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Abstract

We address a low-rank matrix recovery problem where each column of a rank-r
matrix X ∈ Rd1×d2 is compressed beyond the point of individual recovery to RL
with L � d1. Leveraging the joint structure among the columns, we propose a
method to recover the matrix to within an ε relative error in the Frobenius norm
from a total of O(r(d1 +d2) log6(d1 +d2)/ε2) observations. This guarantee holds
uniformly for all incoherent matrices of rank r. In our method, we propose to use a
novel matrix norm called the mixed-norm along with the maximum `2-norm of the
columns to design a new convex relaxation for low-rank recovery that is tailored to
our observation model. We also show that the proposed mixed-norm, the standard
nuclear norm, and the max-norm are particular instances of convex regularization
of low-rankness via tensor norms. Finally, we provide a scalable ADMM algorithm
for the mixed-norm-based method and demonstrate its empirical performance via
large-scale simulations.

1 Introduction

A fundamental structural model for data is that the data points lie close to an unknown subspace,
meaning that the matrix created by concatenating the data vectors has low rank. We address a
particular low-rank matrix recovery problem where we wish to recover a set of vectors from a
low-dimensional subspace after they have been individually compressed (or “sketched”). More
concretely, let x1, · · · ,xd2 be vectors from an unknown r-dimensional subspace in Rd1 . We observe
the vectors indirectly via linear sketches by corresponding sensing matrices B1, . . . ,Bd2 ∈ Rd1×L,
where L < d1, i.e., the observed measurement vectors are written as

yi = B>i xi + zi, i = 1, . . . , d2. (1)

Although individual recovery of each vector is ill-posed, it is still possible to recover x1, . . . ,xd2
jointly by leveraging their mutual structure without knowing the underlying subspace a priori. This
indeed results in a low-rank matrix recovery problem with a column-wise observation model.

We are motivated mainly by large-scale inference problems where data is collected in a distributed
network or in a streaming setting. In both cases, it is desired to compress the data to lower the
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communication overhead. In the first scenario, the data is partitioned according to the network
structure and each data point must be compressed without accessing the remainders. In the second
scenario, memory or computational constraints may limit access to relatively small number of recent
data points.

Such compressive and distributive acquisition schemes arise frequently in numerous real-world
applications. In next generation high-resolution astronomical imaging systems, an antenna array may
be distributed across a wide geographical area to collect data points that have a high dimension but
are also heavily correlated (and so belong to a low-dimensional subspace). Compression at the node
level relieves the overhead to transmit data to a central processing unit [1]. In scientific computing, it
is common to generate large scale simulation data that has redundancies that manifest as low-rank
structures. For example, simulations in a fluid dynamic system generate large state vectors that have
low-rank dynamics [2]. Our observational model describes a kind of on-the-fly compression, where
the states are compressed as the system evolves, resulting in efficient communication and storage.

In each of these applications, if the underlying low-dimensional subspace were known a priori, then the
projection onto that subspace could have implemented an optimal distortion-free linear compression.
Alternatively if the uncompressed data were available, the standard Principal Component Analysis
(PCA) might have been used to discover the subspace. Unfortunately, neither is the case. Therefore
we approach the recovery as sketching without knowing the latent subspace a priori. It is also
interpreted as a blind compressed sensing problem that recovers the data points and underlying
subspace simultaneously from compressed measurements.

The measurement model in (1) is equivalently rewritten as follows: Let X0 ∈ Rd1×d2 be a matrix
obtained by concatenating x1, . . . ,xd1 . It follows that the rank of X0 is at most r. The entries
of y1, . . . ,yd2 then correspond to noisy linear measurements of X0, i.e., for l = 1, . . . , L and
i = 1, . . . , d2, the lth entry of yi denoted by yl,i is written as

yl,i = 〈Al,i,X0〉+ zl,i with Al,i =
1√
L
bl,ie

>
i , (2)

where zl,i, bl,i, and ei respectively denote the lth entry of zi, the lth column of Bi, and the ith column
of the identity matrix of size d2. We propose a convex optimization method to recover X0 from
{yl,i} and provide theoretical analysis when bl,i and zl,i are independent copies of random vectors
drawn according to N (0, Id1) and N (0, σ2) respectively.

1.1 Mixed-norm-based low-rank recovery

Low-rank matrix recovery has been extensively studied (e.g., see [3]). One popular approach is to
formulate the recovery as a convex program with various matrix norms such as the nuclear norm
[4, 5, 6] and the max norm [7]. As we show in Section 2, these two norms together with the new norm
we propose below are all particular instances of a unified perspective of low-rank regularization. We
propose a convex relaxation of low-rankness by a matrix norm for the recovery from measurements
given in (2).

For a matrix X, the maximum `2 column norm is defined as

‖X‖1→2 = max
j=1···d2

‖Xej‖2 , (3)

where ej is the jth standard basis vector. This can be interpreted as the operator norm from the vector
space `d21 to that of `d12 . We define the “mixed-norm" of a matrix X as

‖X‖mixed = inf
U,V:UV>=X

‖U‖F ‖V
>‖1→2. (4)

Indeed the above two norms provide a convex relaxation suitable to the observation model in (2)
through the interlacing property given in the following lemma, the proof of which is given in the
supplementary material.

Lemma 1 Let X ∈ Rd1×d2 satisfy rank(X) ≤ r. Then

‖X‖1→2 ≤ ‖X‖mixed ≤
√
r ‖X‖1→2 . (5)
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By Lemma 1, the set κ(α,R) defined by

κ(α,R) = {X : ‖X‖1→2 ≤ α, ‖X‖mixed ≤ R} (6)

contains the set of rank-r matrices with column norms bounded by α. We show that the observation
model in (2) results in an ε-embedding of the set κ(α,R) for a total number of measurements
Ld2 & r(d1 + d2) log6(d1 + d2)/ε2. We consider an estimate X̂ of X0 given by

X̂ ∈ argmin
X∈κ(α,R)

∑
l,i

|yl,i − 〈Al,i,X〉|2. (7)

We have attempted to use the nuclear norm instead of the mixed norm but this approach was not
successful with providing a guarantee at a near optimal sample complexity. Furthermore it also
demonstrates worse empirical performance compared to our approach, as show in Section 3.

Another appealing property of the mixed-norm is that it can be computed in polynomial time using a
semidefinite formulation. This renders our proposed estimator readily implementable using general
purpose convex solvers. However, to address scalability, we propose an ADMM based framework.
We defer further details on efficient computation to Section 3.

1.2 Main result

Our main result, stated in Theorem 1, provides an upper bound on the Frobenius norm of the
error between the estimate X̂ obtained from solving (7) and the ground truth matrix X0 that holds
simultaneously for all matrices X ∈ κ(α,R) rather than for a fixed arbitrary matrix X0. En route
to proving our guarantee, we indeed show that

∑
l,i〈Al,i,X〉2 is well concentrated around its

expectation ‖X‖2F for all X ∈ κ(α,R) and hence, the measurements results in an embedding of the
set κ(α,R) into a low dimension.

Theorem 1 Let κ(α,R) be defined as in (6). Suppose that the bl,i are drawn independently from
N (0, Id1), (zi,l) are i.i.d. following N (0, σ2), d = d1 + d2 and d2 ≤ Ld2 ≤ d1d2. Then, for
R ≤ α

√
r, there exist numerical constants c1, c2 such that the estimate X̂ satisfies

‖X̂−X0‖2F
‖X0‖2F

≤ c1 ·
α2

‖X0‖2F /d2
·max

(
1,
σ
√
L

α

)
·

√
r(d1 + d2) log6 d

Ld2
(8)

with probability at least 1− 2 exp(−c2R2d/α2) for all X0 ∈ κ(α,R).

There are a few remarks in order:

• The factor α2d2/ ‖X0‖2F is the ratio between the maximum and the average of the squared
column `2 norm of the ground truth matrix X0 and represents its degree of incoherence. A
ratio close to 1 indicates that the columns have similar `2-norms and results in a lower sample
complexity than when the ratio is much larger than 1. This is similar to the dependence on
the relative magnitude of each entry in the max-norm-based estimator [7] and the dependence
on incoherence in matrix completion problems.

• The second factor is written as max(1, η) where η = σ
√
L

α accounts for the noise level in the
measurements. Since we take L measurements per column and the measurement operator is
isotropic, α2, is compared against the corresponding noise-variance σ2L.

• If the incoherence term is upper-bounded by a constant and the normalized noise level
η satisfies η = Ω(1), then X̂ obtained from O(η2rd log6(d)ε−2) measurements satisfies
‖X̂−X0‖2F ≤ ε ‖X‖

2
F with high probability.

• We conjecture that the corresponding minimax lower bound coincide with (8) except the
maximum of η with 1 and the logarithmic term. Particularly if η = Ω(1), then the sample
complexity in (8) will be near optimal.
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1.3 Related work

The model in (2) has been studied in the context of compressed principal components estimation
[8, 9, 10]. These works studied a specific method that computes the underlying subspace though an
empirical covariance estimation. While being guaranteed at a near optimal sample complexity, this
approach is inherently limited to the linear observation model. On the other hand, our method is more
flexible in terms of its potential extension to nonlinear observation models.

Negahban and Wainwright [11] considered the multivariate linear regression problem where a similar
model to (2) arises but with a fixed sensing matrix A, i.e., Ai = A for all i = 1, . . . , d2. They
showed that a nuclear-norm penalized least squares provides robust recovery at a near optimal sample
complexity within a logarithmic factor of the degrees of freedom of rank-r matrices. However, their
guarantees applies to an arbitrary fixed ground truth matrix and not to all matrices within the model
simultaneously. Our aim is to work with an embedding of the model set κ(α,R) and we obtain a
uniform theoretical guarantee over the entire model set at the cost of using different sensing matrices
Ai’s and incoherence of the matrices.

Our solution approach is partly inspired by earlier works on low-rank matrix completion using the
max-norm [12, 13, 7]. The pair of max-norm and `∞ norms is used to relax the set of low-rank
matrices to a convex model. We generalize this approach to that of using tensor norms (see Section
2) as a proxy for low rank regularization and show that the max-norm and the mixed-norm are
particular instances of this general framework. In particular we choose a specific pair of tensor norms
in accordance with the structure in the observation model. This leads to a new convex relaxation
model of low-rankness, a corresponding optimization formulation, algorithm, and its performance
guarantee. Finally, we point out that our method of proofs and the technical tools we use to establish
our results are significantly different from that of [7].

2 Properties of tensor norms on low-rank matrices

We interpret a matrix X ∈ Rd1×d2 as a linear operator from a vector space Rd2 to another vector
space Rd1 . Then let the domain and range spaces be respectively endowed with the `p norm and the
`q norm. The vector space of all d1 × d2 matrices is then identified as the tensor product of the two
Banach spaces, denoted as `p′ ⊗ `q (e.g., [14]), where 1/p+ 1/p′ = 1.

A tensor norm is a norm on the algebraic tensor product of two Banach spaces that satisfies the
operator ideal property (see e.g., [14, 15]). The main insight driving the unified perspective is that,
when we restrict linear operators to those of rank at most r, certain tensor norms become equivalent
up to a function of r. In particularly, we consider the injective and projective tensor norms, defined
respectively as

‖X‖∨ = sup
u∈Rd1 ,‖u‖p=1

‖Xu‖q (9)

and

‖X‖∧ = inf

{∑
k

‖uk‖p′‖vk‖q

∣∣∣∣∣ X =
∑
k

vku
∗
k

}
. (10)

The pair of the injective and projective norms characterizes the set of low-rank matrices through
an interlacing property between them. For example, when p = q = 2, it can be easily veri-
fied that ‖X‖∨=‖X‖2 and ‖X‖∧=‖X‖∗ . It follows from the singular value decomposition that
‖X‖2≤‖X‖∗≤r‖X‖2 . In yet another example where p = 1, q = ∞, we have ‖X‖∨ = ‖X‖∞.
Linial et al. [13] showed that Grothendieck’s inequality implies

‖X‖∞ ≤ ‖X‖max ≤
√
r ‖X‖∞ , (11)

where
‖X‖max = inf

U,V:UV>=X

∥∥U>∥∥
1→2

∥∥V>∥∥
1→2

.

In this case, it has been shown that the max norm is equivalent up to a constant to the projective norm.

Finally, by letting p = 1, q = 2, we obtain ‖X‖∨ = ‖X‖1→2 and that the projective norm is
equivalent (up to a constant factor) to the mixed norm and the relationship in Lemma 1 holds. Further,
it is interesting that unlike many tensor norms, the mixed norm and max-norms can be computed
efficiently in a polynomial time, similar to the nuclear norm. As we note in the next section, this
enables efficient implementation of mixed-norm-based low-rank recovery programs.
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3 Fast algorithm for mixed-norm-based optimization

The mixed-norm of any matrix X can be computed in polynomial time as

‖X‖mixed = min
W11,W22

max(trace(W11), ‖diag(W22)‖∞)

s.t.

[
W11 X

X> W22

]
� 0,

(12)

where diag(W22) denotes the vector of the diagonal entries of W22. Then the optimization routine
in (7) can be written as

minimize
W11,W22,X

∑
l,i |yl,i − 〈Al,i,X〉|2

subject to trace(W11) ≤ R, ‖diag(W22)‖∞ ≤ R,

‖X‖1→2 ≤ α, W =

[
W11 X

X> W22

]
� 0.

(13)

The program in (13) is now a constrained convex optimization problem over the cone of positive
semidefinite (PSD) matrices.

3.1 ADMM based fast algorithm

The program in (13) can be implemented using standard convex optimization solvers like SeDuMi.
[16]. However, this could result in scaling issues, as run times could be prohibitive in higher
dimensions. To address this, we propose to use the ADMM based algorithm [17] which breaks down
the optimization problem into smaller problems that can be solved efficiently. Our approach is similar
to [18], where the positive semidefinite constraint on W in (13) is treated separately from the other
constraints. We provide an algorithm for the norm-penalized version of (13). By Lagrangian duality,
the penalized version and the constrained version are equivalent when the Lagrangian multipliers λ1
and λ2 are chosen appropriately.

By introducing an auxiliary variable T, it is straightforward to show that the optimization problem
(13) is equivalent to

minimize
W,T

∑
l,i |yl,i − 〈Al,i,W〉|2 + λ1 trace(T11) + λ2 ‖diag(W22)‖∞

subject to ‖W12‖1→2 ≤ α, T = W, T � 0.
(14)

In (14), we carry the constraints on trace(T11) and ‖diag(W22)‖ to the objective function by
using the Lagrangian formulation. Note that there are other variations possible, with more or fewer
constraints carried over to the objective function. The formulation in (14) is amenable to the ADMM
algorithm. The augmented Lagrangian of (14) is given by

L(T,W,Z) = f(W) + λ1 trace(T11) + λ2 ‖diag(W22)‖∞
+ 〈Z,T−W〉+

ρ

2
‖T−W‖2F + χ{T�0} + χ{‖W12‖1→2≤α},

where Z is the dual variable and χS is the indicator function of the set S given as χS(t) = 0 if t ∈ S
and χS(t) = ∞ otherwise. The ADMM algorithm then iterates by alternating among T, W and
Z, as shown in Algorithm 1. While we leave the finer details of the algorithm to the supplementary
material, it is worthwhile to note that each step in Algorithm 1 has a unique closed-form solution that
allows for scalability to high dimensions.

3.2 Experiments

To complement our theoretical results, we observe the empirical performance of the mixed-norm-
based method in a set of Monte Carlo simulations. Matrices are set to be of size 1, 000 × 1, 000
and of rank 5. In our experiments we normalize the columns to have the same energy. We observe
the estimation error by varying the degree of compression and the signal-to-noise (SNR) ratio. We
compare the proposed method to the popular matrix LASSO, which minimizes the least squares loss
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Algorithm 1 ADMM algorithm
Initialize: T0, W0, Z0

while not converged do
Tk+1 = argmin

T�0
L(T,Wk,Zk)

Wk+1 = argmin
‖W12‖1→2≤α

L(Tk+1,W,Zk)

Zk+1 = Zk + ρ(Tk+1 −Wk+1)
end while

Figure 1: Simulation results comparing the proposed mixed-norm based estimator and the nuclear
norm based estimator. The test matrices were of size 1, 000× 1, 000 with rank 5. Each data point is
computed as an average of 5 trials. Mixed norm estimator is able to achieve much lower errors with
fewer measurements compared to the nuclear norm estimator.

with a nuclear norm regularizer. We used Algorithm 1 to implement the mixed-norm based method.
The nuclear norm minimization approach was implemented using the algorithm provided in [19].

Figure 1 shows the obtained simulation results. The estimation error is averaged over 5 trials. The
result indicates that the mixed-norm-based estimator outperforms the nuclear-norm-based estimator
at both the SNR levels considered.

4 Proof sketch

We state the key lemmas involved in proving our result and point to the tools we use and defer finer
details to the supplementary material. We begin with the basic optimality condition that relates
the estimate X̂ to the ground truth X0. Let M = X̂ −X0. By the triangular inequality, we have
M ∈ κ(2α, 2R). For notational brevity, we assume from now on that M ∈ κ(α,R). (Neither the
main result nor the proofs are affected by this since they involve multiplication with some numerical
constants.)

We adapt the first step in the analysis framework of the analogous matrix completion problem [7]. By
optimality of the solution and (2), we have∑

l,i

(
yl,i − 〈Al,i, X̂〉

)2
≤
∑
l,i

(yl,i − 〈Al,i,X0〉)2 . (15)

After substituting X̂−X0 by M and rearranging the terms, we obtain∑
l,i

〈Al,i,M〉2 ≤ 2
∑
l,i

〈Al,i,M〉zl,i. (16)

As in [7], we rely on the stochastic nature of the noise. The proof also relies on the norm-constrained
optimization rather than norm-penalized optimization. Our strategy is to obtain a lower bound on
the quadratic form

∑
l,i〈Al,i,M〉2 in terms of ‖M‖2F and a uniform upper bound on the linear form∑

l,i〈Al,i,M〉zl,i over the set κ(α,R). We can then bound ‖M‖2F uniformly over the set.
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4.1 Lower bound on the quadratic form

We observe that
∑
l,i〈Al,i,M〉2 can be reformulated as a quadratic form in standard Gaussian

random variables. Let us define

ξ =

 b1,1

...
bL,d2

 ∈ RLd1d2 . (17)

Then it follows that ξ ∼ N (0, ILd1d2). Therefore, the left-hand side of (16) is rewritten as∑
l,i

〈Al,i,M〉2 = ‖QMξ‖2 , where

QM =
1√
L


M̃>1 0 · · · 0

0 M̃>2 · · · 0
...

...
. . . 0

0 0 · · · M̃>d2

 , M̃>j = IL ⊗ (Mej)
> ∈ RL×Ld1 . (18)

We also have
E ‖QMξ‖2 = ‖M‖2F

We compute a tail estimate on supM∈κ(α,R) ‖QMξ‖22 by using the results on suprema of chaos
processes [20]. They derived a sharp tail estimate on the supremum of a Gaussian quadratic form
maximized over a given set A, which is written as

sup
A∈A

∣∣∣‖Aξ‖2 − E ‖Aξ‖2
∣∣∣ ,

by using a chaining argument. By adapting their framework, we obtain the following Lemma:

Lemma 2 Under the assumptions of Theorem 1, if QM and ξ are as defined in (18) and (17), then

sup
M∈κ(α,R)

∣∣∣∣∣‖QMξ‖2

d2
−
‖M‖2F
d2

∣∣∣∣∣ ≤ cR
√

d

Ld2

(
α+

R
√
d√

Ld2

)
log3(d)

with probability at least 1− 2 exp(−cR2dα2).

From Lemma 2, in the regime where Ld2 > R2d/α2, we can obtain∑
l,i〈Al,i,M〉2

d2
≥
‖M‖2F
d2

− cRα
√

d

Ld2
log3 d. (19)

4.2 Upper bound on the right-hand side of (16)

We obtain the following uniform upper bound
∑
l,i〈Al,i,M〉zl,i:

Lemma 3 Under the assumptions of Theorem 1, with probability at least 1− 2 exp(−cR2d/α2),

sup
M∈κ(α,R)

∑
l,i〈Al,i,M〉zl,i

d2
≤ c(σ

√
L)R

√
d

Ld2
log3 d. (20)

To derive Lemma 3, we first express the left-hand side of (20) using a matrix norm.

Define

|||M||| :=
‖M‖1→2

α
∨
‖M‖mixed

R
.

Then by the definition of κ(α,R) in (6) it follows that the unit ball B := {M : |||M|||| ≤ 1} with
respect to ||| · ||| coincides with κ(α,R). Therefore via the Banach space duality, we obtain

sup
M∈κ(α,R)

∑
l,i

〈Al,i,M〉zl,i = sup
M∈κ(α,R)

〈
∑
l,i

zl,iAl,i,M〉 = |||
∑
l,i

zl,iAl,i|||∗

7



where ||| · |||∗ denotes the dual norm. Then, conditioned on Al,i’s, it follows from Theorem 4.7 in
[21] that with probability 1− δ

|||
∑
l,i

zl,iAl,i|||∗ ≤ Ez |||
∑
l,i

zl,iAl,i|||∗︸ ︷︷ ︸
T1

+π

√√√√ log(2/δ)

2
sup

M∈κ(α,R)

∑
l,i

〈Al,i,M〉2

︸ ︷︷ ︸
T2

. (21)

The first term T1 is the Gaussian complexity of the sample set {Al,i} over the function class
{〈M, ·〉 : M ∈ κ(α,R)}. This can be (up to a logarithmic factor of the size of the summation)
upper-bounded by the corresponding Rademacher complexity ([22], Equation (4.9)) as

T1 ≤ cσ
√

log(Ld2 + 1) E(rl,i) |||
∑
l,i

rl,iAl,i|||∗, (22)

where (rl,i) is a Rademacher sequence and the expectation is conditioned on (Ai,l). Then by the
symmetry of the standard Gaussian distribution, we obtain

E(rl,i) |||
∑
l,i

rl,iAl,i|||∗ =
1√
L

sup
M∈κ(α,R)

∣∣∣∣∣∣
∑
l,i

〈rl,ibl,i,Mel〉

∣∣∣∣∣∣ =
1√
L

sup
M∈κ(α,R)

∣∣∣∣∣∣
∑
l,i

〈bl,i,Mel〉

∣∣∣∣∣∣︸ ︷︷ ︸
(§)

,

(23)
where the second equation holds in the sense of distribution.

Note that (§) is the maximum of linear combinations of Gaussian variables and an upper bound can
be obtained using Dudley’s inequality [22]. Once we obtain a tail estimate of (§), since (§) no longer
depends on the Rademacher sequence (rl,i), it can be used to upper-bound T1 through (22) and (23).
An upper bound on T2 has been already derived in Lemma 2. Combining these upper estimates on T1
and T2 results in Lemma 3. From the lower bound on

∑
l,i〈Al,i,M〉2, we have

‖M‖2F
d2

− cαR
√

d

Ld2
log3 d ≤ 1

d2

∑
l,i

〈Al,i,M〉2 ≤ sup
M∈κ(α,R)

∑
l,i〈Al,i,M〉zl,i

d2
.

From Lemma 3, we get the following inequality, which then leads to the final result.

‖M‖2F
d2

≤ c log3 dR

√
d

Ld2
(α ∨ σ

√
L)

4.3 Entropy estimate

Part of proofs of lemmas 2 and 3 has been deferred to the supplementary material. Both proofs rely
on a key quantity that captures the “complexity” of the set κ(α,R). In particular, using Dudley’s
inequality requires an estimate of the entropy number of the set κ(α,R), which is given by the
following Lemma.

Lemma 4 Let κ(α,R) be as in (6) and let B1→2 be the unit ball with respect to ‖·‖1→2. Then there
exists a numerical constant c such that∫ ∞

0

√
logN(κ(α,R), ηB1→2)dη ≤ cR

√
d log3/2(d1 + d2). (24)

Here N(κ(α,R), ηB1→2) denotes the covering number of κ(α,R) with respect to the scaled unit
ball ηB1→2.

In Section 2 we introduced the projective tensor norm ‖ · ‖∧. Let B∧ denote the unit ball with respect
to the projective tensor norm in `d2∞ ⊗ `

d1
2 . The injective tensor norm in `d2∞ ⊗ `

d1
2 reduces to ‖ · ‖1→2.

By its construction, κ(α,R) is given as the intersection of two norm balls αB1→2 and RB∧. The
proof of Lemma 4 reduces to the computation of the entropy number of the identity map on `d2∞ ⊗ `

d1
2

from the Banach space with the projective tensor norm to that with the injective tensor norm. This
proof along with a study of the machinery of computing such entropy numbers can be found in a
complementary paper [23].
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5 Discussion

Low rank modeling is a widely used approach in many machine learning and signal processing
tasks. By interpreting low-rankness as a property expressed by tensor norms, we are able to design
a practical and sample efficient regularization method that is tailored to the observation model.
The proposed method comes with theoretical guarantees and also performs well empirically. Our
proposed method can also be implemented efficiently in high dimensions, making it a viable option
for performing PCA or low rank recovery in big data scenarios.
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