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Abstract

We propose a novel adaptive, accelerated algorithm for the stochastic constrained
convex optimization setting. Our method, which is inspired by the Mirror-Prox
method, simultaneously achieves the optimal rates for smooth/non-smooth prob-
lems with either deterministic/stochastic first-order oracles. This is done without
any prior knowledge of the smoothness nor the noise properties of the problem.
To the best of our knowledge, this is the first adaptive, unified algorithm that
achieves the optimal rates in the constrained setting. We demonstrate the practical
performance of our framework through extensive numerical experiments.

1 Introduction

Stochastic constrained optimization with first-order oracles (SCO) is critical in machine learning.
Indeed, the scalability of classical machine learning tasks, such as support vector machines (SVMs),
linear/logistic regression and Lasso, rely on efficient stochastic optimization methods. Importantly,
generalization guarantees for such tasks often rely on constraining the set of possible solutions. The
latter induces simple solutions in the form of low norm or low entropy, which in trun enables to
establish generalization guarantees.

In the SCO setting, the optimal convergence rates for the cases of non-smooth and smooth objectives
are given by O(GD/

√
T ) and O(LD2/T 2 + σD/

√
T ), respectively; where T is the total number

of (noisy) gradient queries, L is the smoothness constant of the objective, σ2 is the variance of the
stochastic gradient estimates, D is the effective diameter of the decision set, and G is a bound on the
magnitude of gradient estimates. These rates cannot be improved without additional assumptions.

The optimal rate for the non-smooth case may be obtained by the current state-of-the-art optimization
algorithms, such as Stochastic Gradient Descent (SGD), AdaGrad [Duchi et al., 2011], Adam [Kingma
and Ba, 2014], and AmsGrad [Reddi et al., 2018]. However, in order to obtain the optimal rate for
the smooth case, one is required to use more involved accelerated methods such as [Hu et al., 2009,
Lan, 2012, Xiao, 2010, Diakonikolas and Orecchia, 2017, Cohen et al., 2018, Deng et al., 2018].

Unfortunately, all of these accelerated methods require a-priori knowledge of the smoothness parame-
ter L, as well as the variance of the gradients σ2, creating a setup barrier for their use in practice. As
a result, accelerated methods are not very popular in machine learning tasks.

This work develops a new universal method for SCO that obtains the optimal rates in both smooth
and non-smooth cases, without any prior knowledge regarding the smoothness of the problem L, nor
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the noise magnitude σ. Such universal methods that implicitly adapt to the properties of the learning
objective may be very beneficial in practical large-scale problems where these properties are usually
unknown. To our knowledge, this is the first work that achieves this desiderata in the constrained
SCO setting.

Our contributions in the context of related work For the unconstrained setting, Levy et al. [2018]
and Cutkosky [2019] have recently presented a universal scheme that obtains (almost) optimal rates
for both smooth and non-smooth cases.

More specifically, Levy et al. [2018] designs AcceleGrad—a method that obtains respective rates
of O

(
GD
√

log T/
√
T
)

and O
(
L logLD2/T + σD

√
log T/

√
T
)

. Unfortunately, this result only
holds for the unconstrained setting, and the authors leave the constrained case as an open problem.

An important progress towards this open problem is achieved only recently by Cutkosky [2019], who
proves suboptimal respective rates of O

(
1/
√
T
)

and O
(
D2L/T 3/2 + σD/

√
T
)

for SCO in the
constrained setting.

Our work completely resolves the open problem in Levy et al. [2018], Cutkosky [2019], and
proposes the first universal method that obtains respective optimal rates of O

(
GD/

√
T
)

and

O
(
D2L/T 2 + σD/

√
T
)

for the constrained setting. When applied to the unconstrained setting, our
analysis tightens the rate characterizations by removing the unnecessary logarithmic factors appearing
in [Levy et al., 2018, Cutkosky, 2019].

Our method is inspired by the Mirror-Prox method [Nemirovski, 2004, Rakhlin and Sridharan, 2013,
Diakonikolas and Orecchia, 2017, Bach and Levy, 2019], and builds on top of it using additional
techniques from the online learning literature. Among, is an adaptive learning rate rule [Duchi et al.,
2011, Rakhlin and Sridharan, 2013], as well as recent online-to-batch conversion techniques [Levy,
2017, Cutkosky, 2019].

The paper is organized as follows. In the next section, we specify the problem setup, and give the
necessary definitions and background information. In Section 3, we motivate our framework and
explain the general mechanism. We also introduce the convergence theorems with proof sketches
to highlight the technical novelties. We share numerical results in comparison with other adaptive
methods and baselines for different machine learning tasks in Section 4, followed up with conclusions.

2 Setting and preliminaries

Preliminaries. Let ‖ · ‖ be a general norm and ‖ · ‖∗ be its dual norm. A function f : K 7→ R is
µ-strongly convex over a convex set K, if for any x ∈ K and any ∇f(x), a subgradient of f at x,

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ µ

2
‖x− y‖2 , ∀x, y ∈ K (1)

A function f : K 7→ R is L-smooth over K if it has L-Lipschitz continuous gradient, i.e.,

‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖ , ∀x, y ∈ K. (2)

Consider a 1-strongly convex differentiable function R : K → R. The Bregman divergence with
respect to a distance-generating functionR is defined as follows ∀x, y ∈ K,

DR(x, y) = R(x)−R(y)− 〈∇R(y), x− y〉 . (3)

An important property of Bregman divergence is that DR(x, y) ≥ 1
2 ‖x− y‖

2 for all x, y ∈ K, due
to the strong convexity ofR.

Setting This paper focuses on (approximately) solving the following constrained problem,

min
x∈K

f(x) , (4)

where f : K 7→ R is a convex function, and K ⊂ Rd is a compact convex set.
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We assume the availability of a first order oracle for f(·), and consider two settings: a deterministic
setting where we may access exact gradients, and a stochastic setting where we may only access
unbiased (noisy) gradient estimates. Concretely, we assume that by querying this oracle with a point
x ∈ K, we receive ∇̃f(x) ∈ Rd such,

E
[
∇̃f(x)

∣∣x] = ∇f(x) . (5)

Throughout this paper we also assume the norm of the (sub)-gradient estimates is bounded by G, i.e,

‖∇̃f(x)‖∗ ≤ G, ∀x ∈ K .

3 The algorithm

In this section, we present and analyze our Universal eXtra Gradient (UniXGrad) method. We first
discuss the Mirror-Prox (MP) algorithm of [Nemirovski, 2004], and the related Optimistic Mirror
Descent (OMD) algorithm of [Rakhlin and Sridharan, 2013]. Later we present our algorithm which
builds on top of the Optimistic Mirror Descent (OMD) scheme. Then in Sections 3.1 and 3.2, we
present and analyze the guarantees of our method in nonsmooth and smooth settings, respectively.

Our goal is to optimize a convex function f over a compact domain K, and Algorithm 1 offers
a framework for solving this template, which is inspired by the Mirror-Prox (MP) algorithm of
[Nemirovski, 2004] and the Optimistic Mirror Descent (OMD) algorithm of [Rakhlin and Sridharan,
2013]. Let us motivate this particular template. Basically, the algorithm takes a step from yt−1 to
xt, using first order information based on yt−1. Then, it goes back to yt−1 and takes another step,
but this time, gradient information relies on xt. Each step is a generalized projection with respect to
Bregman divergence DR(·, ·).

Algorithm 1 Mirror-Prox Template

Input: Number of iterations T , y0 ∈ K, learning rate {ηt}t∈[T ]

1: for t = 1, ..., T do
2: xt = arg min

x∈K
〈x,Mt〉+ 1

ηt
DR(x, yt−1)

3: yt = arg min
y∈K
〈y, gt〉+ 1

ηt
DR(y, yt−1)

4: end for

Now, let us explain the salient differences between UniXGrad and MP as well as OMD using the
particular choices of Mt, gt and the distance-generating functionR.

Optimistic Mirror Descent takes gt = ∇f(xt) and computesMt = ∇f(xt−1), i.e., based on gradient
information from previous iterates. This vector is available at the beginning of each iteration and
the “optimism” arises in the case where Mt ≈ gt. When Mt = ∇f(yt−1) and gt = ∇f(xt),
the template is known as the famous Mirror-Prox algorithm. One special case of Mirror-Prox is
Extra-Gradient scheme [Korpelevich, 1976] where the projections are with respect to Euclidean norm,
i.e. R(x) = 1/2 ‖x‖22, instead of general Bregman divergences.

MP has been well-studied, especially in the context of variational inequalities and convex-concave
saddle point problems. It achieves fast convergence rate of O(1/T ) for this class of problems,
however, in the context of smooth convex optimization, this is the standard slow rate [Nesterov, 2003].
To date, MP is not known to enjoy the accelerated rate of O(1/T 2) for smooth convex minimization.

We propose three modifications to this template, which are the precise choice of gt and Mt, the
adaptive learning rate and the gradient weighting scheme.

The notion of averaging: In different interpretations of acceleration [Nesterov, 1983, Tseng, 2008,
Allen Zhu and Orecchia, 2014], the notion of averaging is always central and we incorporate this
notion via gradients taken at weighted average of iterates. Let us define the weight αt = t and the
following quantities

x̄t =
αtxt +

∑t−1
i=1 αixi∑t

i=1 αi
, z̃t =

αtyt−1 +
∑t−1
i=1 αixi∑t

i=1 αi
. (6)
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Then, UniXGrad algorithm takes gt = ∇f(x̄t) and Mt = ∇f(z̃t), which provides a naive interpre-
tation of averaging. Our choice of gt and Mt coincide with that of the accelerated Extra-Gradient
scheme of Diakonikolas and Orecchia [2017]. While their decision relies on implicit Euler discretiza-
tion of an accelerated dynamics, we arrive at the same conclusion as a direct consequence of our
convergence analysis.

Adaptive learning rate: A key ingredients of our algorithm is the choice of adaptive learning rate
ηt. In light of Rakhlin and Sridharan [2013], we define our lag-one-behind learning rate as

ηt =
2D√

1 +
t−1∑
i=1

α2
i ‖gi −Mi‖2∗

, (7)

where D2 = supx,y∈KDR(x, y) is the diameter of the compact set K with respect to Bregman
divergences. Algorithm 2 summarizes our framework.

Gradient weighting scheme: We introduce the weights αt in the sequence updates. One can
interpret this as separating step size into learning rate and the scaling factors. It is necessary that
αt = Θ(t) in order to achieve optimal rates, in fact we precisely choose αt = t. Also notice that they
appear in the learning rate, compatible with the update rule.

Algorithm 2 UniXGrad

Input: # of iterations T , y0 ∈ K, diameter D, weight αt = t, learning rate {ηt}t∈[T ]

1: for t = 1, ..., T do
2: xt = arg min

x∈K
αt 〈x,Mt〉+ 1

ηt
DR(x, yt−1) (Mt = ∇f (z̃t))

3: yt = arg min
y∈K

αt 〈y, gt〉+ 1
ηt
DR(y, yt−1) (gt = ∇f (x̄t))

4: end for
5: return x̄T

In the remainder of this section, we will present our convergence theorems and provide proof sketches
to emphasize the fundamental aspects and novelties. With the purpose of simplifying the analysis, we
borrow classical tools in the online learning literature and perform the convergence analysis in the
sense of bounding “weighted regret”. Then, we use a simple yet essential conversion strategy which
enables us to directly translate our weighted regret bounds to convergence rates. Before we proceed,
we will present the conversion scheme from weighted regret to convergence rate, by deferring
the proof to Appendix. In a concurrent work, [Cutkosky, 2019] proves a similar online-to-offline
conversion bound.
Lemma 1. Consider weighted average x̄t as in Eq. (6). LetRT (x∗) =

∑T
t=1 αt 〈xt − x∗, gt〉 denote

the weighted regret after T iterations, αt = t and gt = ∇f(x̄t). Then,

f(x̄T )− f(x∗) ≤
2RT (x∗)

T 2
.

3.1 Non-smooth setting
Deterministic setting: First, we will focus on the convergence analysis in the case of non-smooth
objective functions with deterministic/stochastic first-order oracles. We will follow the regret analysis
as in Rakhlin and Sridharan [2013] with essential adjustments that suit our weighted scheme and
particular choice of adaptive learning rate.
Remark 1. It is important to point out that we do not completely exploit the precise definitions of gt
and Mt in the presence of non-smooth objectives. As far as the regret analysis is concerned, it suffices
that these quantities are functions of∇f(·) and that, as a corollary, their dual norm is upper bounded.
However, in order to bridge the gap between weighted regret and the objective sub-optimality, i.e.
f(x̄T )− f(x∗), we require gt = ∇f(x̄t).

Now, we can exhibit our convergence bounds for the case of deterministic oracles.
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Theorem 1. Consider the constrained optimization setting in Problem (4), where f : K → R is a
proper, convex and G-Lipschitz function defined over compact, convex set K. Let x∗ ∈ minx∈K f(x).
Then, Algorithm 2 guarantees

f(x̄T )−min
x∈K

f(x) ≤
7D
√

1 +
∑T
t=1 α

2
t ‖gt −Mt‖2∗ −D
T 2

≤ 6D

T 2
+

14GD√
T

. (8)

We establish the basis of our analysis through Lemma 1 and Corollary 2 of Rakhlin and Sridharan
[2013]. Then, we build upon this base by exploiting the structure of the adaptive learning rate, the
weights αt and the bound on gradient norms to give adaptive convergence bounds.

Stochastic setting: Now, we further consider the case of stochastic gradients. We assume that the
first-order oracles are unbiased (see Eq. (5)). We want to emphasize that our stochastic setting is not
restricted to the notion of additive noise, i.e. gradients corrupted with zero-mean noise. It essentially
includes any estimate that recovers the full gradient in expectation, e.g. estimating gradient using
mini batches. Additionally, we propagate the bounded gradient norm assumption to the stochastic
oracles, such that ‖∇̃f(x)‖∗ ≤ G, ∀x ∈ K.
Theorem 2. Consider the optimization setting in Problem (4), where f is non-smooth, convex and
G-Lipschitz. Let {xt}t=1,..,T be a sequence generated by Algorithm 2 such that gt = ∇̃f(x̄t) and
Mt = ∇̃f(z̃t). With αt = t and learning rate as in Eq. (7), it holds that

E [f(x̄T )]−min
x∈K

f(x) ≤ 6D

T 2
+

14GD√
T

.

The analysis in the stochastic setting is similar to deterministic setting. The difference is up to
replacing gt ↔ g̃t and Mt ↔ M̃t. With the bound on stochastic gradients, the same rate is achieved.

3.2 Smooth setting

Deterministic setting: In terms of theoretical contributions and novelty, the case of L-smooth
objective is of greater interest. We will first start with the deterministic oracle scheme and then
introduce the convergence theorem for the noisy setting.
Theorem 3. Consider the constrained optimization setting in Problem (4), where f : K → R is a
proper, convex and L-smooth function defined over compact, convex set K. Let x∗ ∈ minx∈K f(x).
Then, Algorithm 2 ensures the following

f(x̄T )−min
x∈K

f(x) ≤ 20
√

7D2L

T 2
. (9)

Remark 2. In the non-smooth setting, we assume that gradients have bounded norms. Our algorithm
does not need to know this information, but it is necessary for the analysis in that case. However,
when the function is smooth, neither the algorithm nor the analysis requires bounded gradients.

Proof Sketch (Theorem 3). We follow the proof of Theorem 1 until the point where we obtain

T∑
t=1

αt 〈xt − x∗, gt〉 ≤
1

2

T∑
t=1

ηt+1α
2
t ‖gt −Mt‖2∗ −

1

2

T∑
t=1

1

ηt+1
‖xt − yt−1‖2 +D2

(
3

ηT+1
+

1

η1

)
.

By smoothness of the objective function, we have ‖gt −Mt‖∗ ≤ L ‖x̄t − z̃t‖, which implies

− 1
ηt+1
‖xt − yt−1‖2 ≤ − α2

t

4L2ηt+1
‖gt −Mt‖2∗. Hence,

≤ 1

2

T∑
t=1

(
ηt+1 −

1

4L2ηt+1

)
α2
t ‖gt −Mt‖2∗ +D2

(
3

ηT+1
+

1

η1

)
.

Now we will introduce a time variable to characterize the growth of the learning rate. Define
τ∗ = max

{
t ∈ {1, ..., T} : 1

η2t+1
≤ 7L2

}
such that ∀t > τ∗, ηt+1 − 1

4L2ηt+1
≤ − 3

4ηt+1. Then,
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≤ D
τ∗∑
t=1

α2
t ‖gt −Mt‖2∗√

1 +
∑t
i=1 α

2
i ‖gi −Mi‖2∗

+
D

2︸ ︷︷ ︸
(A)

+
3D

2


√√√√1 +

T∑
t=1

α2
t ‖gt −Mt‖2∗ −

T∑
t=τ∗+1

α2
t ‖gt −Mt‖2∗√

1 +
∑t
i=1 α

2
i ‖gi −Mi‖2∗


︸ ︷︷ ︸

(B)

,

where we wrote ηt+1 in open form and used the definition of τ∗. To complete the proof, we will need
the following lemma.

Lemma 2. Let {ai}i=1,...,n be a sequence of non negative numbers. Then, it holds that

√√√√ n∑
i=1

ai ≤
n∑
i=1

ai√∑i
j=1 aj

≤ 2

√√√√ n∑
i=1

ai.

Please refer to [McMahan and Streeter, 2010, Levy et al., 2018] for the proof. We jointly use Lemma 2
and the bound on ητ∗+1 to upper bound terms (A) and (B) with 4

√
7D2L and 6

√
7D2L, respectively.

Lemma 1 immediately establishes the convergence bound.

Stochastic setting: Next, we will present our results for the stochastic extension. In addition to
unbiasedness and boundedness, we will introduce another classical assumption: bounded variance,

E[‖∇f(x)− ∇̃f(x)‖2∗|x] ≤ σ2, ∀x ∈ K. (10)

The analysis proceeds along similar lines as its deterministic counterpart. However, we execute the
analysis using auxiliary terms and attain the optimal accelerated rate without the log factors.

Theorem 4. Consider the optimization setting in Problem (4), where f is L-smooth and convex. Let
{xt}t=1,..,T be a sequence generated by Algorithm 2 such that gt = ∇̃f(x̄t) and Mt = ∇̃f(z̃t).
With αt = t and learning rate as in (7), it holds that

E [f(x̄T )]−min
x∈K

f(x) ≤ 224
√

14D2L

T 2
+

14
√

2σD√
T

.

Proof Sketch (Theorem 4). We start in the same spirit as the stochastic, non-smooth setting,
T∑
t=1

αt 〈xt − x∗, gt〉 ≤
T∑
t=1

αt 〈xt − x∗, g̃t〉︸ ︷︷ ︸
(A)

+

T∑
t=1

αt 〈xt − x∗, gt − g̃t〉︸ ︷︷ ︸
(B)

.

Recall that term (B) is zero in expectation given x̄t. Then, we follow the proof steps of Theorem 1,

T∑
t=1

αt 〈xt − x∗, gt〉 ≤
7D

2

√√√√1 +

T∑
t=1

α2
t ‖g̃t − M̃t‖2∗ −

1

2

T∑
t=1

1

ηt+1
‖xt − yt−1‖2 . (11)

We will obtain ‖gt −Mt‖2∗ from ‖xt − yt−1‖2 due to smoothness and the challenge is to handle
‖g̃t−M̃t‖2∗ and ‖gt −Mt‖2∗ together. So let’s denote, B2

t := min{‖gt−Mt‖2∗, ‖g̃t−M̃t‖2∗}. Using
this definition, we could declare an auxiliary learning rate which we will only use for the analysis,
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η̃t =
2D√

1 +
t−1∑
i=1

α2
iB

2
i

. (12)

Clearly, for any t ∈ [T ] we have − 1
ηt+1
‖gt −Mt‖2∗ ≤ −

1
η̃t+1

B2
t . Also, we can write,

‖g̃t − M̃t‖2∗ ≤ 2‖gt −Mt‖2∗ + 2‖ξt‖2∗, (13)

and,

‖g̃t − M̃t‖2∗ ≤ 2B2
t + 2‖ξt‖2∗.

Therefore, we could rewrite Eq. (11) as,

T∑
t=1

αt 〈xt − x∗, gt〉 ≤
7

2

T∑
t=1

(
η̃t+1 −

1

28L2η̃t+1

)
α2
tB

2
t +

7D

2︸ ︷︷ ︸
(A)

+
7D√

2

√√√√ T∑
t=1

α2
t ‖ξt‖

2
∗︸ ︷︷ ︸

(B)

.

Using Lemma 2 and defining a time variable τ∗ in the sense of Theorem 3 (with correct constants),
term (A) is upper bounded by 112

√
14D2L. By taking expectation conditioned on x̄t and using

Jensen’s inequality, we could upper bound term (B) as 14σDT 3/2/
√

2, which leads us to the optimal
rate of 224

√
14D2L/T 2 + 14

√
2σD/

√
T through Lemma 1.

4 Experiments

We compare performance of our algorithm for two different tasks against adaptive methods of various
characteristics, such as AdaGrad, AMSGrad and AcceleGrad, along with a recent non-adaptive
method AXGD. We consider a synthetic setting where we analyze the convergence behavior, as
well as a SVM classification task on some LIBSVM dataset. In all the setups, we tuned the hyper-
parameters of each algorithm by grid search. In order to compare the adaptive methods on equal
grounds, AdaGrad is implemented with a scalar step size based on the template given by Levy [2017].
We implement AMSGrad exactly as it is described by Reddi et al. [2018].

4.1 Convergence behavior

We take the least squares problem with L2-norm ball constraint for this setting, i.e.,
min‖x‖2<r

1
2n ‖Ax− b‖

2
2, where A ∈ Rn×d, A ∼ N (0, σ2I) and b = Ax\ + ε such that ε is a

random vector ∼ N (0, 10−3). We pick n = 500 and d = 100. For the rest of this section, we refer
to the solution of constrained problem as x∗.
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Figure 1: Convergence rates in the deterministic oracle setting when x∗ ∈ Boundary(K)
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Figure 2: Convergence rates in the stochastic oracle setting when x∗ ∈ Boundary(K)

In Figure 1 and 2, we present the convergence rates under deterministic and stochastic oracles, and we
pick a problem in which the solution is on the boundary of the constraint set, i.e., x∗ ∈ Boundary(K).
In this setting, our algorithm shows matching performance in comparison with other methods. AXGD
has convergence issues in the stochastic setting, as it only handles additive noise and their step size
routine does not seem to be compatible with stochastic gradients. Another key observation is that
AMSGrad suffers a decrease in its performance when the solution is on the boundary of the set.

4.2 SVM classification

In this section, we will tackle SVM classification problem on “breast-cancer” data set taken from
LIBSVM. We try to minimize squared Hinge loss with L2 norm regularization. We split the data set
as training and test sets with 80/20 ratio. The models are trained using random mini batches of size
5. Figure 3 demonstrates convergence rates and test accuracies of the methods. They represent the
average performance of 5 runs, with random initializations. For UniXGrad, AcceleGrad and AXGD,
we consider the performance with respect to the average iterate x̄t as it shows a more stable behavior,
whereas AdaGrad and AMSGrad are evaluated based on their last iterates. AXGD, which has poor
convergence behavior in stochastic setting due to its step size rule, shows the worst performance
both in terms of convergence and generalization. UniXGrad, AcceleGrad, AdaGrad and AMSGrad
achieve comparable generalization performances to each other. AMSGrad achieves a slightly better
performance as it has diagonal preconditioner which translates to per-coordinate learning rate. It
could possibly adapt to the geometry of the optimization landscape better.
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Figure 3: Convergence behavior with respect to training data and resulting test accuracies for binary
classification task on breast-cancer dataset from LIBSVM Chang and Lin [2011]

5 Discussion and Future Work

In this paper we presented an adaptive and universal framework that achieves the optimal convergence
rates in constrained convex optimization setting. To our knowledge, this is the first method that
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achieves O
(
GD/

√
T
)

and O
(
D2L/T 2 + σD/

√
T
)

rates in the constrained setting, without log
dependencies. Without any prior information, our algorithm adapts to smoothness of the objective
function as well as the variance of the possibly noisy gradients.

One would interpret that our guarantees are extensions of [Levy et al., 2018] to the constrained
setting, through a completely different algorithm and a simpler, classical analysis. Our study of their
algorithm and proof strategies concludes that:

• It does not seem possible to remove log T dependency in non-smooth setting for their
algorithm, due to their Lemma A.3

• Extending their algorithm to constrained setting (via projecting y sequence) is not trivial, as
the analysis requires y sequence to be unbounded (refer to their Appendix A, Eq. (16)).

As a follow up to our work, we would like to investigate three main extensions:

• Proximal version of our algorithm that could handle composite problems with nonsmooth
terms, including indicator functions, in a unified manner. It seems like a rather simple
extension as the main difference would be replacing optimality condition for constrained
updates with that of proximal operator.

• Extending scalar adaptive learning rate to per-coordinate matrix-like preconditioner. This
direction of research would help us create a robust algorithm that is applicable to non-convex
problems, such as training deep neural networks.

• Adaptation to strong convexity along with smoothness and noise variance, simultaneously. A
first step towards tackling this open problem is proving an improved rate of O(1/T 2 +σ/T )
for smooth and strongly convex problems, with stochastic gradients.
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