 1.
The results indicate that the recursive version outperforms the iterative one, confirming the results
reported by Cai et al. [2017]. We also observe that AlphaNPI with planning is able to match the
generalization performance of the recursive NPI with strong supervision, but that removing planning
from deployment (i.e. using a network policy only) reduces performance.

7



Number of disks MCTS Network only
2 100% 100%
5 100% 100%

10 100% 100%
12 100% 100%

Table 3: Test performance of one AlphaNPI trained agent on the recursive Tower of Hanoi puzzle.

4.2 Tower of Hanoi puzzle

We trained AlphaNPI to solve the Tower of Hanoi puzzle recursively. Specifically, we consider an
environment with 3 pillars and n disks of increasing disk size. Each pillar is given one of three roles:
source, auxiliary or target. Initially, the n disks are placed on the source pillar. The goal is to move
all disks to the target pillar, never placing a disk on a smaller one. It can be proven that the minimum
number of moves is 2n − 1, which results in a highly combinatorial problem. Moreover, the iterative
solution depends on the parity of the number of disks, which makes it very hard to learn a general
iterative solution with a neural network.

To solve this problem recursively, one must be able to call the TOWEROFHANOI program to move
n− 1 disks from the source pillar to the auxiliary pillar, then move the larger disk from the source
pillar to target pillar and finally call again the TOWEROFHANOI program to move the n− 1 pillars
from the auxiliary pillar to the target.

We trained our algorithm to learn the recursive solution on problem instances with 2 disks, stopping
when the minimum of the validation average rewards reached ∆curr. Test results are shown in Table 3.
AlphaNPI generalizes to instances with a greater number of disks.

In Appendix C, we show that once trained, an AlphaNPI agent can generalize to Tower of Hanoi
puzzles with an arbitrary number of disks.

5 Related work

AlphaZero [Silver et al., 2017] used Monte Carlo Tree Search for planning and to derive a policy
improvement operator to train state-of-the-art neural network agents for playing Go, Chess and Shogi
using deep reinforcement learning. In [Laterre et al., 2018], AlphaZero is adapted to the setting of
one-player games applied to the combinatorial problem of bin packing. This work casts program
induction as a one player game and further adapts AlphaZero to incorporate compositional structure
into the learned programs.

Many existing approaches to neural program induction do not explicitly learn programs in symbolic
form, but rather implicitly in the network weights and then directly predict correct outputs given
query inputs. For example, the Neural GPU [Kaiser and Sutskever, 2015] can learn addition and
multiplication of binary numbers from examples. Neural module networks [Andreas et al., 2016] add
more structure by learning to stitch together differentiable neural network modules to solve question
answering tasks. Neural program meta induction [Devlin et al., 2017a] shows how to learn implicit
neural programs in a few-shot learning setting.

Another class of neural program induction methods takes the opposite approach of explicitly syn-
thesizing programs in symbolic form. DeepCoder [Balog et al., 2016] and RobustFill [Devlin et al.,
2017b] learn in a supervised manner to generate programs for list and string manipulation using
domain specific languages. In [Evans and Grefenstette, 2018], explanatory rules are learned from
noisy data. Ellis et al. [2018] shows how to generate graphics programs to reproduce hand drawn
images. In [Sun et al., 2018], programs are generated from visual demonstrations. Chen et al. [2017]
shows how to learn parsing programs from examples and their parse trees. Verma et al. [2018] shows
how to distill programmatically-interpretable agents from conventional Deep RL agents.

Some approaches lie in between fully explicit and implicit, for example by making execution
differentiable in order to learn parts of programs or to optimize programs [Bošnjak et al., 2017,
Bunel et al., 2016, Gaunt et al., 2016]. In [Nye et al., 2019], an LSTM generator conditioned on
specifications is used to produce schematic outlines of programs, which are then fed to a simple

8



logical program synthesizer. Similarly, Shin et al. [2018] use LSTMs to map input-output pairs to
traces and subsequently map these traces to code.

Neural Programmer-Interpreters [Reed and de Freitas, 2016], which we extend in this work, learn
to execute a hierarchy of programs from demonstration. Cai et al. [2017] showed that by learning
recursive instead of iterative forms of algorithms like bubble sort, NPI can achieve perfect generaliza-
tion from far fewer demonstrations. Here, perfect generalization means generalization with provable
theoretical guarantees. Neural Task Programming [Xu et al., 2018] adapted NPI to the setting of
robotics in order to learn manipulation behaviors from visual demonstrations and annotations of the
program hierarchy.

Several recent works have reduced the training data requirements of NPI, especially the “strong
supervision” of demonstrations at each level of the program hierarchy. For example, Li et al. [2017]
and Fox et al. [2018] show how to train variations of NPI using mostly low-level demonstration
trajectories and a relatively smaller proportion of hierarchical annotations compared to NPI. However,
demonstrations are still required. Xiao et al. [2018] incorporates combinator abstraction techniques
from functional programming into NPI to improve training, but emphasize the difficulty of learning
simple NPI models with RL algorithms.

Hierarchical reinforcement learning combined with deep neural networks has received increased
attention in the past several years [Osa et al., 2019, Nachum et al., 2018b, Kulkarni et al., 2016,
Nachum et al., 2018a, Levy et al., 2018, Vezhnevets et al., 2017], mainly applied to efficient training
of agents for Atari, navigation and continuous control. This work shares a similar motivation of using
hierarchy to improve generalization and sample efficiency, but we focus on algorithmic problem
domains and learning potentially recursive neural programs without any demonstrations.

While AlphaZero does not use hierarchies or recursion, hierarchical MCTS algorithms have been
previously proposed for simple hierarchical RL domains [Vien and Toussaint, 2015, Bai et al., 2016].
The current work capitalizes on advances brought in by deep reinforcement learning as well as design
choices particular to this paper to significantly extend this research frontier.

Finally, as demonstrated in the original NPI paper, the modular approach with context-dependent
input embeddings and a task independent interpreter is ideal for meta-learning and transfer. Recent
manifestations of this idea of using an embedding to re-program a core neural network to facilitate
meta-learning include Zintgraf et al. [2019] and Chen et al. [2019]. To the best of our knowledge the
idea of programmable neural networks goes back several decades to the original Parallel Distributed
Programming (PDP) papers of Jay McClelland and colleagues. We leave transfer and meta-learning
as a future explorations for AlphaNPI.

6 Conclusion

This paper proposed and demonstrated the first effective RL agent for training NPI models: AlphaNPI.
AlphaNPI extends NPI to the RL domain and enhances AlphaZero with the inductive biases of
modularity, hierarchy and recursion. AlphaNPI was shown to match the performance of strongly
supervised versions of NPI in the sorting experiment, and to generalize remarkably well in the Tower
of Hanoi environment. The experiments also shed light on the issue of deploying neural network RL
policies. Specifically, we found out that agents that harness MCTS planning at test time are much
more effective than plain neural network policies.

While our test domains are complex along some axes, e.g. recursive and combinatorial, they are
simple along others, e.g. the environment model is available. The natural next step is to consider
environments, such as robot manipulation, where it is also important to learn perception modules and
libraries of skills in a modular way to achieve transfer to new tasks with few data. It will be fascinating
to harness imperfect environment models in these environments and assess the performance of MCTS
planning when launching AlphaNPI policies.

7 Acknowledgements

Work by Nicolas Perrin was partially supported by the French National Research Agency (ANR),
Project ANR-18-CE33-0005 HUSKI.

9



References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In IEEE Computer

Vision and Pattern Recognition, pages 39–48, 2016.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy sketches.
In International Conference on Machine Learning, pages 166–175, 2017.

Aijun Bai, Siddharth Srivastava, and Stuart Russell. Markovian state and action abstractions for MDPs via
hierarchical MCTS. In International Joint Conference on Artificial Intelligence, pages 3029–3037, 2016.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. Deepcoder:
Learning to write programs. In International Conference on Learning Representations, 2016.

Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Nan Rosemary Ke, Sébastien Lachapelle, Olexa Bilaniuk,
Anirudh Goyal, and Christopher J. Pal. A meta-transfer objective for learning to disentangle causal mecha-
nisms. arXiv preprint arXiv:1901.10912, 2019.

Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. Programming with a differentiable
forth interpreter. In International Conference on Machine Learning, pages 547–556, 2017.

Rudy R Bunel, Alban Desmaison, Pawan K Mudigonda, Pushmeet Kohli, and Philip Torr. Adaptive neural
compilation. In Conference on Neural Information Processing Systems, pages 1444–1452, 2016.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize via recursion.
In International Conference on Learning Representations, 2017.

Xinyun Chen, Chang Liu, and Dawn Song. Towards synthesizing complex programs from input-output examples.
In International Conference on Learning Representations, 2017.

Yutian Chen, Yannis Assael, Brendan Shillingford, David Budden, Scott Reed, Heiga Zen, Quan Wang, Luis C.
Cobo, Andrew Trask, Ben Laurie, Caglar Gulcehre, Aaron van den Oord, Oriol Vinyals, and Nando de Freitas.
Sample efficient adaptive text-to-speech. In International Conference on Learning Representations, 2019.

Misha Denil, Sergio Gomez Colmenarejo, Serkan Cabi, David Saxton, and Nando de Freitas. Programmable
agents. arXiv preprint arXiv:1706.06383, 2017.

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. Neural program
meta-induction. In Conference on Neural Information Processing Systems, pages 2080–2088, 2017a.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet
Kohli. RobustFill: Neural program learning under noisy I/O. In International Conference on Machine
Learning, pages 990–998, 2017b.

Ashley D Edwards, Laura Downs, and James C Davidson. Forward-backward reinforcement learning. arXiv
preprint arXiv:1803.10227, 2018.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer graphics programs
from hand-drawn images. In Conference on Neural Information Processing Systems, pages 6059–6068, 2018.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of Artificial
Intelligence Research, 61:1–64, 2018.

Roy Fox, Richard Shin, Sanjay Krishnan, Ken Goldberg, Dawn Song, and Ion Stoica. Parametrized hierarchical
procedures for neural programming. In International Conference on Learning Representations, 2018.

Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor,
and Daniel Tarlow. Terpret: A probabilistic programming language for program induction. arXiv preprint
arXiv:1608.04428, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. arXiv preprint arXiv:1511.08228, 2015.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic motivation. In Conference on Neural Information
Processing Systems, pages 3675–3683, 2016.

10



Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen, David Kas, Karl Hajjar, Torbjorn S
Dahl, Amine Kerkeni, and Karim Beguir. Ranked reward: Enabling self-play reinforcement learning for
combinatorial optimization. arXiv preprint arXiv:1807.01672, 2018.

Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical reinforcement learning with hindsight. arXiv preprint
arXiv:1805.08180, 2018.

Chengtao Li, Daniel Tarlow, Alexander L Gaunt, Marc Brockschmidt, and Nate Kushman. Neural program
lattices. In International Conference on Learning Representations, 2017.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning for
hierarchical reinforcement learning. arXiv preprint arXiv:1810.01257, 2018a.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement
learning. In Conference on Neural Information Processing Systems, pages 3303–3313, 2018b.

Maxwell I. Nye, Luke B. Hewitt, Joshua B. Tenenbaum, and Armando Solar-Lezama. Learning to infer program
sketches. arXiv preprint arXiv:1902.06349, 2019.

Takayuki Osa, Voot Tangkaratt, and Masashi Sugiyama. Hierarchical reinforcement learning via advantage-
weighted information maximization. In International Conference on Learning Representations, 2019.

Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla, and Bernhard Schölkopf. Learning independent
causal mechanisms. In International Conference on Machine Learning, pages 4036–4044, 2018.

Scott Reed and Nando de Freitas. Neural programmer-interpreters. In International Conference on Learning
Representations, 2016.

Richard Shin, Illia Polosukhin, and Dawn Song. Improving neural program synthesis with inferred execution
traces. In Conference on Neural Information Processing Systems, pages 8931–8940, 2018.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go without human knowledge.
Nature, 550(7676):354–359, 2017.

Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. Neural program synthesis from diverse
demonstration videos. In International Conference on Machine Learning, pages 4797–4806, 2018.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. Program-
matically interpretable reinforcement learning. In International Conference on Machine Learning, pages
5052–5061, 2018.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, and
Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In International Conference
on Machine Learning, pages 3540–3549, 2017.

Ngo Anh Vien and Marc Toussaint. Hierarchical Monte-Carlo planning. In National Conference on Artificial
Intelligence (AAAI), 2015.

Da Xiao, Jo-Yu Liao, and Xingyuan Yuan. Improving the universality and learnability of neural programmer-
interpreters with combinator abstraction. arXiv preprint arXiv:1802.02696, 2018.

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Neural task
programming: Learning to generalize across hierarchical tasks. In IEEE International Conference on Robotics
& Automation, pages 1–8, 2018.

Luisa M. Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning, 2019.

11


