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Abstract

Dynamic mechanisms offer powerful techniques to improve on both revenue and
efficiency by linking sequential auctions using state information, but these tech-
niques rely on exact distributional information of the buyers’ valuations (present
and future), which limits their use in learning settings. In this paper, we consider
the problem of contextual auctions where the seller gradually learns a model of
the buyer’s valuation as a function of the context (e.g., item features) and seeks a
pricing policy that optimizes revenue. Building on the concept of a bank account
mechanism—a special class of dynamic mechanisms that is known to be revenue-
optimal—we develop a non-clairvoyant dynamic mechanism that is robust to both
estimation errors in the buyer’s value distribution and strategic behavior on the
part of the buyer. We then tailor its structure to achieve a policy with provably
low regret against a constant approximation of the optimal dynamic mechanism in
contextual auctions. Our result substantially improves on previous results that only
provide revenue guarantees against static benchmarks.

1 Introduction

As a fundamental problem in mechanism design, pricing in repeated auctions has been extensively
studied in recent years. This is partly motivated by the popularity of selling online ads via auctions,
an industry totalling annual revenue of hundreds of billions of dollars. Repeated auctions open up
the possibility of linking auctions across time using state information in order to enhance revenue
or welfare, but this introduces several challenges. To guarantee optimal outcomes, the process must
take into account the bidders’ incentives to possibly manipulate each individual auction as well as the
auction state across time. In practice, the seller must also rely on approximate models of the buyers’
preferences to effectively set auction parameters like reserve prices. These aspects of the problem
have so far been explored in two separate strands of the literature on repeated auctions, where items
arrive online and the allocation and payment decisions must be made as soon as an item arrives.

One strand, known as dynamic mechanism design, considers an environment in which the seller has
exact distributional information over the buyers’ values for the items, for the current stage and all
future stages, and designs revenue-maximizing dynamic mechanisms that adapt the auction state
based on the buyer’s historical bids [Thomas and Worrall, 1990, Bergemann and Välimäki, 2010,
Ashlagi et al., 2016, Mirrokni et al., 2016a,b]. However, this clairvoyant framework relies on the
seller having an accurate forecast of the buyer’s valuation distributions in future auctions. To address
this concern, Mirrokni et al. [2018] propose non-clairvoyant dynamic mechanisms, which do not rely
on any information about the future (but do rely on an accurate forecast of the present). They show
that a non-clairvoyant dynamic mechanism can achieve a constant approximation to the revenue of
the optimal clairvoyant mechanism. The other strand of literature, known as robust price learning,
focuses on a setting where the buyer’s value distributions across stages are parameterized by some
common private factors that are unknown to the seller, and designs robust policies to learn from the
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buyer’s bids and set prices with good revenue performance [Amin et al., 2013, 2014, Medina and
Mohri, 2014, Golrezaei et al., 2018]. Although these results also take into account strategic buyer
behavior, they only provide guarantees against the revenue-optimal static benchmark, which does not
take advantage of auction state across time and whose revenue can be arbitrarily smaller than the
optimal dynamic benchmark [Papadimitriou et al., 2016].

In this work, we consider a scenario in which the designer can only make use of an estimate of the
buyer’s value distribution in the present auction stage, which connects dynamic mechanism design
with the problem of learning. Designing dynamic auctions in this setting is challenging for several
reasons. When the seller’s estimate of the distribution is not perfectly aligned with the buyer’s true
distribution, it is impossible for the seller to offer a dynamic mechanism that is exactly incentive-
compatible and also makes use of the prior on values. Furthermore, unlike static mechanisms in
which the auction for each item is independent of the buyer’s past reports, in a dynamic mechanism a
buyer’s misreport can potentially affect auctions for all future items. We overcome these obstacles and
provide a robust non-clairvoyant dynamic mechanism such that the extent of the buyers’ misreports
and the revenue loss can be related to and bounded by the estimation error. We then apply our
robust dynamic mechanism to the concrete problem of contextual auctions, where a buyer’s valuation
depends on the context that describes the item, but the relationship between the buyer’s valuation
and the context is unknown to the seller and must be estimated across auctions. The seller’s task is
to design a policy which adapts the auction mechanism based on the buyer’s historical bids, with
the objective of maximizing revenue. Previous results give no-regret policies against the optimal
static mechanism [Amin et al., 2014, Golrezaei et al., 2018], but as mentioned it is known that the
revenue gap between optimal static and dynamic mechanisms can be arbitrarily large [Papadimitriou
et al., 2016]. We tailor the structure of our robust non-clairvoyant dynamic mechanism to a learning
environment, leading to a no-regret policy against the strong benchmark of a constant approximation
of the optimal clairvoyant dynamic mechanism.

Related Work We briefly discuss research in dynamic mechanism design that is closely related
to the present work. For a comprehensive review of the literature readers are encouraged to refer
to [Bergemann and Said, 2011]. Papadimitriou et al. [2016] provide an example demonstrating
that the revenue gap between optimal static and the dynamic mechanisms can be arbitrarily large,
which is a key motivation for the use of dynamic mechanisms in our setting. Moreover, they show
that it is NP-Hard to design the optimal deterministic auctions even in an environment with a
single buyer and two items only. Ashlagi et al. [2016] and Mirrokni et al. [2016b] simultaneously
and independently provide a fully polynomial-time approximation scheme to compute the optimal
randomized mechanism. Our work builds upon the framework of bank account mechanisms developed
by Mirrokni et al. [2016a,b, 2018]. Based on the bank account mechanism, Mirrokni et al. [2018]
design a non-clairvoyant mechanism achieving 1/3 of the revenue of a clairvoyant mechanism.
However, their mechanism relies on exact distributional information, which makes it unsuitable in
a learning environment where value distributions are estimated. Our robust dynamic mechanism
addresses this limitation.

Our work is closely related to dynamic pricing with learning; see [den Boer, 2015] for a recent
survey. There has been a growing body of literature on learning in dynamic pricing in contextual
auctions with non-strategic buyers [Cohen et al., 2016, Lobel et al., 2018, Leme and Schneider, 2018,
Mao et al., 2018]. In their models, the buyers have homogeneous valuations and are non-strategic,
and thus, the problem can be reduced to a single-item setting where the buyer acts myopically
without considering the impact on the future auction from their current bids. However, Edelman and
Ostrovsky [2007] provide empirical evidence that the buyers participating in the online advertising
markets do act strategically. The study of robust price learning with strategic buyers was initiated by
Amin et al. [2013] and Medina and Mohri [2014]. They design no-regret policies in a non-contextual
environment where the buyer’s valuation is fixed and the seller repeatedly interacts with a single buyer
through posted price auctions, where the buyer is less patient than the seller. The regret guarantee
is later improved to Θ(log log T ) by Drutsa [2017, 2018]. Amin et al. [2013] show that no learning
algorithm can achieve sublinear revenue loss if the buyer is as patient as the seller.

For learning in contextual auctions, Amin et al. [2014] develop a no-regret policy in a setting without
market noise. Golrezaei et al. [2018] enrich the model by incorporating market noise and design a
no-regret policy for cases where the market noise is known exactly or adversarially selected from
a set of distributions. Liu et al. [2018] apply techniques from differential privacy to learn optimal
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reserve prices against non-myopic bidders. All these results are no-regret against the optimal static
mechanism as a benchmark, whereas our policy is no-regret against a constant-factor approximation
of the optimal dynamic mechanism which has all distributional information available in advance.

2 Preliminaries

In a dynamic auction a seller (he) sells a stream of T items that arrive online, based on bids placed
by strategic buyers. An item must be sold when it arrives. For the sake of simplicity we will focus
on the case of a single buyer (she) throughout this paper.1 At the beginning of stage t a new item
arrives and the buyer’s valuation vt ∈ [0, at] for the item is drawn independently from a distribution
Ft with density ft. The distributions are not necessarily identical across stages. We assume that ft is
continuous and upper bounded by cf/at where cf is a constant. The domain bounds at are known to
the seller and may vary across stages to reflect the fact that item valuations may have different scales.2
As a special case of this framework, in a contextual auction the item at stage t is represented by an
observable feature vector ζt ∈ Rd with ‖ζt‖2 ≤ 1. In line with the literature, we assume that the
feature vectors are drawn independently from a fixed distribution D with positive-definite covariance
matrix [Golrezaei et al., 2018]. The buyer’s preferences are encoded by a fixed vector σ ∈ Rd and
the buyer’s valuation at stage t takes the form vt = at(〈σ, ζt〉+ εt), where εt is a noise term with
cumulative distribution Mt. The distribution Mt and the feature vector ζt are observed by the seller
but the buyer’s preference vector σ remains private. We make the following technical assumption on
the sequence of at:

Assumption 1. For all t,
∑
t′≤t at′ ≤ ca · t where ca is a constant.

Assumption 1 limits the portion of welfare and revenue that can arise in the first t stages, for any t.
Its purpose is to rule out situations where a large fraction of revenue comes from the initial stages,
under which a large revenue loss may be inevitable since it is impossible for the seller to obtain a
good estimate of σ from just the first few stages.

Once the buyer learns her valuation vt at stage t, she then submits a bid bt ∈ [0, at] to the seller who
then decides whether to allocate the item (perhaps stochastically) and what payment to charge. We
write V t to denote the set of all possible sequences (b1, . . . , bt) of buyer bids for the first t stages,
and similarly we write (∆V )t to denote the set of all possible independent distributions over the
sequence of first t bids. The seller’s distributional beliefs over the buyer’s values across stages are
denoted as F̂(1,T ) = (F̂1, F̂2, . . . , F̂T ). Throughout the paper we will use the notation F̂(t′,t′′) to
represent (F̂t′ , . . . , F̂t′′), and similarly for F(t′,t′′), v(t′,t′′), and b(t′,t′′). A dynamic mechanism is
represented by sequences (x1, . . . , xT ) and (p1, . . . , pT ) where xt and pt denote the allocation rule
and the payment rule at stage t, respectively. We refer to 〈xt, pt〉 as the stage mechanism at stage t.

Non-Clairvoyant Dynamic Mechanism. In a non-clairvoyant environment, the seller obtains an
estimated distribution F̂t only at stage t and not before, so the mechanism at stage t can only depend
on F̂(1,t). The allocation function xt maps the history of bids b(1,t) and distribution F̂(1,t) to an
allocation probability, xt : V t × (∆V )t → [0, 1]. The payment function pt maps the history of bids
b(1,t) and the distribution F̂(1,t) to a real-valued payment, pt : V t × (∆V )t → R. In line with the
literature, we assume the buyer has a quasi-linear utility such that the buyer’s utility from bidding bt
at stage t is ut

(
vt; b(1,t); F̂(1,t)

)
= vt ·xt

(
b(1,t); F̂(1,t)

)
− pt

(
b(1,t); F̂(1,t)

)
. In the contextual auction

setting the seller maintains a model σ̂t for the buyer’s preference vector estimated from prior bidding
behavior, and combines with at, ζt, and noise modelMt, which can only be observed at the beginning
of stage t and not before, to compute F̂t.

Utility-Maximizing Buyer. We assume that the buyer knows the true distributions F(1,T ) in advance
so that she can reason about how the mechanism will evolve over time and compute a bidding
strategy that maximizes her utility. Specifically, we consider a buyer who aims to maximize her time
discounted utility

∑T
t′=t γ

t′−t · E[ut] at stage t where γ ∈ [0, 1) is the discounting factor and the

1Our results can be extended to multi-buyer settings by using the techniques from Cai et al. [2012] and Mir-
rokni et al. [2018].

2For instance, in a dynamic auction for display advertising, the value of a video ad may be orders of
magnitude larger than the value of a text ad.
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expectation is taken with respect to F(1,T ). We note that it is impossible to obtain a no-regret policy
when the buyer is as patient as the seller (the case of γ = 1) [Amin et al., 2013].

Incentive Constraints. In a dynamic environment, the buyer’s best response at stage t depends on
her strategy in the future stages. When the seller has perfect distributional information, the classic
notion of dynamic incentive-compatibility (DIC) requires that the buyer is incentivized to report
truthfully assuming that she plays optimally in the future [Mirrokni et al., 2018].3 When the seller
only has approximate distributional information this is no longer possible to achieve, so we introduce
the notion of η(1,T )-approximate DIC, which requires that the buyer’s bid deviate from the truth by
at most ηt at stage t, assuming the buyer plays optimally in the future (note that optimally now no
longer means truthfully). Formally, at each stage t, there exists b̂t ∈ [vt − ηt, vt + ηt] such that

b̂t ∈ arg max
bt

ut
(
vt; b(1,t); F̂(1,t)

)
+ γ · Ut

(
b(1,t);F(1,T ); F̂(1,T )

)
(η(1,T )-DIC)

for all vt, b(1,t−1), F(t+1,T ), and F̂(t+1,T ), where Ut(b(1,t);F(1,T ); F̂(1,T )) is the continuation
utility that the buyer obtains in the future: UT

(
b(1,T );F(1,T ); F̂(1,T )

)
= 0, and for t < T

Ut
(
b(1,t);F(1,T ); F̂(1,T )

)
is defined as

Evt+1∼Ft+1

[
max
bt+1

ut+1

(
vt+1; b(1,t+1); F̂(1,t+1)

)
+ γ · Ut+1

(
b(1,t+1);F(1,T ); F̂(1,T )

)]
.

Participation Constraints. We assume that the buyer weighs realized past utilities equally. There-
fore, ex-post individual rationality requires that for all F̂(1,T ) and for all v(1,T ),

T∑
t=1

ut
(
vt; v(1,t); F̂(1,t)

)
≥ 0. (ex-post IR)

For convenience, we will use the phrase “for F(1,T )” to indicate the environment where the buyer’s
true distribution is F(1,T ). For example, when we say that a mechanism is η(1,T )-DIC for F(1,T ) we
mean that it is η(1,T )-DIC when the buyer’s true distribution is F(1,T ).

No-Regret Policy. Our task is to design a policy π that includes both a learning policy for σ
and an associated dynamic mechanism policy to extract revenue. At the beginning of stage t, the
learning policy estimates F̂t using information a(1,t), ζ(1,t), M(1,t), and b(1,t−1), while the dynamic
mechanism policy computes the stage mechanism 〈xt, pt〉 at stage t using F̂(1,t) and b(1,t−1). Let
Rev(π;F(1,T )) and Rev(B;F(1,T )) be the revenue of implementing policy π and mechanism B for
F(1,T ), respectively. Moreover, let B∗(F(1,T )) denote the revenue-optimal clairvoyant dynamic
mechanism that knows F(1,T ) in advance. The regret of policy π against a c-approximation of the
dynamic benchmark is defined as Regretπ(F(1,T )) = c · Rev

(
B∗(F(1,T ));F(1,T )

)
− Rev(π;F(1,T )).

Our objective is to design a policy with sublinear regret.4

3 Robust Non-clairvoyant Mechanism

The literature on dynamic mechanism design relies on the strong assumption that the seller has
perfect distributional information at each stage, F̂(1,T ) = F(1,T ) [Ashlagi et al., 2016, Mirrokni
et al., 2016b,a, 2018]. However, in a learning setting like that of contextual auctions, the seller
can only obtain a sequence of estimated distributions by estimating σ. In this section, we design a
non-clairvoyant mechanism that is robust to misspecifications in the value distribution in the sense
that the buyer is incentivized to place a bid within known bounds from its value, which ultimately
allows us to relate the mechanism revenue under the estimated and true value distributions. The
misspecifications handled by the mechanism are captured by the following assumption.
Assumption 2. There exists a coupling between a random draw vt from Ft and a random draw v̂t
from F̂t such that vt = v̂t + at · εt with εt ∈ [−∆,∆].

3Interested readers can refer to [Mirrokni et al., 2018] for discussions on the choice of DIC notions.
4Note that sublinear revenue loss is only meaningful if the available revenue to extract is itself at least linear,

which is the case when
∑T

t=1 at = Ω(T ) since the revenue obtained by the optimal dynamic mechanism is
Ω(

∑
t at) in our setting. In fact, a static mechanism can already achieve Ω(

∑
t at) revenue by offering a posted

price pat with p = 1/(2cf ) at stage t which induces revenue at least p · at(1− p · cf ) = at/(4cf ) from stage t.
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3.1 The Mechanism

Building on the 1
3 -approximation non-clairvoyant mechanism from Mirrokni et al. [2018], we design

our robust non-clairvoyant mechanism by mixing their mechanism with a random posted-price
auction. The mechanism is an instance of a bank account mechanism where the state information is
captured by a single scalar balt.

Mechanism 1. The robust non-clairvoyant mechanism B(F̂(1,T ), λ) consists of a mixture of four
mechanisms: the give-for-free mechanism, the posted-price auction with extra fee, the Myerson’s
auction, and the random posted-price auction. The stage mechanism at stage t is parameterized by a
non-negative balance balt. When the buyer submits a bid bt:

Give-for-free Mechanism. Allocate the item no matter what the buyer’s bid is and increase the
balance by the buyer’s bid: xGt = 1, pGt = 0, and balGt+1 = balt + bt

Posted-price Auction with Extra Fee. Let feet(balt; F̂t) = min(3balt,Evt∼F̂t [vt]) and rt(balt) be

the posted-price such that Evt∼F̂t
[(
vt − rt(balt)

)+]
= feet(balt; F̂t). The mechanism charges the

buyer feet(balt; F̂t) before the buyer learns her valuation and then runs a posted-price auction with
price rt(balt): xPt = 1{bt ≥ rt(balt)} and pPt = feet(balt; F̂t) + rt(balt) · 1{bt ≥ rt(balt)}, and
decrease the balance by feet(balt; F̂t): balPt+1 = balt − feet(balt; F̂t).

Myerson’s Auction. Let r∗t (F̂t) be Myerson’s optimal reserve price, i.e., r∗t (F̂t) = arg maxr r ·(
1− F̂t(r)

)
and run a posted-price auction with price r∗t (F̂t) without changing the balance: xMt =

1{bt ≥ r∗t (F̂t)}, pMt = r∗t (F̂t) · 1{bt ≥ r∗t (F̂t)}, and balMt+1 = balt.

Random Posted-price Auction. Let r̂t be random reserve price drawn from [0, at] uniformly and
run a posted-price auction with price r̂t without changing the balance: xRt = 1{bt ≥ r̂t}, pRt =

r̂t · 1{bt ≥ r̂t}, and balRt+1 = balt.

The robust non-clairvoyant mechanism at stage t is: xt = λ · xRt + 1−λ
3

[
xGt + xPt + xMt

]
, pt =

λ · pRt + 1−λ
3

[
pGt + pPt + pMt

]
, and balt = λ · balRt + 1−λ

3

[
balGt + balPt + balMt

]
.

The following central result gives a guarantee on the revenue performance of our robust non-
clairvoyant mechanism against a utility-maximizing buyer subject to an estimation error ∆.

Theorem 3.1. Rev
(
B(F̂(1,T ), λ), F(1,T )

)
≥ 1

3Rev
(
B∗(F(1,T )), F(1,T )

)
−O

(
λT +

√
∆
λ T
)

.

At the optimal choice of λ = ∆
1
3 the revenue loss is O

(
∆

1
3T
)

. The remainder of this section is
devoted to proving Theorem 3.1.

3.2 Analysis

We start by describing the incentive properties that B(F̂(1,T ), λ) satisfies for F̂(1,T ). First notice that
all four base mechanisms are variants of posted-price auctions, and therefore, all of them are stage-IC:

∀bt, vt · xt(bal, vt)− pt(bal, vt) ≥ vt · xt(bal, bt)− pt(bal, bt). (stage-IC)
In particular, all mechanisms except the posted-price auction with extra fee are stage-IR:

∀vt, vt · xt(vt)− pt(vt) ≥ 0 (stage-IR)

We emphasize that the posted-price auction with extra fee is different from a classic posted-price
auction: the posted-price auction with extra fee will charge the buyer an extra payment feet(balt; F̂t)
no matter what the buyer’s bid is, and therefore, it is not stage-IR. Moreover, each stage mechanism
is balance-independent (BI) with respect to the estimated distribution F̂t: there exists a constant ct,

Evt∼F̂t [vt · xt(bal, vt)− pt(bal, vt)] = ct. (BI)

In particular, the give-for-free mechanism, the Myerson’s auction, and the random posted-price
auction are static and independent of the balance; as for the posted-price auction with extra fee, it
ensures that the buyer’s expected utility is always 0 for all balt ≥ 0 under F̂t.

5



The combination of stage-IC and BI implies that the mechanism is DIC: since the mechanism
promises the buyer that all future stage mechanisms are BI, the buyer can infer that her action at the
current stage does not impact her expected utility in the future. Moreover, notice that the non-negative
balance bal always lower-bounds the buyer’s cumulative utility, and therefore,B(F̂(1,T ), λ) is ex-post
IR under the estimated distributions F̂(1,T ).

Proposition 3.1. B(F̂(1,T ), λ) is stage-IC, BI, DIC, and ex-post IR for F̂(1,T ).

We next turn to the mechanism’s properties under the true distributions F(1,T ).

3.2.1 Mismatch between F̂(1,T ) and F(1,T )

We first bound the revenue loss due to the mismatch between F̂(1,T ) and F(1,T ). Observe that one can
interpret the estimation error under Assumption 2 as the buyer’s misreport: when the buyer reports
truthfully under F(1,T ) this is equivalent to the case in which the buyer misreports by a magnitude at
most at ·∆ under F̂(1,T ). We develop a program for computing the revenue of our mechanism even
when the buyer misreports. For a non-clairvoyant mechanism B(F̂(1,T ), λ), we consider a program
ψt(bal, F̂(1,T );F(1,T )) to keep track on the revenue of implementing B(F̂(1,T ), λ) when the buyer’s
true distribution is F(1,T ). We define ψT (bal) = 0 and for t < T ,

ψt−1(bal, F̂(1,T );F(1,T )) = Evt∼Ft
[

1

3
feet(bal; F̂t) +

1

3
r∗t (F̂t) · 1{v′t ≥ r∗t (F̂t)}

+ ψt

(
bal +

1

3
v′t −

1

3
feet(bal; F̂t), F̂(1,T );F(1,T )

)]
(1)

where v′t is the buyer’s reported bid that maximizes her continuation utility when her true value is vt.

Recall that conditioned on that the stage mechanism is not the random posted-price auction, with
1
3 probability, we run the posted-price auction with extra fee and extract feet(bal; F̂t) as revenue.
Here, we omit the revenue rt(balt) obtained from the posted-price auction with extra fee. In addition,
with another 1

3 probability, we run the Myerson’s auction and extract r∗t (F̂t) revenue if v′t ≥ r∗t (F̂t).
Moreover, the balance is increased by v′t with probability 1

3 from the give-for-free mechanism and
decreased by 1

3 feet(bal) with probability 1
3 from the posted-price auction.

Proposition 3.2. Rev
(
B(F̂(1,T ), λ);F(1,T )

)
≥ (1− λ) · ψ0(0, F̂(1,T );F(1,T )).

According to the revenue analysis in [Mirrokni et al., 2018], we can still obtain 1
3 -approximation of

the optimal revenue even when the revenue rt(balt) is omitted.

Lemma 3.1. [Mirrokni et al., 2018] ψ0(0, F(1,T );F(1,T )) ≥ 1
3 · Rev

(
B∗(F(1,T )), F(1,T )

)
.

The following lemma establishes a connection between the change of the balance and the change of
the revenue, when the seller’s distributional information is perfect so that the buyer does not misreport.
In particular, it shows that as balance increases by δ, the change of the future revenue is between 0
and δ. Therefore, it demonstrates the smoothness of revenue curve such that if the buyer misreports at
stage t to change the balance by δ, then the revenue loss is at most δ for the future stages, assuming
the buyer reports truthfully in the future.

Lemma 3.2. For all 0 ≤ t ≤ T and δ ≥ 0,

ψt(bal + δ, F(1,T );F(1,T ))− δ ≤ ψt(bal, F(1,T );F(1,T )) ≤ ψt(bal + δ, F(1,T );F(1,T )).

Applying Lemma 3.2 with Assumption 2, we can bound the revenue loss due to the mismatch between
F(1,T ) and F̂(1,T ). More precisely, we will bound the difference between ψ0(0, F(1,T );F(1,T )) and
ψ0(0, F̂(1,T ); F̂(1,T )). Notice that B(F(1,T )) is dynamic incentive-compatible for F(1,T ), and thus,
the buyer will not misreport, i.e., v′t = vt in (1); similarly for F̂(1,T ).

Lemma 3.3. ψ0(0, F̂(1,T ); F̂(1,T )) ≥ ψ0(0, F(1,T );F(1,T ))−O(∆T ).
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3.2.2 The Buyer’s Misreport

Note that in a single-buyer environment, the properties stage-IC and ex-post IR do not depend on
the underlying distributions, and therefore, B(F̂(1,T ), λ) is also stage-IC and ex-post IR for F(1,T ).
However, B(F̂(1,T ), λ) is no longer BI for F(1,T ), which is the key property to ensure DIC. To
circumvent this difficulty, we generalize the definition of BI to approximate balance-independence.
Definition 3.1. A dynamic mechanism is β(1,T )-BI for F(1,T ) if ∀t, there exists a constant ct:

∀bal ≥ 0,Evt∼Ft [vt · xt(bal, vt)− pt(bal, vt)] ∈ [ct −
βt
2
, ct +

βt
2

] (β(1,T )-BI)

Since with the same stage mechanism, the difference between the expected utility under F̂t and Ft is
at most ∆at, B(F̂(1,T ), λ) is β(1,T )-BI with βt = 2∆at.

Proposition 3.3. B(F̂(1,T ), λ) is stage-IC, β(1,T )-BI with βt = 2∆at, and ex-post IR for F(1,T ).

For a dynamic mechanism satisfying β(1,T )-BI for F(1,T ), the range of the buyer’s expected utility
under truthful reporting is βt in the t-th stage. Therefore, no matter how the buyer misreports in the
first (t− 1) stages, her expected utility in the t-th stage can only fluctuate at most βt if she reports
truthfully at stage t. Combining this with the fact that the stage mechanisms are stage-IC, we have
Lemma 3.4. For a dynamic mechanism that is stage-IC and β(1,T )-BI for F(1,T ), for any b(1,t−1) and
vt, the difference between the continuation utility of reporting any bt ∈ [0, at] and the continuation
utility of reporting vt truthfully is bounded by

∑T
t′=t+1 γ

t′−t · βt′ .

Lemma 3.4 states that the gain of the continuation utility by misreporting is bounded and the bound
is independent of the magnitude of the misreport. The key observation behind Lemma 3.4 is that at
stage t, the buyer obtains the maximum utility when she reports truthfully since the stage mechanism
is stage-IC. Therefore, by the property of β(1,T )-BI, the difference of utility between misreporting in
an optimal way and reporting truthfully is at most βt at stage t.

As a result, once the mechanism posts a risk for misreporting, we are able to bound the magnitude
of the buyer’s misreport. This is the purpose of mixing in the random posted-price mechanism at
each stage t: it can be shown that a misreport with magnitude mt will cause the buyer a utility loss
λ · m

2
t

2at
. Since the buyer is a utility-maximizer with discounting factor γ, we can bound the magnitude

of misreport for each stage:

Lemma 3.5. B(F̂(1,T ), λ) is η(1,T )-DIC with ηt =
√

2at
λ ·

∑T
t′=t+1 γ

t′−tβt′ .

Applying Lemma 3.2, we can show that B(F̂(1,T ), λ) is robust against the buyer’s misreport. We
abuse the notion to use ψ0(0, F̂(1,T );F(1,T )) to track the revenue conditioned on that the magnitude
of the buyer’s misreport at stage t is bounded by ηt.

Lemma 3.6. ψ0(0, F̂(1,T );F(1,T )) ≥ ψ0(0, F̂(1,T ); F̂(1,T ))−O
(√

∆
λ T
)

.

Finally, combining Proposition 3.2, Lemma 3.3 and Lemma 3.6, completes the proof of Theorem 3.1.

4 No-Regret Policy in Contextual Auctions

4.1 Learning Policy

Our learning policy is adapted from the contextual robust pricing policy proposed in [Golrezaei et al.,
2018]. Our learning policy partitions the entire time horizon into K = dlog T e phases where T is the
time horizon, such that the partition is specified by (`1 = 1, `2, · · · , `K , `K+1 = T + 1), in which
`k = 2k−1. The k-th phase spans between the `k-th stage and the (`k+1 − 1)-th stage, and therefore,
the length of phase k is exactly `k. Note that the partition can be implemented even when T is not
known in advance. We use Ek = {`k, · · · , `k+1 − 1} to refer to the stages in the k-th phase.

At the beginning of the k-th phase, we update the estimation of the buyer’s preference vector σ using
the buyer’s bids from the (k − 1)-th phase, denoted by σ̂k. To estimate σ̂k, we sample wt uniformly
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from [0, 1] for t ∈ Êk−1, where Êk−1 = {t ∈ Ek−1 | `k − t > c log `k} for some constant c. In
other words, we will only use the information from the stages that are at least c log `k ahead of the
end of phase (k − 1). σ̂k is set to be arg min‖σ‖≤1 Lk−1(σ), where

Lk−1(σ) = −
∑

t∈Êk−1

[
1{bt ≥ at · wt} log

(
1−Mt(wt − 〈σ, ζt〉)

)
+ 1{bt < at · wt} log

(
Mt(wt − 〈σ, ζt〉)

)]
.

Note that when the buyer reports truthfully, Lk−1(σ) is exactly the negative of log-likelihood
corresponding to σ. We do not change our estimation throughout the k-th phase and the next update
happens at the beginning of the (k+ 1)-phase. As a result, based on the estimate σ̂k, we compute the
estimated distribution in phase k as F̂t(vt) = Mt

(
vt
at
− 〈σ̂k, ζt〉

)
for all t ∈ Ek.

We say a lie is a misreport from the buyer that results in 1{bt ≥ at · wt} 6= 1{vt ≥ at · wt}. Let

Lk−1 =
{
t ∈ Êk−1 | 1{bt ≥ at · wt} 6= 1{vt ≥ at · wt}

}
be the set of stages in which the buyer lies. For a dynamic mechanism that is η(1,T )-DIC, we have
vt − ηt ≤ bt ≤ vt + ηt. Hence, if |at ·wt − vt| > ηt, any misreport from the buyer does not result in
a lie. Moreover, the buyer has an additional motivation to misreport to change the seller’s estimation
for the future phases. However, for t ∈ Êk−1, such a gain is relatively small since the buyer discounts
the future.

Let B(F̂(1,T ), λ(1,K)) be a mechanism generalized from B(F̂(1,T ), λ) such that for t ∈ Ek,
B(F̂(1,T ), λ(1,K)) offers the random posted-price auction with probability λk instead of λ.

Lemma 4.1. In B(F̂(1,T ), λ(1,K)), the additional misreport at stage t ∈ Êk is O( 1√
λk·`2k

). Moreover,

|Lk| = O
(

log `k +
∑
t∈Êk

ηt
at

)
with probability 1− 1

`k
.

Given this upper bound on |Lk−1|, the following lemma bounds the estimation error of σ̂k.
Lemma 4.2 (Proposition 7.1 [Golrezaei et al., 2018]). With probability 1− 1

`k
, the estimation error

for phase k is ∆k ≡ ‖σ̂k − σ‖ = O
(
d · |Lk−1|

`k−1
+
√

log(`k−1·d)
`k−1

)
.

4.2 Dynamic Mechanism Policy

We develop a hybrid non-clairvoyant mechanism to reduce the number of lies by reducing the
magnitude of misreports. To do so, observe that the buyer has no incentive to misreport in order
to affect future stage mechanisms when the latter are static. However, as previously mentioned,
offering a purely static mechanism may forego a large amount of revenue [Papadimitriou et al., 2016].
Motivated by this insight, our hybrid mechanism contains both dynamic stages dependent on the
history and static stages independent of the history. We adapt B(F̂(1,T ), λ(1,K)) to obtain a hybrid
non-clairvoyant mechanism Bhybrid(F̂(1,T ), λ(1,K), ω, τ), which is parameterized by ω ∈ (0, 1) and
a function τ : Z+ → R+ that maps the phase number to a real number. The stage mechanism at stage
t is parameterized by at, two balances balt and sbalt, and an additional parameter swt. We provide a
high level description of our mechanism while a detailed description is deferred to the full version.

Let Eωk = {t ∈ Ek | at < `ωk }. Intuitively, the hybrid non-clairvoyant mechanism runs different
stage mechanisms conditioned on whether t ∈ Eωk or not: the stage mechanism is dynamic for
t 6∈ Eωk and the stage mechanism is static for t ∈ Eωk with high probability.

More precisely, for t 6∈ Eωk , the stage mechanisms are exactly the same as B(F̂(1,T ), λ(1,K)) and in
particular, the posted-price auction with extra fee only uses the balance from balt. For t ∈ Eωk , the
give-for-free mechanism and the Myerson’s auction remain the same. We use swt to keep track of the
summation of expected valuations, i.e., swt = 1

3

∑
t′∈Eωk ,t′<t

Evt′∼F̂t′ [vt′ ]. If swt < τ(k), we turn
the posted-price auction with extra fee into a give-for-free mechanism, but we increase the balance
sbal instead of bal; otherwise, we run the posted-price auction with extra fee, except that it only uses
the balance from sbal and it will in addition deposit the buyer’s utility to sbal.
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For t ∈ Eωk and swt < τ(k), the stage mechanism is static since it in fact runs a give-for-free
mechanism with probability 2(1−λk)

3 and a Myerson’s auction with probability 1−λk
3 , both of which

are independent of the history. For t ∈ Eωk and swt ≥ τ(k), by choosing τ properly, we show that
with high probability, even if the buyer plays strategically, 3sbalt ≥ Evt∼F̂t [vt], which implies that

min
(

3sbalt,Evt∼F̂t [vt]
)

= Evt∼F̂t [vt] so that the posted-price would be 0. Therefore, with high
probability, the hybrid posted-price auction with extra fee is a give-for-free mechanism with fee
Evt∼F̂t [vt], which is static and independent of balt and sbalt. To formally prove these statements,
we exploit the fact that the dynamics of sbalt forms a martingale for stage t with swt ≥ τ(k).

Lemma 4.3. With τ(k) = Ω
(
`

1
2 (1+ω)

k

√
log `k +

√
∆k

λk
`k

)
for all k, we have

Rev
(
Bhybrid(F̂(1,T ), λ(1,K), ω, τ), F(1,T )

)
≥ 1

3
Rev
(
B∗(F(1,T )), F(1,T )

)
−
∑
k

(τ(k) + λk · `k)

and with probability at least 1− 1
`k

,
∑
t∈Êk

ηt
at
≤ Õ

(
`1−ωk

)
.

Lemma 4.3 states that there exits a function γ such that the revenue loss is at most
∑
k (τ(k) + λk · `k)

and the number of lies is Õ(`1−ωk ). In particular, as ω increases, the revenue loss increases while the
number of lies decreases, and therefore, our hybrid non-clairvoyant mechanism achieves a trade-off
between the revenue loss and the number of lies.

4.3 The Final Policy

Learning Policy: At the start of phase k, estimate σ̂k = arg min‖σ‖≤1 Lk−1(σ).

Dynamic Mechanism Policy: Bhybrid(F̂(1,T ), λ(1,K),
1
2 , τ): at phase k

• λk = `
− 1

6

k and τ(k) = c∗`
5
6

k ;

• Compute the distributional information F̂t for t ∈ Ek according to the estimation σ̂k;

Figure 1: Robust Non-clairvoyant Dynamic Contextual Auction Policy

We are now ready to combine our learning policy and dynamic mechanism policy to obtain our
no-regret policy for contextual auctions in a non-clairvoyant environment (Figure 1). For our hybrid
non-clairvoyant mechanism, we will set ω = 1

2 , λk = `
− 1

6

k , and τ(k) = c∗`
5
6

k with a large enough

constant c∗. In particular, the estimation error for σ̂k is ∆k = O(`
− 1

2

k ) under our policy.
Theorem 4.1. The T -stage regret of the robust non-clairvoyant dynamic contextual auction policy is
Õ(T

5
6 ) against 1

3 -approximation of the optimal clairvoyant dynamic mechanism.

5 Conclusion

In this paper, we present a framework of designing non-clairvoyant dynamic mechanisms that
are robust to both the estimation errors on the buyer’s distributional information and the buyer’s
strategic behavior. We then tailor our framework to the setting of contextual auctions to develop a
non-clairvoyant mechanism that achieves no-regret against 1

3 -approximation of the revenue-optimal
clairvoyant dynamic mechanism. A natural direction for future work is to improve the regret guarantee
or to provide a matching lower bound. Moreover, it is interesting to understand how to apply our
framework to dynamic auction environments other than contextual auctions. Finally, it would also be
interesting to investigate what can be achieved when the seller has limited prediction power of the
future, a region between non-clairvoyant and clairvoyant environments.
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