
Multiple Futures Prediction

Yichuan Charlie Tang
Apple Inc.

yichuan_tang@apple.com

Ruslan Salakhutdinov
Apple Inc.

rsalakhutdinov@apple.com

Abstract

Temporal prediction is critical for making intelligent and robust decisions in com-
plex dynamic environments. Motion prediction needs to model the inherently
uncertain future which often contains multiple potential outcomes, due to multi-
agent interactions and the latent goals of others. Towards these goals, we introduce
a probabilistic framework that efficiently learns latent variables to jointly model
the multi-step future motions of agents in a scene. Our framework is data-driven
and learns semantically meaningful latent variables to represent the multimodal
future, without requiring explicit labels. Using a dynamic attention-based state
encoder, we learn to encode the past as well as the future interactions among
agents, efficiently scaling to any number of agents. Finally, our model can be used
for planning via computing a conditional probability density over the trajectories
of other agents given a hypothetical rollout of the ‘self’ agent. We demonstrate
our algorithms by predicting vehicle trajectories of both simulated and real data,
demonstrating the state-of-the-art results on several vehicle trajectory datasets.

1 Introduction

The ability to make good predictions lies at the heart of robust and safe decision making. It is
especially critical to be able to predict the future motions of all relevant agents in complex and
dynamic environments. For example, in the autonomous driving domain, motion prediction is central
both to the ability to make high level decisions, such as when to perform maneuvers, as well as to
low level path planning optimizations [34, 28].

Motion prediction is a challenging problem due to the various needs of a good predictive model.
The varying objectives, goals, and behavioral characteristics of different agents can lead to multiple
possible futures or modes. Agents’ states do not evolve independently from one another, but rather
they interact with each other. As an illustration, we provide some examples in Fig. 1. In Fig. 1(a),
there are a few different possible futures for the blue vehicle approaching an intersection. It can
either turn left, go straight, or turn right, forming different modes in trajectory space. In Fig. 1(b),
interactions between the two vehicles during a merge scenario show that their trajectories influence
each other, depending on who yields to whom. Besides multimodal interactions, prediction needs
to scale efficiently with an arbitrary number of agents in a scene and take into account auxiliary
and contextual information, such as map and road information. Additionally, the ability to measure
uncertainty by computing probability over likely future trajectories of all agents in closed-form (as
opposed to Monte Carlo sampling) is of practical importance.

Despite a large body of work in temporal motion predictions [24, 7, 13, 26, 16, 2, 30, 8, 39], existing
state-of-the-art methods often only capture a subset of the aforementioned features. For example,
algorithms are either deterministic, not multimodal, or do not fully capture both past and future
interactions. Multimodal techniques often require the explicit labeling of modes prior to training.
Models which perform joint prediction often assume the number of agents present to be fixed [36, 31].
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(a) Multiple possible future trajectories.

(b) Scenario A: green yields to blue.

(c) Scenario B: blue yields to green.

Figure 1: Examples illustrating the need for mutimodal interactive predictions. (a): There are a few possible
modes for the blue vehicle. (b and c): Time-lapsed visualization of how interactions between agents influences
each other’s trajectories.

We tackle these challenges by proposing a unifying framework that captures all of the desirable
features mentioned earlier. Our framework, which we call Multiple Futures Predictor (MFP), is
a sequential probabilistic latent variable generative model that learns directly from multi-agent
trajectory data. Training maximizes a variational lower bound on the log-likelihood of the data. MFP
learns to model multimodal interactive futures jointly for all agents, while using a novel factorization
technique to remain scalable to arbitrary number of agents. After training, MFP can compute both
(un)conditional trajectory probabilities in closed form, not requiring any Monte Carlo sampling.

MFP builds on the Seq2seq [32], encoder-decoder framework by introducing latent variables and
using a set of parallel RNNs (with shared weights) to represent the set of agents in a scene. Each
RNN takes on the point-of-view of its agent and aggregates historical information for sequential
temporal prediction for that agent. Discrete latent variables, one per RNN, automatically learn
semantically meaningful modes to capture multimodality without explicit labeling. MFP can be
further efficiently and jointly trained end-to-end for all agents in the scene. To summarize, we make
the following contributions: First, semantically meaningful latent variables are automatically learned
from trajectory data without labels. This addresses the multimodality problem. Second, interactive
and parallel step-wise rollouts are preformed for all agents in the scene. This addresses the modeling
of interactions between actors during future prediction, see Sec. 3.1. We further propose a dynamic
attentional encoding which captures both the relationships between agents and the scene context, see
Sec. 3.1. Finally, MFP is capable of performing hypothetical inference: evaluating the conditional
probability of agents’ trajectories conditioning on fixing one or more agent’s trajectory, see Sec. 3.2.

2 Related Work
The problem of predicting future motion for dynamic agents has been well studied in the literature.
The bulk of classical methods focus on using physics based dynamic or kinematic models [38, 21, 25].
These approaches include Kalman filters and maneuver based methods, which compute the future
motion of agents by propagating their current state forward in time. While these methods perform well
for short time horizons, longer horizons suffer due to the lack of interaction and context modeling.

The success of machine learning and deep learning ushered in a variety of data-driven recurrent
neural network (RNN) based methods [24, 7, 13, 26, 16, 2]. These models often combine RNN
variants, such as LSTMs or GRUs, with encoder-decoder architectures such as conditional variational
autoencoders (CVAEs). These methods eschew physic based dynamic models in favor of learning
generic sequential predictors (e.g. RNNs) directly from data. Converting raw input data to input
features can also be learned, often by encoding rasterized inputs using CNNs [7, 13].

Methods that can learn multiple future modes have been proposed in [16, 24, 13]. However, [16]
explicitly labels six maneuvers/modes and learn to separately classify these modes. [24, 13] do not
require mode labeling but they also do not train in an end-to-end fashion by maximizing the data
log-likelihood of the model. Most of the methods in literature encode the past interactions of agents
in a scene, however prediction is often an independent rollout of a decoder RNN, independent of
other future predicted trajectories [16, 29]. Encoding of spatial relationships is often done by placing
other agents in a fixed and spatially discretized grid [16, 24].
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(a) Graphical model of the MFP. Solid
nodes denote observed. Cross agent
interaction edges are shaded for clarity.
xt denotes both the state and contextual
information from timesteps 1 to t.

(b) Architecture of the proposed MFP. Circular ’world’ contains the
world state and positions of all agents. Diamond nodes are determin-
istic while the circular zn are discrete latent random variables.

Figure 2: Graphical model and computation graph of the MFP. See text for details. Best viewed in color.

In contrast, MFP proposes a unifying framework which exhibits the aforementioned features. To
summarize, we present a feature comparison of MFP with some of the recent methods in the
supplementary materials.

3 Multiple Futures Prediction
We tackle motion prediction by formulating a probabilistic framework of continuous space but discrete
time system with a finite (but variable) number of N interacting agents. We represent the joint state
of all N agents at time t as Xt ∈ RN×d .

= {x1
t ,x

2
t , . . . ,x

N
t }, where d is the dimensionality of

each state1, and xnt ∈ Rd is the state n-th agent at time t. With a slight abuse of notation, we
use superscripted Xn .

= {xnt−τ ,xnt−τ+1, . . . ,x
n
t } to denote the past states of the n-th agent and

X
.
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The future state at time δ of all agents is denoted by Yδ

.
= {y1

δ ,y
2
δ , . . . ,y
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of agent n, from time t to time T , is denoted by Yn .
= {ynt ,ynt+1, . . . ,y

n
T }. Y

.
= Y1:N

t:t+T denotes
the joint state of all agents for the future timesteps. Contextual scene information, e.g. a rasterized
image Rh×w×3 of the map, could be useful by providing important cues. We use It to represent any
contextual information at time t.

The goal of motion prediction is then to accurately model p(Y|X, It). As in most sequential
modelling tasks, it is both inefficient and intractable to model p(Y|X, It) jointly. RNNs are typically
employed to sequentially model the distribution in a cascade form. However, there are two major
challenges specific to our multi-agent prediction framework: (1) Multimodality: optimizing vanilla
RNNs via backpropagation through time will lead to mode-averaging since the mapping from X
to Y is not a function, but rather a one-to-many mapping. In other words, multimodality means
that for a given X, there could be multiple distinctive modes that results in significant probability
distribution over different sequences of Y. (2) Variable-Agents: the number of agents N is variable
and unknown, and therefore we can not simply vectorize Xt as the input to a standard RNN at time t.

For multimodality, we introduce a set of stochastic latent variables zn ∼ Multinoulli(K), one
per agent, where zn can take on K discrete values. The intuition here is that zn would learn to
represent intentions (left/right/straight) and/or behavior modes (aggressive/conservative). Learning
maximizes the marginalized distribution, where z is free to learn any latent behavior so long as it
helps to improve the data log-likelihood. Each z is conditioned on X at the current time (before
future prediction) and will influence the distribution over future states Y. A key feature of the MFP is
that zn is only sampled once at time t, and must be consistent for the next T time steps. Compared to
sampling zn at every timestep, this leads to a tractability and more realistic intention/goal modeling,

1We assume states are fully observable and are agents’ (x, y) coordinates on the ground plane (d=2).
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as we will discuss in more detail later. We now arrive at the following distribution:
log p(Y|X, I) = log(

∑
Z

p(Y, Z|X, I)) = log(
∑
Z

p(Y|Z,X, I)p(Z|X, I)), (1)

where Z denotes the joint latent variables of all agents. Naïvely optimizing for Eq. 1 is prohibitively
expensive and not scalable as the number of agents and timesteps may become large. In addition,
the max number of possible modes is exponential: O(KN ). We first make the model more tractable
by factorizing across time, followed by factorization across agents. The joint future distribution Y
assumes the form of product of conditional distributions:

p(Y|Z,X, I) =
T∏

δ=t+1

p(Yδ|Yt:δ−1, Z,X, I), (2)

p(Yδ|Yt:δ−1, Z,X, I) =
N∏
n=1

p(ynδ |Yt:δ−1, z
n,X, I). (3)

The second factorization is sensible as the factorial component is conditioning on the joint states of
all agents in the immediate previous timestep, where the typical temporal delta is very short (e.g.
100ms). Also note that the future distribution of the n-th agent is explicitly dependent on its own
mode zn but implicitly dependent on the latent modes of other agents by re-encoding the other agents
predicted states ymδ (please see discussion later and also Sec. 3.1). Explicitly conditioning an agent’s
own latent modes is both more scalable computationally as well as more realistic: agents in the
real-world can only infer other agent’s latent goals/intentions via observing their states. Finally our
overall objective from Eq. 1 can be written as:

log
(∑
Z

p(Y|Z,X, I)p(Z|X, I)
)

= log

(∑
Z

T∏
δ=t+1

N∏
n=1

p(ynδ |Yt:δ−1, z
n,X, I)p(zn|X, I)

)
(4)

= log

(∑
Z

N∏
n=1

p(zn|X, I)

T∏
δ=t+1

p(ynδ |Yt:δ−1, z
n,X, I)

)
(5)

The graphical model of the MFP is illustrated in Fig. 2a. While we show only three agents for
simplicity, MFP can easily scale to any number of agents. Nonlinear interactions among agents makes
p(ynδ |Yt:δ−1,X, I) complicated to model. The class of recurrent neural networks are powerful and
flexible models that can efficiently capture and represent long-term dependences in sequential data.
At a high level, RNNs introduce deterministic hidden units ht at every timestep t, which act as
features or embeddings that summarize all of the observations up until time t. At time step t, a RNN
takes as its input the observation, xt, and the previous hidden representation, ht−1, and computes the
update: ht = frnn(xt, ht−1). The prediction yt is computed from the decoding layer of the RNN
yt = fdec(ht). frnn and fdec are recursively applied at every timestep of the sequence.

Fig. 2b shows the computation graph of the MFP. A point-of-view (PoV) transformation ϕn(Xt) is
first used to transform the past states to each agent’s own reference frame by translation and rotation
such that +x-axis aligns with agent’s heading. We then instantiate an encoding and a decoding RNN2

per agent. Each encoding RNN is responsible for encoding the past observations xt−τ :t into a feature
vector. Scene context is transformed via a convolutional neural network into its own feature. The
features are combined via a dynamic attention encoder, detailed in Sec. 3.1, to provide inputs both
to the latent variables as well as to the ensuing decoding RNNs. During predictive rollouts, the
decoding RNN will predict its own agent’s state at every timestep. The predictions will be aggregated
and subsequently transformed via ϕn(·), providing inputs to every agent/RNN for the next timestep.
Latent variables Z provide extra inputs to the decoding RNNs to enable multimodality. Finally, the
output ynt consists of a 5 dim vector governing a Bivariate Normal distribution: µx, µy , σx, σy , and
correlation coefficient ρ.

While we instantiate two RNNs per agent, these RNNs share the same parameters across agents, which
means we can efficiently perform joint predictions by combining inputs in a minibatch, allowing us
to scale to arbitrary number of agents. Making Z discrete and having only one set of latent variables
influencing subsequent predictions is also a deliberate choice. We would like Z to model modes
generated due to high level intentions such as left/right lane changes or conservative/aggressive modes
of agent behavior. These latent behavior modes also tend to stay consistent over the time horizon
which is typical of motion prediction (e.g. 5 seconds).

2We use GRUs [10]. LSTMs and GRUs perform similarly, but GRUs were slightly faster computationally.
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Learning
Given a set of training trajectory data D = {(X(i),Y(i), ) . . . }i=1,2,...,|D|, we optimize using the
maximum likelihood estimation (MLE) to estimate the parameters θ∗ = argmaxθ L(θ,D) that
achieves the maximum marginal data log-likelihood:3

L(θ,D) = log p(Y|X; θ) = log
(∑
Z

p(Y, Z|X; θ)
)
=
∑
Z

p(Z|Y,X; θ) log
p(Y, Z|X; θ)

p(Z|Y,X; θ)
(6)

Optimizing for Eq. 6 directly is non-trivial as the posterior distribution is not only hard to compute, but
also varies with θ. We can however decompose the log-likelihood into the sum of the evidence lower
bound (ELBO) and the KL-divergence between the true posterior and an approximating posterior
q(Z) [27]:

log p(Y|X; θ) =
∑
Z

q(Z|Y,X) log
p(Y, Z|X; θ)

q(Z|Y,X)
+DKL(q||p)

≥
∑
Z

q(Z|Y,X) log p(Y, Z|X; θ) +H(q), (7)

where Jensen’s inequality is used to arrive at the lower bound, H is the entropy function and
DKL(q||p) is the KL-divergence between the true and approximating posterior. We learn by max-
imizing the variational lower bound on the data log-likelihood by first using the true posterior4 at
the current θ′ as the approximating posterior: q(Z|Y,X)

.
= p(Z|Y,X; θ′). We can then fix the

approximate posterior and optimize the model parameters for the following function:
Q(θ, θ′) =

∑
Z

p(Z|Y,X; θ′) log p(Y, Z|X; θ)

=
∑
Z

p(Z|Y,X; θ′)
{
log p(Y|Z,X; θrnn) + log p(Z|X; θZ)

}
. (8)

where θ = {θrnn, θZ} denote the parameters of the RNNs and the parameters of the network layers
for predicting Z. As our latent variables Z are discrete and have small cardinality (e.g. < 10), we
can compute the posterior exactly for a given θ′. The RNN parameter gradients are computed from
∂Q(θ, θ′)/∂θrnn and the gradient for θZ is ∂KL(p(Z|Y,X; θ′)||p(Z|X; θZ))/∂θZ .

Our learning algorithm is a form of the EM algorithm [14], where for the M-step we optimize RNN
parameters using stochastic gradient descent. By integrating out the latent variable Z, MFP learns
directly from trajectory data, without requiring any annotations or weak supervision for latent modes.
We provide a detailed training algorithm pseudocode in the supplementary materials.

Classmates-forcing
Teacher forcing is a standard technique (albeit biased) to accelerate RNN and sequence-to-sequence
training by using ground truth values yt as the input to step t+ 1. Even with scheduled sampling [4],
we found that over-fitting due to exposure bias could be an issue. Interestingly, an alternative is
possible in the MFP: at time t, for agent n, the ground truth observations are used as inputs for all
other agents ymt : m 6= n. However, for agent n itself, we still use its previous predicted state instead
of the true observations xnt as its input. We provide empirical comparisons in Table 2.

Connections to other Stochastic RNNs
Various stochastic recurrent models in existing literature have been proposed: DRAW [20],
STORN [3], VRNN [11], SRNN [18], Z-forcing [19], Graph-VRNN [31]. Beside the multi-agent
modeling capability of the MFP, the key difference between these methods and MFP is that the other
methods use continuous stochastic latent variables zt at every timestep, sampled from a standard
Normal prior. The training is performed via the pathwise derivatives, or the reparameterization trick.
Having multiple continuous stochastic variables means that the posterior can not be computed in
closed form and Monte Carlo (or lower-variance MCMC estimators5) must be used to estimate the
ELBO. This makes it hard to efficiently compute the log-probability of an arbitrary imagined or
hypothetical trajectory, which might be useful for planning and decision-making (See Sec. 3.2). In
contrast, latent variables in MFP is discrete and can learn semantically meaningful modes (Sec. 4.1).

3We have omitted the dependence on context I for clarity. The R.H.S. is derived from the common
log-derivative trick.

4The ELBO is the tightest when the KL-divergence is zero and the q is the true posterior.
5Even with IWAE [6], 50 samples are needed to obtain a somewhat tight lower-bound, making it prohibitively

expensive to compute good log-densities for these stochastic RNNs for online applications.
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With K modes, it is possible to evaluate the exact log-likelihoods of trajectories in O(K), without
resorting to sampling.

3.1 State Encodings
As shown in Fig. 2b, the input to the RNNs at step t is first transformed via the point-of-view
ϕ(Yt) transformation, followed by state encoding, which aggregates the relative positions of other
agents with respect to the n-th agent (ego agent, or the agent for which the RNN is predicting) and
encodes the information into a feature vector. We denote the encoded feature st ← φnenc(ϕ(Yt)).
Here, we propose a dynamic attention-like mechanism where radial basis functions are used for
matching and routing relevant agents from the input to the feature encoder, shown in Fig. 3.

Radial Basis 
Function 
Matching

Key 1

Encoder

Key 2

Key N

Key

…Not Interesting

Key

Ego

…

Key

(x, y, v, ✓)
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 representation

Figure 3: Diagram for dynamic attentional state en-
coding. MFP uses state encoding at every timestep to
convert the state of surrounding agents into a feature
vector for next-step prediction, see text for more details.

Each agent uses a neural network to transform
its state (positions, velocity, acceleration, and
heading) into a key or descriptor, which is then
matched via a radial basis function to a fixed
number of “slots" with learned keys in the en-
coder network. The ego6 agent has a separate
slot to send its own state. Slots are aggregated
and further transformed by a two layer encoder
network, encoding a state st (e.g. 128 dim vec-
tor). The entire dynamic encoder can be learned
in an end-to-end fashion. The key-matching is
similar to dot-product attention [35], however,
the use of radial basis functions allows us to
learn spatially sensitive and meaningful keys to
extract relevant agents. In addition, Softmax
normalization in dot-product attention lacks the
ability to differentiate between a single close-by
agent vs. a far-away agent.

3.2 Hypothetical Rollouts
Planning and decision-making must rely on prediction for what-ifs [22]. It is important to predict how
others might behave to different hypothetical ego actions (e.g. what if ego were to perform a more an
aggressive lane change?). Specifically, we are interested in the distribution when conditioning on any
hypothetical future trajectory Yn of one (or more) agents:

p(Ym:m 6=n|Yn,X) =
∑

Zm:m6=n

T∏
δ=t+1

N∏
m:m 6=n

p(ymδ |Yt:δ−1, z
m,X)p(zm|X), (9)

This can be easily computed within MFP by fixing future states ynt:T of the conditioning agent on
the R.H.S. of Eq. 9 while the states of other agents ym 6=nt:T are not changed. This is due to the fact
that MFP performs interactive future rollouts in a synchronized manner for all agents, as the joint
predicted states at t of all agents are used as inputs for predicting the states at t+1. As a comparison,
most of the other prediction algorithms perform independent rollouts, which makes it impossible to
perform hypothetical rollouts as there is a lack of interactions during the future timesteps.

4 Experimental Results
We demonstrate the effectiveness of MFP in learning interactive multimodal predictions for the
driving domain, where each agent is a vehicle. As a proof-of-concept, we first generate simulated
trajectory data from the CARLA simulator [17], where we can specify the number of modes and
script 2nd-order interactions. We demonstrate MFP can learn semantically meaningful latent modes
to capture all of the modes of the data, all without using labeling of the latent modes. We then
experiment on a widely known standard dataset of real vehicle trajectories, the NGSIM [12] dataset.
We show that MFP achieves state-of-the-art results on modeling held-out test trajectories. In addition,
we also benchmark MFP with previously published results on the more recent large scale Argoverse
motion forecasting dataset [9]. We provide MFP architecture and learning details in the supplementary
materials.

6We will use ego to refer to the main or ’self’ agent for whom we are predicting.
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(a) CARLA simulation [17].

(b) MFP sample rollouts after training. Multiple
trials from same initial locations are overlaid.

(c) Learned latent modes. Same marker shape denotes the
same mode across agents. Time is the z-axis.

Figure 4: (a) CARLA data. (b) Sample rollouts overlayed, showing learned multimodality. (c) MFP learned
semantically meaningful latent modes automatically: triangle: right turn, square: straight ahead, circle: stop.

4.1 CARLA
CARLA is a realistic, open-source, high fidelity driving simulator based on the Unreal Engine [17]. It
currently contains six different towns and dozens of different vehicle assets. The simulation includes
both highways and urban settings with traffic light intersections and four-way stops. Simple traffic
law abiding "auto-pilot" CPU agents are also available.

We create a scenario at an intersection where one vehicle is approaching the intersection and two other
vehicles are moving across horizontally (Fig. 4(a)). The first vehicle (red) has 3 different possibilities
which are randomly chosen during data generation. The first mode aggressively speeds up and makes
the right turn, cutting in front of the green vehicle. The second mode will still make the right turn,
however it will slow down and yield to the green vehicle. For the third mode, the first vehicle will
slow to a stop, yielding to both of the other vehicles. The far left vehicle also chooses randomly
between going straight or turning right. We report the performance of MFP as a function of # of
modes in Table 1.

Metric C.V. RNN MFP MFP MFP MFP MFP
(nats) basic 1 mode 2 modes 3 modes 4 modes 5 modes

NLL 11.46 5.64±0.02 5.23±0.01 3.37±0.81 1.72±0.19 1.39±0.01 1.39±0.01

Table 1: Test performance (minMSD with K = 12) comparisons.

Fixed-Encoding DynEnc
NLL 1.878±0.163 1.694±0.175

Teacher-forcing Classmates-forcing
NLL 4.344±0.059 4.196±0.075

Table 2: Additional comparisons.

Metric Vehicle 1 Vehicle 2

K=12 Standard Hypo Standard Hypo

minADE 1.509± 0.37 1.402± 0.34 0.800± 0.064 0.709± 0.060
minFDE 2.530± 0.635 2.305± 0.570 3.171± 0.462 2.729± 0.415

Table 3: Hypothetical Rollouts.

The modes learned here are somewhat semantically meaningful. In Fig. 4(c), we can see that even for
different vehicles, the same latent variable z learned to be interpretable. Mode 0 (squares) learned
to go straight, mode 1 (circles) learned to break/stop, and mode 2 (triangles) represents right turns.
Finally, in Table 2, we can see the performance between using teacher-forcing vs. the proposed
classmates-forcing. In addition, we compare different types of encodings. DynEnc is the encoding
proposed in Sec. 3.1. Fixed-encoding uses a fixed ordering which is not ideal when there are N
arbitrary number of agents. We can also look at how well we can perform hypothetical rollouts by
conditioning our predictions of other agents on ego’s future trajectories. We report these results in
Table 3.
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DESIRE SocialGAN R2P2-MA ESP[30] ESP ESP MultiPath MFP-1 MFP-2 MFP-3 MFP-4 MFP-5
[21] [30] no LIDAR Flex [8]

Town01 2.422 1.141 0.770 1.102 0.675 0.447 0.68 0.448 0.291 0.284 0.279 0.374
test ±0.017 ±0.015 ±0.008 ±0.011 ±0.007 ±0.009 ±0.007 ±0.005 ±0.005 ±0.005 ±0.006

Town02 1.697 0.979 0.632 0.784 0.565 0.435 0.69 0.457 0.311 0.295 0.290 0.389
test ±0.017 ±0.015 ±0.011 ±0.013 ±0.009 ±0.011 ±0.004 ±0.003 ±0.003 ±0.003 ±0.004

Table 4: Test performance (minMSD with K = 12) comparisons, in meters squared.

Metric time Cons vel. CVGMM[15] [23] MATF[39] LSTM S-LSTM[1] CS-LSTM(M) MFP-1 MFP-2 MFP-3 MFP-4 MFP-5

N
L

L
(n

at
s)

1 sec. 3.72 2.02 - - 1.17 1.01 0.89 (0.58) 0.73±0.01 -0.32±0.01 -0.58±0.01 -0.65±0.01 -0.45±0.01
2 sec. 5.37 3.63 - - 2.85 2.49 2.43 (2.14) 2.33±0.01 1.43±0.01 1.26±0.01 1.19±0.01 1.36±0.01
3 sec. 6.40 4.62 - - 3.80 3.36 3.30 (3.03) 3.17±0.01 2.45±0.01 2.32±0.01 2.28±0.01 2.42±0.01
4 sec. 7.16 5.35 - - 4.48 4.01 3.97 (3.68) 3.77±0.01 3.21±0.00 3.07±0.00 3.06±0.00 3.17±0.00
5 sec. 7.76 5.93 - - 4.99 4.54 4.51 (4.22) 4.26±0.00 3.81±0.00 3.69±0.00 3.69±0.00 3.76±0.00

Metric time Cons vel. CVGMM MATF LSTM S-LSTM CS-LSTM[16] MFP-1 MFP-2 MFP-3 MFP-4 MFP-5

R
M

SE
(m

) 1 sec. 0.73 0.66 0.69 0.66 0.68 0.65 0.61 0.54±0.00 0.55±0.00 0.54±0.00 0.54±0.00 0.55±0.00
2 sec. 1.78 1.56 1.51 1.34 1.65 1.31 1.27 1.16±0.00 1.18±0.00 1.17±0.00 1.16±0.00 1.18±0.00
3 sec. 3.13 2.75 2.55 2.08 2.91 2.16 2.09 1.90±0.00 1.92±0.00 1.91±0.00 1.89±0.00 1.92±0.00
4 sec. 4.78 4.24 3.65 2.97 4.46 3.25 3.10 2.78±0.00 2.80±0.00 2.78±0.00 2.75±0.00 2.78±0.00
5 sec. 6.68 5.99 4.71 4.13 6.27 4.55 4.37 3.83±0.01 3.85±0.01 3.83±0.01 3.78±0.01 3.80±0.01

Table 5: NGSIM prediction results. Hightlighted columns are our results (lower is better). MFP-K: K is
the number of latent modes. The standard error of the mean is over 5 trials. For multimodal MFPs, we report
minRMSE over 5 samples. NLL can be negative as we are modeling a continuous density function.

CARLA PRECOG
We next compared MFP to a much larger CARLA dataset with published benchmark results. This
dataset consists of over 60K training sequences collected from two different towns in CARLA [30].
We trained MFP (with 1 to 5 modes) on the Town01 training set for 200K updates, with minibatch
size 8. We report the minMSD metric (in meters squared) at m̂K=12 for all 5 agents jointly. We
compare with state-of-the-art methods in Table 4. Non-MFP results are reported from [30] (v3)
and [8]. MFP significantly outperforms various other methods on this dataset. We include qualitative
visualizations of test set predictions in the supplementary materials.

4.2 NGSIM
Next Generation Simulation [12](NGSIM) is a collection of video-transcribed datasets of vehicle
trajectories on US-101, Lankershim Blvd. in Los Angeles, I-80 in Emeryville, CA, and Peachtree St.
in Atlanta, Georgia. In total, it contains approximately 45 minutes of vehicle trajectory data at 10 Hz
and consisting of diverse interactions among cars, trucks, buses, and motorcycles in congested flow.

We experiment with the US-101 and I-80 datasets, and follow the experimental protocol of [16],
where the datasets are split into 70% training, 10% validation, and 20% testing. We extract 8 seconds
trajectories, using the first 3 seconds as history to predict 5 seconds into the future.

In Table 5, we report both neg. log-likelihood and RMSE errors on the test set. RMSE and other
measures such as average/final displacement errors (ADE/FDE) are not good metrics for multimodal
distributions and are only reported for MFP-1. For multimodal MFPs, we report minRMSE over 5
samples, which uses the ground truth select the best trajectory and therefore could be overly optimistic.
Note that this applies equally to other popular metrics such as minADE, minFDE, and minMSD.

0 50 100(feet) 150
(a) Merge-off scenario.

0 25 50(feet) 75
(b) Lane change left scenario.

Figure 5: Qualitative MFP-3 results after training on NGSIM data. Three modes: red, purple, and green are
shown as density contour plots for the blue vehicle. Grey vehicles are other agents. Blue path is past trajectory,
orange path is actual future ground truth. Grey pixels form a heatmap of frequently visited paths. Additional
visualizations provided in the supplementary materials.
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The current state-of-the-art, multimodal CS-LSTM [16], requires a separate prediction of 6 fixed
maneuver modes. As a comparison, MFP achieves significant improvements with less number of
modes. Detailed evaluation protocols are provided in the supplementary materials. We also provide
qualitative results on the different modes learned by MFP in Fig. 5. In the right panel, we can interpret
the green mode is fairly aggressive lane change while the purple and red mode is more “cautious”.
Ablative studies showing the contributions of both interactive rollouts and dynamic attention encoding
are also provided in the supplementary materials. We obtain best performance with the combination
of both interactive rollouts and dynamic attention encoding.

4.3 Argoverse Motion Forecasting
Argoverse motion forecasting dataset is a large scale trajectory prediction dataset with
more than 300, 000 curated scenarios [9]. Each sequence is 5 seconds long in to-
tal and the task is to predict the next 3 seconds after observing 2 seconds of history.

minADE C.V. NN+map LSTM+ED LSTM MFP3 MFP3
K=6 ED+map (ver. 1.0) (ver. 1.1)

meters 3.55 2.28 2.27 2.25 1.411 1.399

Table 6: Argoverse Motion Forecasting. Performance on the
validation set. CV: constant velocity. Baseline results are from [9].

We performed preliminary experi-
ments by training a MFP with 3 modes
for 20K updates and compared to
the existing official baselines in Ta-
ble 6. MFP hyperparmeters were
not selected for this dataset so we do
expect to see improved MFP perfor-
mances with additional tuning. We report validation set performance on both version 1.0 and version
1.1 of the dataset.

4.4 Planning and Decision Making
The original intuitive motivation for learning a good predictor is to enable robust decision making.
We now test this by creating a simple yet non-trivial reinforcement learning (RL) task in the form
of an unprotected left turn. Situated in Town05 of the CARLA simulator, the objective is to safely
perform an unprotected (no traffic lights) turn, see Fig. 6. Two oncoming vehicles have random initial
speeds. Collisions incur a penalty of −500 while success yields +10. There is also a small reward
for higher velocity and the action space is acceleration along the ego agent’s default path (blue).

Using predictions to learn the policy is in the domain of model-based RL [33, 37]. Here, MFP can be
used in several ways: 1) we can generate imagined future rollouts and add them to the experiences
from which temporal difference methods learns [33], or 2) we can perform online planning by using
a form of the shooting methods [5], which allows us to optimize over future trajectories. We perform
experiments with the latter technique where we progressively train MFP to predict the joint future
trajectories of all three vehicles in the scene. We find the optimal policy by leveraging the current
MFP model and optimize over ego’s future actions. We compare this approach to a couple of strong
model-free RL baselines: DDPG and Proximal policy gradients. In Fig. 7, we plot the reward vs. the
number of environmental steps taken. In Table 7, we show that MFP based planning is more robust to
parameter variations in the testing environment.

Start

Goal +10 reward

Crash: -500 reward
Action: acceleration
Observations: x, y, vel., heading

Ego agent

path

Other agents

Figure 6: RL learning environ-
ment - Unprotected left turn. Figure 7: Learning curves as a func-

tion of step sizes.

∆ Env. Params DDPG PPO MFP

vel : +0m/s 3% 4% 0%
vel : +5m/s 8% 4% 0%
vel : +10m/s 6% 15% 0%
acc : +1m/s2 3% 1% 0%

Table 7: Testing crash rates per
100 trials. Test env. modifies the
velocity & acceleration parame-
ters.

5 Discussions
In this paper, we proposed a probabilistic latent variable framework that facilitates the joint multi-step
temporal prediction of arbitrary number of agents in a scene. Leveraging the ability to learn latent
modes directly from data and interactively rolling out the future with different point-of-view encoding,
MFP demonstrated state-of-the-art performance on several vehicle trajectory datasets. For future
work, it would be interesting to add a mix of discrete and continuous latent variables as well as train
and validate on pedestrian or bicycle trajectory datasets.
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