
We thank all the reviewers for their detailed comments, constructive suggestions and thorough evaluation of our work.1

Reviewer 1: Indeed, two main contributions of our framework are the removal of log dependencies and achieving the2

optimal accelerated rates for constrained problems.3

We agree that our Lemma 1 is a special case of Theorem 1 of Cutkosky [2019], where αt = t. We would like to4

thank the reviewer for pointing out the mistake in our sentence “In a concurrent work, [Cutkosky, 2019] proves a5

similar online-to-offline conversion bound, with log dependencies.” We will remove “with log dependencies” part of the6

sentence in the final submission.7

Regarding your comment about the space diameter, it is worth investigating how we could also adapt to the initial8

distance to the constraint set. It is a challenge to remove the space diameter as it appears due to classical regret analysis.9

Reviewer 2: We have studied the convergence analysis of Levy et al. [2018]. It is much more complicated compared10

to our approach, and difficult to integrate with classical techniques. Extending it to constrained setting is not straight-11

forward, yet we cannot see a way to remove the log dependencies in their analysis either. With our analysis technique,12

we achieve both of these simultaneously, and provide an alternative interpretation of acceleration with a simpler proof.13

We propose in the Conclusion section that we could extend our framework for composite problems with non-smooth14

components, as well. For composite problems, the main difference in the analysis would be the optimality conditions15

used in the proof of Theorem 1, due to proximal gradient steps. This appears as a rather straight-forward extension of16

our paper. For Levy et al. [2018], we have no such claims. In fact, it could be a challenging task to extend their analysis17

for composite problems as the proof techniques are complex and unique to their framework. It is rather difficult to18

incorporate classical analysis tools into theirs.19

Reviewer 3: Our primary objective in this paper is to develop an adaptive algorithm that universally achieves optimal20

rates for smooth/non-smooth objectives with stochastic/deterministic first-order oracles, in the constrained setting.21

We actually give the definition of αt in the “Gradient weighting scheme” part, and argue that it should be of order Θ(t).22

We will replace this with a clearer definition, i.e., αt = t, as you suggest.23

Regarding your comment on strong convexity, Lan and Ghadimi [2012] show that with stochastic first-order oracles and24

strongly convex objective, their algorithm converges with a rate of O(1/T 2 + σ/T ). In the setting of deterministic25

oracles the optimal rate is linear, however. Therefore, obtaining a rate of O(exp(−T ) + σ2/T ) is not straight-forward.26

We also believe it is not in the main scope of this paper, but an important challenge we consider to tackle as future work.27

There exist prior related work in online learning about adaptation to strong convexity, such as [Hazan et al., 2008]. It is28

known that the regret bound for strongly-convex sequence of functions is log(T ). We could design our proof technique29

in parallel with such prior work and try to obtain a bound like O(1/T 2 + log(T )σ2/T ) with stochastic first-order30

oracles by adapting to strong convexity. We will consider this as future work.31

To the best of our knowledge, there does not exist any universal and adaptive convex optimization method that32

“simultaneously” adapts to smoothness, strong convexity and noise variance while achieving the optimal rates. Thus it33

is, indeed, an open problem that we are willing to investigate.34
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