
Triad Constraints for Learning Causal Structure of
Latent Variables

Ruichu Cai∗1, Feng Xie ∗1, Clark Glymour 2, Zhifeng Hao 1,3, Kun Zhang 2

1 School of Computer Science, Guangdong University of Technology, Guangzhou, China
2 Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA
3 School of Mathematics and Big Data, Foshan University, Foshan, China

cairuichu@gdut.edu.cn,xiefeng009@gmail.com,cg09@andrew.cmu.edu
zfhao@gdut.edu.cn,kunz1@cmu.edu

Abstract

Learning causal structure from observational data has attracted much attention,
and it is notoriously challenging to find the underlying structure in the presence
of confounders (hidden direct common causes of two variables). In this paper,
by properly leveraging the non-Gaussianity of the data, we propose to estimate
the structure over latent variables with the so-called Triad constraints: we design
a form of "pseudo-residual" from three variables, and show that when causal
relations are linear and noise terms are non-Gaussian, the causal direction between
the latent variables for the three observed variables is identifiable by checking a
certain kind of independence relationship. In other words, the Triad constraints
help us to locate latent confounders and determine the causal direction between
them. This goes far beyond the Tetrad constraints and reveals more information
about the underlying structure from non-Gaussian data. Finally, based on the
Triad constraints, we develop a two-step algorithm to learn the causal structure
corresponding to measurement models. Experimental results on both synthetic and
real data demonstrate the effectiveness and reliability of our method.

1 Introduction

Traditional methods for causal discovery, which aims to find causal relations from (purely) observa-
tional data, can be roughly divided into two categories, namely constraint-based methods including
PC [Spirtes and Glymour, 1991] and FCI [Spirtes et al., 1995; Colombo et al., 2012], and score-based
ones such as GES [Chickering, 2002] and GES with generalized scores [Huang et al., 2018]. A num-
ber of methods focus on estimating causal relationships between observed variables and fail to recover
the underlying causal structure of latent variables. For example, from large enough data generated by
the structure in Figure 1, where Li are latent variables and Xi are observed ones, we may only get a
complete graph using the PC algorithm [Spirtes and Glymour, 1991], a widely-used constraint-based
method, since there is no d-separation relation among the observed variables (although {X1} and
{X2, X3} are d-separated by L1, which is latent). Besides, in reality we can measure only a limited
number of variables and the causal influences may happen at the level of latent variables, so we are
often concerned about the causal structure of latent variables; see e.g., Bartholomew et al. [2008].

There exist several methods for causal discovery in the case with confounders. Spirtes et al. [2000]
attempt to resolve this problem using the so-called Tetrad constraints [Spearman, 1928]. Inspired
by Tetrad constraints, various contributions have been made towards estimating structure over latent
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variables. For instance, Silva and Scheines [2005] presented testable statistical conditions to identify
d-separations in linear latent variable models, Silva et al. [2006] propose the BPC algorithm using
Tetrad constraints to discovery causal structure of latent variables, and Shimizu et al. [2009] further
applied analysis based on the Linear, Non-Gaussian, Acyclic Model (LiNGAM) [Shimizu et al.,
2006] to the recovered latent variables to further improve the estimated causal relations between
them; Sullivant et al. [2010] showed that a sub-matrix of the covariance matrix with low rank
corresponds to conditional independence constraints on the collections of Gaussian data and proposed
a trek separation criterion to learn causal structure. Recently, Kummerfeld and Ramsey [2016]
used the extended t-separation [Spirtes, 2013] to infer causal relations of latent variables, with the
FindOneFactorClusters (FOFC) algorithm. However, these methods fail to work when latent variables
have fewer than three pure measurement variables. Furthermore, even when this condition holds,
Tetrad and its variants may not be able to find the causal direction between latent variables. Over-
complete independent component analysis offers another method [Hoyer et al., 2008], as an extension
of the LiNGAM analysis; however, this analysis is generally hard to do, especially when there are
relatively many latent variables, and the method does not focus on the structure of latent variables.
More recently, Zhang et al. [2017] and Huang et al. [2015] deal with a specific type of confounders,
which can be written as functions of the time/domain index in nonstationary/heterogeneous data.
Overall, learning the structure of latent variables is a challenging problem; for instance, none of the
above methods is able to recover the causal structure as shown in Figure 1.

It is desirable to develop testable conditions on the observed data to estimate the structure of latent
variables. Interestingly, we find that given three variables in the non-Gaussian case, the independence
condition between one of them and a certain linear combination of the remaining two variables gives
hints as to the causal structure even in the presence of latent confounders. In particular, given a set
of three distinct and dependent variables {Xi, Xj , Xk}, we define a particular type of "regression
residual," E(i,j ∣k) ∶= Xi −

Cov(Xi,Xk)
Cov(Xj ,Xk) ⋅Xj . Then whether E(i,j ∣k) is independent from Xk contains

information regarding where latent confounders might be and the causal relationships among them.
We term this condition the Triad constraint.
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Figure 1: A causal structure involving 5 la-
tent variables.

We further extend our Triad constraints to learn the
structure of a wide class of linear latent structure mod-
els from non-Gaussian data. Specifically, we propose
a two-phase algorithm to discover the causal relation-
ships of latent variables. It first finds pure clusters
(clusters of variables having only one common latent
variable and no observed parent) from observed data
in phase I. Then in phase II it learns the causal order of
latent variables based on the clusters. Compared with
Tetrad constraints, Triad constraints can reveal more
information about the causal structure involving latent
variables for non-Gaussian data. For instance, Triad
constraints can be used to locate the latent variables Li, i = 1, ..., 5, in Figure 1 and identify their
structure, including their causal direction, but Tetrad constraints cannot (see the details in Section 4).

Our main contributions include 1) proposing a novel constraint involving only three non-Gaussian
variables, namely the Triad constraint, and showing the connection between this constraint and the
underlying causal structure, which helps identify causal information of latent confounders, and 2)
developing a two-phase algorithm to learn the causal structure of latent variables, including causal
skeleton and causal directions, based on the Triad constraints.

2 Problem Definition

In this work, we focus on a particular type of linear latent structure model. Let X = {X1, X2, ...Xm}
denote the observed variable set, L = {L1, L2, ...Ln} denote the latent variable set, and V = X ∪ L
denote the full variable set. In the linear latent structure model, the data generation process follows:
1) the structure of V can be represented by a Direct Acyclic Graph (DAG), 2) no observed variable
in X is an ancestor of any latent variable in L, 3) the generation of V is assumed to follow Vi =

∑
Vk∈Pa(Vi),k≠i

bikVk + εVi
,i = 1, 2, ...,m + n, where Pa(Vi) contains all the parent variables of Vi and
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bik is the causal strength from Vk to Vi; and 4) all εVi
are noise (disturbance) variables which are

independent with each other.

BPC, FOFC, and their variants [Silva et al., 2006; Kummerfeld and Ramsey, 2016] have been shown
to be able to recover a certain amount of causal information for some linear latent structure models
from observed data. These methods usually assume that each latent variable has at least three pure
measurement variables, which may not hold in practice, e.g., for the example given in Figure 1;
furthermore, they cannot always recover the causal direction between latent variables. Here, pure
measurement variables are defined as measured variables that have only one latent parent and no
observed parent.

Here, we greatly relax the structural assumption of Tetrad; we consider the case where each latent
variable has two or more pure variables as children, under the assumption of non-Gaussianity of the
noise terms. Here, pure variables are the variables that may be latent or observed but have only one
parent. The model is defined as follows.
Definition 1 (Non-Gaussian Two-Pure Linear Latent Structure Model). A linear latent structure
model is called a Non-Gaussian Two-Pure (NG2P) linear latent structure model if it further satisfies
the following three assumptions:

1) [Purity Assumption] there is no direct edges between the observed variables;

2) [Two-Pure Child Variable Assumption] each latent variable has at least two pure variables
as children;

3) [Non-Gaussianity Assumption] the noise terms are non-Gaussian.

One may wonder how restrictive the above assumptions are and how to interpret the result produced
by our proposed method when the assumptions, especially assumption 1), are violated. We will
discuss such issues in Section 5.

3 Triad Constraints: A Brief Formulation

We begin with the definition of Triad constraints, the independence relationship between the "pseudo-
residual" and the observed variables. It is worth noting that there is some related work that also exploits
similar concepts to "pseudo-residual", e.g., in the context of auxiliary variables (or instrumental
variables)[Chen et al., 2017] or pseudo-variable [Drton and Richardson, 2004], but to the best of our
knowledge, it has not been realized that the independence property involving such pseudo-residuals
reflects structural asymmetry of the latent variables.
Definition 2 (Triad constraints). Suppose Xi, Xj and Xk are distinct and correlated variables and
that all noise variables are non-Gaussian. Define the pseudo-residual of {Xi, Xj} relative to Xk,
which is called a reference variable, as

E(i,j ∣k) ∶= Xi −
Cov(Xi, Xk)
Cov(Xj , Xk)

⋅Xj . (1)

We say that {Xi, Xj} and Xk satisfy Triad constraint if and only if E(i,j ∣k) ⫫ Xk, i.e., {Xi, Xj} and
Xk violate the Triad constraint if and only if E(i,j ∣k) é Xk.

The following two theorems show some interesting properties of the Triad constraints, which are
further explored to discover the causal structure among the latent variables. We first aim at the
identification of the causal direction of latent variables by analyzing the variables in the clusters. The
following theorem shows the asymmetry between the latent variables in light of the Triad condition
in the non-Gaussian case.
Theorem 1. Let La and Lb be two directed connected latent variables without confounders and
let {Xi} and {Xj , Xk} be their children, respectively. Then if {Xi, Xj} and Xk violate the Triad
constraint, La → Lb holds. In other words, if the Triad condition is violated and the latent variables
have no confounders, then the latent variable of the reference variable is a child of the other latent
variable.

The proof is given in the Supplementary Material, and it heavily relies on the Darmois-Skitovich
Theorem Kagan et al. [1973], which essentially says that as long as two variables share any non-
Gaussian, independent component, they cannot be statistically independent. The following example
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shows that Triad constraints help find the causal direction between two latent variables from their
pure clusters.
Example 1. Consider the example in Figure 1, clusters {X1} and {X4, X5} have corresponding
latent variables L1 and L2, respectively. Because L1 → L2 without a confounder, any Triad condition
with any child of L2 is violated, i.e., E(1,4 ∣5) é X5, and E(1,5 ∣4) é X4, but E(4,5 ∣1) ⫫ X1. This
shows the asymmetry between L1 and L2, implied by the three observed variables.

One might wonder whether we can make use of the Triad constraints in the Gaussian case to
infer the causal direction between L1 and L2 in the above example. Unfortunately, one can show
E(1,2 ∣3) ⫫ X3, E(1,3 ∣2) ⫫ X2 and E(2,3 ∣1) ⫫ X1 when the variables are jointly Gaussian, and thus
the asymmetry between L1 and L2 disappears.

The second theorem is about the property of the clusters in terms of the Triad constraints. Here we
say a set of observed variables is a cluster if these variables have the same latent variable as the
parent. Intuitively, if such variables are pure variables, they are equivalent under the Triad constraints.
For example, X2 and X3 in Figure 1 have the same constraints. Theorem 2 formalizes this property
of clusters and gives the criterion for finding clusters.
Theorem 2. Let S be a correlated variable set. If ∀Xi, Xj ∈ S and ∀Xk ∈ X \ S, {Xi, Xj} and
Xk satisfy the Triad constraints, then S is a cluster.

The proof is given in the Supplementary Material. The following example illuminates how the
theorem can be used to distinguish the cluster of the variables.
Example 2. Consider the example in Figure 1, for {X4, X5}, one may find {X4, X5} and Xi satisfy
Triad constraint, where i = 1, 2, 3, 6, 7, 8, so {X4, X5} is a cluster. But for {X1, X4}, E(1,4 ∣5) is not
independent of X5, so {X1, X4} is not a cluster.

4 Triad Constraint-Based Causal Latent Structure Discovery

In this section, we extend the above results to estimate the NG2P linear latent structure. To this
end, we propose a two-phase algorithm to Learn the Structure of latent variables based on Triad
Constraints (LSTC). It firstly finds pure clusters from the observed data (phase I), and then it learns
the structure of the latent variables behind these clusters (phase II).

4.1 Phase 1: Finding Clusters

Theorem 2 has paved the way to discover the clusters of the variables. It also enables us to use a
cluster fusion-like method to discover the clusters of observed variables and latent variables that
have already been found, i.e., we recursively find the clusters of variables and merge the overlapping
clusters. Here we consider two practical issues involved in such a recursive fusion algorithm. The
first is what clusters are to be merged, and the second is how to check whether Triad constraints
involving latent variables hold given that they are hidden.

For the merge problem, we find that the overlapping clusters can be directly merged into one cluster.
This is because the overlapping clusters have the same latent variable as the parent under the NG2P
linear latent structure. The validity of the merge step is guaranteed by Proposition 1.
Proposition 1. Let C1 and C2 be two clusters. If C1 and C2 are overlapping, C1 and C2 share the
same latent parent.

This proposition holds true because of the equivalence of the pure variables in terms of Triad
constraints. In particular, as shown in Theorem 2, all variables in a cluster have the same Triad
constraints.

After we find and merge clusters, we associate each cluster with a latent variable and, in fact, replace
the variables in the cluster by the corresponding latent variable. We will then continue finding
clusters and merging clusters. Since we replace variables in the same cluster with the associated
latent variable, clearly subsequent Triad constraints to be checked may involve latent variables. How
can we check such constraints without knowing the values of the latent variables? Thanks to the
linearity assumption and the transitivity of linear causal relations, one can use its child to test the
Triad constraints. Consider the example in Figure 1. Suppose we already found the cluster {X2, X3}
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and associated it with a latent variable, say L4. Then one can see that if only one variable in this
cluster, say X2, is kept (i.e., X3 is removed), then any subsequent Triad constraint, e.g., that of
{X1, L4} and X5, holds true if and only if {X1, X2} and X5 holds because X3 is not in the variable
set and L4 and its only child, X2, have the same Triad properties relative to any other remaining
variable. That means, we can just use the observed variables of X2 as the values of L4 and ignore all
the other variables in the same cluster for the purpose of checking Triad constraints.

Consideration of the above two issues directly leads to the following algorithm, which includes three
main steps: 1) find the clusters according to Theorem 2; 2) merge the overlapping clusters according
to Proposition 1; 3) introduce a new latent variable to represent a newly discovered cluster and use
the values of an arbitrary variable in the cluster as the observed values of the latent variable for
subsequent Triad condition checking. This procedure is illustrated with the following example.

Algorithm 1 FindClusters
Input: Data set X = {X1, ..., Xm}
Output: Partial causal structure G
1: Initialize C = ∅, G = ∅, V = X;
2: repeat
3: for each {Vi, Vj} ∈ V do
4: if Vi and Vj then
5: if E(i,j ∣k) ⫫ Vk holds for ∀Vk ∈

V \ {Vi, Vj} then
6: C = C ∪ {{Vi, Vj}};
7: end if
8: end if
9: end for

10: Merge all the overlapping sets in C.
11: for each S ∈ C do
12: Introduce a latent variable L for S and

initialize L with the value of any vari-
able of S;

13: V = (V \ S) ∪ {L};
14: G = G ∪ {L → Vi∣Vi ∈ S};
15: end for
16: until V contains only latent variables.
17: Return: G

Example 3. Consider the example in Figure 1. First, we find the clusters {X2, X3}, {X4, X5},
{X7, X8} based on the Theorem 2 (line 3-8). Second, introduce L4, L2 and L5 as the parents
for {X2, X3},{X4, X5},{X7, X8}, respectively, whose values are set to those of X2, X4 and X7,
respectively. Third, we find the clusters {X1, L4}, {X6, L5} on the updated V based on Theorem
2 (line 3-8). Fourth, introduce L1 and L3 as the parents of {X1, L4} and {X6, L5}, respectively.
Finally, we return the clusters of the variables in the form of partial graph as G = {L1 → {X1, L4},
L4 → {X2, X3}, L2 → {X4, X5}, L3 → {X6, L5} and L5 → {X7, X8}}.

4.2 Phase 2: Learning the Structure of Latent Variables

Given the clusters discovered in the previous step, we aim to recover the structure among the root
latent variables of each cluster. Due to the availability of various independence test methods for the
latent variables, the causal order is the focus of this learning procedure. As an immediate extension
of Theorem 1, the root latent variable can be identified by checking the Triad constraints, as stated in
the following proposition.
Proposition 2. Given a latent variable Lr and its two children {Vi, Vj}, Lr is a root latent variable
if and only if E(k,i∣j) ⫫ Vj holds for each Vk, where Vk is a child of any other latent variables.

L
′
2 L

′
3

E(4,1 ∣2)

εX4
− cα

a
⋅ εX1

X5

dαL1 + εX5
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a
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′
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Figure 2: Structure obtained after removing the ef-
fects of L1 through {X1, X2}, where L′2 = εL2

, L′3 =

eβεL2
+ εL3

, ε′X7
= fεL5

+ εX7
, and the influences of

noise terms are shown by dashed lines.

This proposition inspires us to use a recur-
sive approach to discover the causal order;
we recursively identify the root latent vari-
able and update the data by removing the
root variable’s effect, until the causal order
over all latent variables is determined. The
key concern of such recursive approach is
whether Proposition 2 still works on the
updated data.

Fortunately, we find that there is still asym-
metry implied by the Triad constraints if
we update the data as follows: let {Vi, Vj}
be two pure variables of the root latent Lr,
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for any other remaining latent variable L, we update the value of Vk, which is a child of the value
of L, as Vk ∶= E(k,i∣j) and keep the value of the other children unchanged. On the updated data,
the property of the root, i.e., E(k,i∣j) is independent of Xj still holds. Recall the example given
in Figure 1, although such a removal step introduces common effect into the updated variables,
i.e., E(4,1∣2) and E(6,1∣2) share a common noise εX1

, as seen in Figure 2, {E(4,1∣2), {E(6,1∣2)} and X5

satisfy the Triad constraint, while {E(4,1∣2), {E(6,1∣2)} and X7 violate it. More detail is given in the
Supplementary Material.

Given the causal order of the variables, we can find the causal structure simply by removing redun-
dant edges from the full acyclic graph using the independence test methods. Here we adopt the
independence test method proposed in [Silva et al., 2006] (see Theorem 19 therein for the detail).
Finally, we present the following recursive algorithm for learning the structure over latent variables,
and give the following example for illustration.

Algorithm 2 LearnLatentStructure
Input: Partial causal structure G
Output: Complete causal structure G
1: Initialize L with the root variables of each

subgraph in G and Lr = φ;
2: Select two pure child for each L ∈ L;
3: repeat
4: Find the root node Lr and it’s children

Lchild be the largest set satisfing Proposi-
tion 2 and add the Lr into Lr;

5: L = L \ {Lr ∪Lchild}, L′
= {Lr ∪Lchild};

6: while L′
≠ φ do

7: Find the root nodeL′r from L′ according
to Proposition 2.

8: L′
= L′ \ {L′r};

9: Let Vi, Vj be the children of L′r;

10: for each L′ ∈ L′ do
11: G = G ∪ {L′r → L

′};
12: update Vk (a child of L′) as Vk =

E(k,i∣j);
13: end for
14: end while
15: until L = φ
16: if ∣Lr∣ > 1 then
17: Construct an new latent variable L;
18: G = G ∪ {L → Lr} for all Lr ∈ Lr;
19: end if
20: Remove the redundant edges of G using the

method given in [Silva et al., 2006]);
21: Return: G

Example 4. Continue to consider the example in Figure 1. Given the partial structure discovered
in previous phase, i.e., L1 → {X1, L4}, L4 → {X2, X3}, L2 → {X4, X5}, L3 → {X6, L5} and L5 →
{X7, X8}, the algorithm proceeds is as follows. First, we find three latent variables {L1, L2, L3} in
the partial graph G that cannot be further merged (Line 1). Second, we find that the latent variable
L1 is the root variable (Line 4). Third, we update data make use of {X1, X2} (Line 12) and the
results are given in Figure 2 . Fourth, we find that L2 a root latent variable of L3 (Line 7), because
{E(4,1∣2), {E(6,1∣2)} and X5 satisfies the Triad constraint, while {E(4,1∣2), {E(6,1∣2)} and X7 violates it.
Finally, the whole structure is L1 → {L4, L2, L3}, L2 → L3, and L3 → L4.

5 Discussion of the Assumptions of Our Model

L1

L2

L3

X1 X2 X3

X4 X5

X6 X7 X8

α β

γ

a b

c d

e f

Figure 3: An non-pure latent causal structure, which
can be transformed into the equivalent pure structure in
Figure 1, by simply using a latent variable to represent
the direct causal relation among the observed variables.

To understand the applicability of our
model (Definition 1), we discuss the plau-
sibility of the involved three assumptions
and what may happen if they are violated.

If Purity Assumption is violated, i.e., there
are directed links between observed vari-
ables, there may exist pure models equiv-
alent to the underlying causal structure in
terms of Triad constraints. For example,
if we have enough data generated by the
non-pure structure given in Figure 3, the
estimated structure would be the one given
in Figure 1. In the result, one essentially
uses another latent variable (e.g., L4) to replace the direct causal relation between the observed
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variables (e.g., X2 and X3). It is challenging but desirable to give a characterization of the result
given by our procedure and its connection to the underlying causal structure in the general case.

For Two-Pure Children Variable Assumption, our assumption is much milder than that of Tetrad:
we only need two pure variables for each latent variable, while Tetrad needs three pure observed
variables for each latent variable. For Non-Gaussianity Assumption, we note that this assumption can
be easily tested from the observed data. Furthermore, non-Gaussian distributions, unlike Gaussian
ones, are expected to be ubiquitous, due to Cramér Decomposition Theorem [Cramér, 1962], as
argued in Spirtes and Zhang [2016]. In fact, for our algorithm, this assumption can be relaxed to at
most one noise term is Gaussian for observed variables, but not for latent confounders.

6 Simulation

For fair comparison, we simulate data following the linear latent structure model. There are four
typical cases: Cases 1 and 2 have two latent variables L1 and L2, with L1 → L2, and Cases 3 and
4 have three latent variables L1, L2, and L3, with L2 ← L1 → L3, and L2 → L3, respectively.
Note that the simulated structure does not necessarily follow the pure assumption of our model (e.g.
X2 → X5 violates the purity assumption of our model), we simply recover the equivalent pure latent
variable model for such structure as discussed in Section 5. In all four cases, the causal strength b is
sampled from a uniform distribution between [−2,−0.5] ∪ [0.5, 2], noise terms are generated as the
fifth power of uniform(-1,1) variables, and the sample size is selected from {500, 1000, 2000}. The
details of these networks are as follow.

• Case 1: L1 and L2 both have two pure measurement variables, i.e., L1 → {X1, X2} and
L2 → {X3, X4}.

• Case 2: adding impure variables to Case 1. We add X5 and X6 to L1 and L2 respectively,
and add edges {X2 → X5, X4 → X6}.

• Case 3: each latent variable has two measurement variables, i.e., L1 → {X1, X2}, L2 →
{X3, X4}, L3 → {X5, X6}.

• Case 4: adding impurities to Case 3. In detail, we add two measurement variables to each
latent variable, i.e., add X7, X8 to L1, X9, X10 to L2, and X11, X12 to L3. Further add
edges {X9 → X10, X11 → X12}.

Considering the data with non-Gaussian noise variables, we choose the Hilbert-Schmidt Independence
Criterion (HSIC) test [Gretton et al., 2008] as the independence test. We compared the proposed
algorithm with the BPC [Silva et al., 2006] and FOFC [Kummerfeld and Ramsey, 2016] algorithms2.
The method by Shimizu et al. [2009] exploits BPC as its first step, so it is not used for comparison,
given that BPC is included. All the following experimental results are based on 10 runs of the
algorithms over randomly generated data.

In the experiment, the discovered measurement model and the reconstructed structure model are
compared with ground truth to evaluate the performance of the algorithms. To evaluate the quality
of the measurement model, we use Latent omission=OL

TL
, Latent commission=FL

TL
, and Mismeasure-

ment=MO
TO

as the evaluation metrics, where OL is the number of omission latent variables, FL is the
number of false latent variables, and TL is the total number of latent variables in ground truth graph
(See the details in [Silva et al., 2006]) . To evaluate the quality of the reconstructed structure model,
we further use the F1 = 2P×R

P+R
as our metric. Here P and R are the precision and recall, respectively.

As shown in Table 1, our algorithm, LSTC, achieves the best performance (the lowest errors) on all
cases of the measurement model. Notably, when the sample size reaches 2000, the latent omission,
latent commission, and mismeasurements of our method all reach 0. The BPC and FOFC algorithms
(with the Delta test, a distribution-free test) do not perform well. These findings demonstrate that our
algorithm requires only two pure variables in the measurement model, which is a clear advantage
over the compared methods. Because of the clear performance gap, we only report the results of our
methods on structure learning in Figure 4.

2We used these implementations in the TETRAD package, which can be downloaded at http://www.phil.cmu.
edu/tetrad/.
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Table 1: Evaluation of output latent variables

Latent omission Latent commission Mismeasurements
Algorithm LSTC BPC FOFC LSTC BPC FOFC LSTC BPC FOFC

Case 1
500 0.00(0) - - 0.00(0) - - 0.00(0) - -
1000 0.00(0) - - 0.00(0) - - 0.00(0) - -
2000 0.00(0) - - 0.00(0) - - 0.00(0) - -

Case 2
500 0.10(0) 0.50(2) 0.90(8) 0.05(0) 0.00(2) 0.00(8) 0.03(0) 0.06(2) 0.03(8)
1000 0.05(0) 0.65(3) - 0.00(0) 0.00(3) - 0.00(0) 0.05(3) -
2000 0.00(0) - - 0.00(0) - - 0.00(0) - -

Case 3
500 0.20(0) 0.86(6) 0.96(9) 0.03(0) 0.00(6) 0.00(9) 0.17(0) 0.71(6) 0.93(9)
1000 0.13(0) 0.93(8) - 0.00(0) 0.00(8) - 0.00(0) 0.85(8) -
2000 0.00(0) - - 0.00(0) - - 0.00(0) - -

Case 4
500 0.00(0) 0.10(0) 0.13(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.04(0) 0.04(0)
1000 0.00(0) 0.00(0) 0.16(0) 0.26(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0)
2000 0.00(0) 0.00(0) 0.50(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.01(0)

Note: The number in parentheses indicates the number of occurrences that the current algorithm cannot
correctly solve the problem. If the result of a method is always wrong, we use the symbol ’-’ to indicate it.

As shown in Figure 4, the F1 score gradually increases to 1 as the sample size increases in all the four
cases, which illustrates that our algorithm can recover the complete structure of the latent variables,
including their causal directions.

7 Application to Stock Market Data
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Figure 4: The F1 scores of LSTC algorithm.

We now apply our algorithm to discover the causal
network behind the Hong Kong stock market. The
data set contains 1331 daily returns of 14 major
stocks. Although some interesting results have been
discovered on the data [Zhang and Chan, 2008], the
latent variables behind the stocks are still unexplored.

The kernel width in the HSIC test [Gretton et al.,
2008] is set to 0.1. Note that the condition for
finding clusters (Theorem 2) might be partially vi-
olated in the real world; we choose the candi-
date clusters with the highest number of satisfied
Triad constraints in the algorithm, which proceeds
as follows. First, {X4, X7, X12}, {X2, X3, X6},
{X1, X10, X11}, {X5, X8, X13}, and {X9, X14} are
identified as clusters by running the FindClusters al-
gorithm. These five clusters are set to L2, L3, L4, L5

and L6, respectively. We then run algorithm 2 over the five clusters and obtain the final result, shown
in Figure 5.

We have a number of observations from the discovered structure, which are consistent with our
understanding of the stock market. 1) All stocks are affected by a major latent variable (L1), which
may be related to government policy, the total risk in the market, etc. 2) Companies in the same sub-
index tend to gather under a common latent variable. For example, the cluster {X5, X8, X13} is in the
Finance Sub-index; the cluster {X2, X3, X6} is in the Utilities Sub-index; the cluster {X1, X10, X11}
is in the Properties Sub-index. 3) Ownership relations tend to have one common latent variable, i.e.,
X1 holds about 50% of X10, and they have one common cause L4. Similarly, X5 holds about 60%
of X8, and they have one common cause L5.

8 Conclusion

In this paper, we proposed the so-called Triad constraints for estimating a particular type of linear
non-Gaussian latent variable model. The constraints help locate latent variables and identify their
causal structure. Then we apply these constraints to discover the whole structure of latent variables
with a two-phase algorithm. Theoretical analysis showed asymptotic correctness of the proposed
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Figure 5: Causal diagram of the stocks

approach under our assumptions. Experimental results further verified the usefulness of our algorithm.
Our future work is to 1) characterize properties of the results of our procedure for general causal
structures with latent variables and 2) further relax our assumptions for better applicability of the
method.
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