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Abstract

We study a decentralized cooperative stochastic multi-armed bandit problem with
K arms on a network of IV agents. In our model, the reward distribution of each
arm is the same for each agent and rewards are drawn independently across agents
and time steps. In each round, each agent chooses an arm to play and subsequently
sends a message to her neighbors. The goal is to minimize the overall regret of the
entire network. We design a fully decentralized algorithm that uses an accelerated
consensus procedure to compute (delayed) estimates of the average of rewards
obtained by all the agents for each arm, and then uses an upper confidence bound
(UCB) algorithm that accounts for the delay and error of the estimates. We analyze
the regret of our algorithm and also provide a lower bound. The regret is bounded
by the optimal centralized regret plus a natural and simple term depending on the
spectral gap of the communication matrix. Our algorithm is simpler to analyze than
those proposed in prior work and it achieves better regret bounds, while requiring
less information about the underlying network. It also performs better empirically.

1 Introduction

The multi-armed bandit (MAB) problem is one of the most widely studied problems in online learning.
In the most basic setting of this problem, an agent has to pull one among a finite set of arms (or
actions), and she receives a reward that depends on the chosen action. This process is repeated
over a finite time-horizon and the goal is to get a cumulative reward as close as possible to the
reward she could have obtained by committing to the best fixed action (in hindsight). The agent only
observes the rewards corresponding to the actions she chooses, i.e., the bandit setting as opposed to
the full-information setting.

There are two main variants of the MAB problem—the stochastic and adversarial versions. In this
work, our focus is on the former, where each action yields a reward that is drawn from a fixed unknown
(but stationary) distribution. In the latter version, rewards may be chosen by an adversary who may
be aware of the strategy employed by the agent, but does not observe the random choices made by the
agent. Optimal algorithms have been developed for both the stochastic and the adversarial versions
(cf. [9] for references). The MAB problem epitomizes the exploration-exploitation tradeoff that
appears in most online learning settings: in order to maximize the cumulative reward, it is necessary
to trade off between the exploration of the hitherto under-explored arms and the exploitation of the
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seemingly best arm. Variants of the MAB problem are used in a wide variety of applications ranging
from online advertising systems to clinical trials, queuing and scheduling.

In several applications, the “agent” solving the MAB problem may itself be a distributed system,
e.g., [1L 100 1501331 135, 136]. The reason for using decentralized computation may be an inherent
restriction in some cases, or it could be a choice made to improve the total running time—using N
units allows IV arms to be pulled at each time step. When the agent is a distributed system, restrictions
on communication in the system introduce additional tradeoffs between communication cost and
regret. Apart from the one considered in this work, there are several formulations of decentralized or
distributed MAB problems, some of which are discussed in the related work section below.

Problem Formulation. This work focuses on a decentralized stochastic MAB problem. We consider
a network consisting of N agents that play the same MAB problem synchronously for T rounds, and
the goal is to obtain regret close to that incurred by an optimal centralized algorithm running for
NT rounds (NT is the total number of arm pulls made by the decentralized algorithm). At each
time step, all agents simultaneously pull some arm and obtain a reward drawn from the distribution
corresponding to the pulled arm. The rewards are drawn independently across the agents and the time
steps. After the rewards have been received, the agents can send messages to their neighbors.

Main Contributions. We solve the decentralized MAB problem using a gossip algorithm[] Our
algorithm incurs regret equal to the optimal regret in the centralized problem plus a term that depends
on the spectral gap of the underlying communication graph and the number of agents (see[Theorem 3.2]
for a precise statement). At the end of each round, each agent sends O(K) values to her neighbors.
The amount of communication permitted can be reduced at the expense of incurring greater regret,
capturing the communication-regret tradeoff. The algorithm needs to know the total number of agents
in the network and an upper bound on the spectral gap of the communication matrix. We assume the
former for clarity of exposition, but the number of nodes can be estimated, which is enough for our
purposes (cf. [Appendix F). The latter is widely made in the decentralized literature [[7, [13] 14} 30].

The key contribution of our work is an algorithm for the decentralized setting that exhibits a natural
and simple dependence on the spectral gap of the communication matrix. In particular, for our
algorithm we have:

e A regret bound that is simpler to interpret, and asymptotically lower compared to other
algorithms previously designed for the same setting. We use delayed estimators of the
relevant information that is communicated in order to significantly reduce their variance.

e A graph-independent factor multiplying log 7" in the regret as opposed to previous works.

e Our algorithm is fully decentralized and can be implemented on an arbitrary network, unlike
some of the other algorithms considered in the literature, which need to use extra global
information. This is of interest for decentralization purposes but also from the point of view
of the total computational complexity.

e We use accelerated communication, which reduces the regret dependence on the spectral
gap, which is important for scalability purposes.

Future work. Decentralized algorithms of this kind are a first step towards solving problems on
time-varying graphs or on networks prone to communication errors. We leave for future research an
extension to time-varying graphs or graphs with random edge failures. Further future research can
include a change in the model to allow asynchronous communication, making some assumptions on
the nodes so they have comparable activation frequencies.

1.1 Related Work

Distributed Algorithms. The development of distributed algorithms for optimization and decision-
making problems has been an active area of research, motivated in part by the recent development
of large scale distributed systems that enable speeding up computations. In some cases, distributed
computation is a necessary restriction that is part of the problem, as is the case in packet routing or
sensor networks. Gossip algorithms are a commonly used framework in this area [[7,[13 [14} 28} 130,
31]. In gossip algorithms, we have an iterative procedure with processing units at the nodes of a

' A high-level description of some distributed algorithms is given in the related work section. For further
details, the reader is referred to the references in that section.



graph and the communication pattern dictated by the edges of the graph. A common sub-problem in
these applications is to have a value at each node that we want to average or synchronize across the
network. In fact, most solutions reduce to approximate averaging or synchronization. This can be
achieved using the following simple and effective method: make each node compute iteratively a
weighted average of its own value and the ones communicated by its neighbors, ensuring that the
final value at each node converges to the average of the initial values across the network. Formally,
this communication can be represented as a multiplication by a matrix P that respects the network
structure and satisfies some conditions that guarantee fast averaging. The averaging can be accelerated

by the use of Chebychev polynomials (see[Lemma 3.1).

Decentralized Bandits. There are several works that study stochastic and nonstochastic distributed
or decentralized multi-armed bandit problems, but the precise models vary considerably.

In the stochastic case, the work of Landgren et al. [24, 25] proposes three algorithms to solve the
same problem that we consider in this paper: coop-UCB, coop-UCB2 and coop-UCL. The algorithm
coop-UCB follows a variant of the natural approach to solve this problem that is discussed in
It needs to know more global information about the graph than just the number of nodes and the
spectral gap: the algorithm uses a value per node that depends on the whole spectrum and the
set of eigenvectors of the communication matrix. The algorithm coop-UCB?2 is a modification of
coop-UCB, in which the only information used about the graph is the number of nodes, but the regret
is significantly greater. Finally, coop-UCL is a Bayesian algorithm that also incurs greater regret than
coop-UCB. Our algorithm obtains lower asymptotic regret than all these algorithms while retaining

the same computational complexity (cf. [Remark 3.4).

Our work draws on techniques on gossip acceleration and stochastic bandits with delayed feedback.
A number of works in the literature consider Chebyshev acceleration applied to gossip algorithms,
e.g., [2,130]]. There are various works about learning with delayed feedback. The most relevant work
to our problem is [[19] which studies general online learning problems under delayed feedback. Our
setting differs in that we not only deal with delayed rewards but with approximations of them.

Several other variants of distributed stochastic MAB problems have been proposed. Chakraborty et al.
[12] consider the setting where at each time step, the agents can either broadcast the last obtained
reward to the whole network or pull an arm. Korda et al. [22]] study the setting where each agent can
only send information to one other agent per round, but this can be any agent in the network (not
necessarily a neighbor). Szorényi et al. [34] study the MAB problem in P2P random networks and
analyze the regret based on delayed reward estimates. Some other works do not assume independence
of the reward draws across the network. Liu and Zhao [26] and Kalathil et al. [20] consider a
distributed MAB problem with collisions: if two players pull the same arm, the reward is split or no
reward is obtained at all. Moreover in the latter work and a follow-up [27]], the act of communicating
increases the regret. Anandkumar et al. [1]] also consider a model with collisions and agents have to
learn from action collisions rather than by exchanging information. Shahrampour et al. [32] consider
the setting where each agent plays a different MAB problem and the total regret is minimized in order
to identify the best action when averaged across nodes. Nodes only send values to their neighbors
but it is not a completely decentralized algorithm, since at each time step the arm played by all the
nodes is given by the majority vote of the agents. Xu et al. [38]] study a distributed MAB problem
with global feedback, i.e., with no communication involved. Kar et al. [21] also consider a different
distributed bandit model in which only one agent observes the rewards for the actions she plays, while
the others observe nothing and have to rely on the information broadcast by the first agent.

The problem of identifying an e-optimal arm using a distributed network has also been studied. Hillel
et al. [16] provide matching upper and lower bounds in the case that the communication happens only
once and when the graph topology is restricted to be the complete graph. They provide an algorithm
that achieves a speed up of N (the number agents) if log 1/ communication steps are permitted.

In the adversarial version, the best possible regret bound in the centralized setting is still v K7 [3]].
In the decentralized case, a trivial algorithm that has no communication incurs regret N+/K7T'; and a
lower bound of N+/T is known [[L1]]; thus, only the dependence on K can be improved. Awerbuch
and Kleinberg [6] study a distributed adversarial MAB problem with some Byzantine users, i.e.,
users that do not follow the protocol or report fake observations as they wish. In the case in which
there are no Byzantine users they obtain a regret of O(T2/3(N + K)log N log T'). To the best of
our knowledge, this is the first work that considers a decentralized adversarial MAB problem. They



allow log(N') communication rounds between decision steps so it differs with our model in terms
of communication. Also in the adversarial case, Cesa-Bianchi et al. [[11]] studied an algorithm that
achieves regret N (y/K1/2T log K + VK log T) and prove some results that are graph-dependent.
The model is the same as ours, but in addition to the rewards she obtained, each agent communicates
to her neighbors all the values she received from her neighbors in the last d rounds, that is potentially
O(Nd). Thus, the size of each message could be more than poly(K) at a given round. They get the
aforementioned regret bound by setting d = VK.

2 Model and Problem Formulation

We consider a multi-agent network with IV agents. The agents are represented by the nodes of an
undirected and connected graph G and each agent can only communicate to her neighbors. Agents
play the same K -armed bandit problem for 7' time steps, send some values to their neighbors after
each play and receive the information sent by their respective neighbors to use it in the next time step
if they so wish. If an agent plays arm k, she receives a reward drawn from a fixed distribution with
mean i, that is independent of the agent. The draw is independent of actions taken at previous time
steps and of actions played by other agents. We assume that rewards come from distributions that are
subgaussian with variance proxy o~.

Assume without loss of generality that ©; > ps > --- > ug, and let the suboptimality gap be
defined as Ay, := py — py, for any action k. Let I; ; be the random variable that represents the action

played by agent ¢ at time ¢. Let nf’i be the number of times arm k is pulled by node ¢ up to time ¢

and let nf := Zf\il n¥ , be the number of times arm  is pulled by all the nodes in the network up to

time t. We define the regret of the whole network as
T

ZZ’”W] = Z:AkE [niﬂ .

t=1 i=1

R(T):=TNu, — E

We will use this notion of regret, which is the expected regret, in the entire paper.

The problem is to minimize the regret while allowing each agent to send poly(K) values to her
neighbors per iteration. We allow to know only little information about the graph. The total number
of nodes and an lower bound on the spectral gap of the communication matrix P, i.e. 1 — |A2|. Here
Ao is the second greatest eigenvalue of P in absolute value. The communication matrix can be build
with little extra information about the graph, like the maximum degree of nodes of the graph [37]].
However, building global structures is not allowed. For instance, a spanning tree to propagate the
information with a message passing algorithm is not valid. This is because our focus is on designing
a decentralized algorithm. Among other things, finding these kinds of decentralized solutions serves
as a first step towards the design of solutions for the same problem in time varying graphs or in
networks prone to communication errors.

3 Algorithm

We propose an algorithm that is an adaptation of UCB to the problem at hand that uses a gossip
protocol. We call the algorithm Decentralized Delayed Upper Confidence Bound (DDUCB). UCB is
a popular algorithm for the stochastic MAB problem. At each time step, UCB computes an upper
bound of a confidence interval for the mean of each arm k, using two values: the empirical mean
observed, ¥, and the number of times arm k was pulled, n¥. UCB plays at time ¢ + 1 the arm that
maximizes the following upper confidence bound
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where 17 > 1 is an exploration parameter.

In our setting, as the pulls are distributed across the network, agents do not have access to these two
values, namely the number of times each arm was pulled across the network and the empirical mean
reward observed for each arm computed using the total number of pulls. Our algorithm maintains
good approximations of these values and it incurs a regret that is no more than the one for a centralized



UCB plus a term depending on the spectral gap and the number of nodes, but independent of time.
The latter term is a consequence of the approximation of the aforementioned values. Let m” be the
sum of rewards coming from all the pulls done to arm k by the entire network up to time ¢. We can
use a gossip protocol, for every k € {1,..., K}, to obtain at each node a good approximation of m¥
and the number of times arm k was pulled, i.e. n¥. Let T?Lﬁi, ﬁfﬂ- be the approximations of m} and

n¥ made by node 4 with a gossip protocol at time ¢, respectively. Having this information at hand,
agents could compute the ratio ﬁzfl / ﬁfl to get an estimation of the average reward of each arm. But
care needs to be taken when computing the foregoing approximations.

A classical and effective way to keep a running approximation of the average of values that are
iteratively added at each node is what we will refer to as the running consensus [8]. Let N (i) be the
set of neighbors of agent 7 in graph G. In this protocol, every agent stores her current approximation
and performs communication and computing steps alternately: at each time step each agent computes
a weighted average of her neighbors’ values and adds to it the new value she has computed. We can
represent this operation in the following way. Let P € RV > be a matrix that respects the structure
of the network, which is represented by a graph G. So P;; = 0 if there is no edge in G that connects
7 to 7. We consider P for which the sum of each row and the sum of each column is 1, which implies
that 1 is an eigenvalue of P. We further assume all other eigenvalues of P, namely Ao, ..., Ay, are
real and are less than one in absolute value, i.e., 1 = Ay > |A2| > -+ > |Anx]| > 0. Note that they are
sorted by magnitude. For matrices with real eigenvalues, these three conditions hold if and only if
values in the network are averaged, i.e., P* converges to 117 /N for large s. This defines a so called
gossip matrix. See [37] for a proof and [14,|37] for a discussion on how to choose P. If we denote
by 2; € RY the vector containing the current approximations for all the agents and by y; € R" the
vector containing the new values added by each node, then the running consensus can be written as

Tip1 = Py + ;. (D

The conditions imposed on P not only ensure that values are averaged but also that the averaging
process is fast. In particular, for any s € N and any v in the N-dimensional simplex

1P = 1/Nlly < [A2], 2

see [17], for instance. For a general vector, rescale the inequality by its 1-norm. A natural approach
to the problem is to use 2/ running consensus algorithms, computing approximations of m¥ /N and
nF/N,k =1,..., K. Landgren et al. [25] follow this approach and use extra global information
of the graph, as described in the section on related work, to account for the inaccuracy of the mean
estimate. We can estimate average rewards by their ratio and the number of times each arm was
pulled can be estimated by multiplying the quantity nf /N by N. The running consensus protocols
would be the following. For k = 1,..., K, start with 2§ = 0 € RY and update i}, ; = P} + 7},
where the i-th entry of m° € RV contains the reward observed by node i at time ¢ if arm k is pulled.
Else, it is 0. Note that the i-¢th entry is only computed by the i-th node. Similarly, for k =1,..., K,
start with 7} = 0 € RY and update 1, = Pn} + p}, where the i-th entry of pf' € RY is 1 if at
time ¢ node ¢ pulled arm & and O otherwise.

The problem with this approach is that even if the values computed are being mixed at a fast pace it
takes some time for the last added values to be mixed, resulting in poor approximations, especially
if IV is large. This phenomenon is more intense when the spectral gap is smaller. Indeed, we can
rewrite (I) as z; = Z’;i pPt=1=sy,, assuming that z; = 0. For the values of s that are not too close
to t — 1 we have by (2) that P*~1 =%y, is very close to the vector that has as entries the average of
the values in y,, that is, cl, where ¢ = % Zjvzl Ys,j. However, for values of s close to ¢ — 1 this
is not true and the values of y, influence heavily the resulting estimate, being specially inaccurate
as an estimation of the true mean if IV is large. The key observations that lead to the algorithm we
propose are that the number of these values of s close to t — 1 is small, that we can make it even
smaller using accelerated gossip techniques and that the regret of UCB does not increase much when
working with delayed values of rewards so we can temporarily ignore the recently computed rewards
in order to work with much more accurate approximations of m¥ /N and n} /N. In particular, with C
communication steps agents can compute a polynomial g¢ of degree C of the communication matrix
P applied to a vector, that is, g (P)v. The acceleration comes from computing a rescaled Chebyshev
polynomial and it is encapsulated in the following lemma. It is the same one can find in previous
works [30]. See the supplementary material for a proof and for the derivation of that
computes (¢co(P)v); iteratively after C calls.



Lemma 3.1. Let P be a communication matrix with real eigenvalues such that 1"P=1",P1=1
and whose second largest eigenvalue in absolute value is —1 < Ao < 1. Let v be in the N -dimensional
simplex and let C = [In(2N/e)/+/2In(1/|X2])]. Agents can compute, after C' communication steps,
a polynomial qc of degree C which satisfies ||qc(P)v — 1/N||, < e/N.

Given the previous lemma, we consider that any value that has been computed since at least C'
iterations before the current time step is mixed enough to be used to approximate m¥ /N and n¥ /N.

We now describe DDUCB at node . The pseudocode is given in[Algorithm T} We use Greek letters to
denote variables that contain rewards estimators, and corresponding Latin letters to denote variables
that contain counter estimators. A notation chart can be found in the supplementary material. Agents
run an accelerated running consensus in stages of C' iterations. Each node maintains three pairs of
K-dimensional vectors. The variable «; contains rewards that are mixed, [3; contains rewards that are
being mixed and ~y; contains rewards obtained in the current stage. The vectors a;, b; and c¢; store the
number of arm pulls associated to the quantities «;, 3; and -y;, respectively. At the beginning, agent ¢
pulls each arm once and initialize «; and a; with the observed values divided by N. During each
stage, for C' iterations, agent ¢ uses «; and a;, as updated at the end of the previous stage, to decide
which arm to pull using an upper confidence bound. Variables /3; and b; are mixed in an accelerated
way and ; and ¢; are added new values obtained by the new pulls done in the current stage. After C'
iterations, values in §; and b; are mixed enough so we add them to «; and a;. The only exception
being the end of the first stage in which the values of the latter variables are overwritten by the former
ones. Variables §; and d; just serve to make this distinction. The unmixed information about the
pulls obtained in the last stage, i.e. 7; and ¢;, is assigned to (3; and b; so the process can start again.
Variables v; and c; are reset with zeroes. There are 7' iterations in total.

Algorithm 1 DDUCB at node 1. Algorithm 2 Accelerated communication
C (X1, XE) sz e (1,0, 1) and mixing step. mix(y,.;, 7, %)

[In( 2N/5/ 21n( 1/|)\2 1 : if r is O then

1:

2: 1

3: aleg/N (i 4 2 /N 3B G ibs 2 20 wo = 1/2iw_q 0

4 9 05¢,+ 050+ 0;d; <0 3 yo_,i<—yo,i/2;y_1,i<—(0,...,0)

5:t+ K;s+ K 4: end if .

6: while ¢t < T do 5: Send y,.; to neighbors
B 6

’ 7

8 8

x ol M} : Receive corresp.values y, ;,Vj € N (i)
f <—fargrnan’C{ ai;:l ;_ \/Ta? : y;z — ZJEN( ) 2Pl]yr,]/‘)\2|
or r from0toC — 1do Cwy 2w7~/|>\2\ - wr '

9: u <— Pla arm k*, return reward . wy.

10: y +u;ck +1 13' yfr+1 zO_thue);nJrl yr i wv+1 [Yr—ti
s ifris

11: ﬁﬁ—m&ﬂ"l b; <—(b“r i) 1 Yo < 250, 5 wo — 2w

12: t “t+l . 12: end if

13: if t > T then return end if 13+ return ‘

14:  end for i Yrt1.i

15: s« (t—C)N

16: 6Ze61 +5l ,dz(*dl +bl SO (*51 3 (*dl
17: ﬁie'yi;bieci;'yﬂ—O;ci(—O

18: end while

Now we describe some mathematical properties about the variables during the execution of the
algorithm. Let tg be the time at which a stage begins, so itends at tg + C' — 1. Att = tg, using
the notation above, it is af = Zii;c (qc(P)7r§)i and af = ZES:IC (qC(P)pf,)i but in the first
stage, in which their values are initialized from a local pull. In particular, denote X}, ..., XX the
rewards obtained when pulling all the arms before starting the first stage. Then the initialization
isa; « (X}/N,...,XF/N) and a; + (1/N .,1/N). The division by N is due to a¥ and a”

being the approxnnations for m¥,/N and n¥,/N. The algorithm does not update «; and a; again
until t = tg + C, so they contain 1nformat10n that at the end of the stage is delayed by 2C' — 1
iterations. The time step s used to compute the upper confidence bound is (ts — C)N, since «; and
a; contain information about that number of rewards and pulls. The variable +y; is needed because we
need to mix f3; for C steps so the Chebyshev polynomial of degree C' is computed. In this way agents
compute upper confidence bounds with accurate approximations, with a delay of at most 2C' — 1.



As we will see, the regret of UCB does not increase much when working with delayed estimates. In
particular, having a delay of d steps increases the regret by at most 0 Z,If:l Ag.

We now present the regret which the DDUCB algorithm incurs. We use A < B to denote there is a

constant ¢ > 0 such that A < ¢B. See for a proof.

Theorem 3.2 (Regret of DDUCB). Let P be a communication matrix with real eigenvalues such
that 1TP =17, P1 = 1 whose second largest eigenvalue in absolute value is Ay, with [As| < 1.
Consider the distributed multi-armed bandit problem with N nodes, K actions and subgaussian
rewards with variance proxy o2. The algorithm DDUCB with exploration parameter n = 2 and
e = 1/22 satisfies:

log(2N/e) ~|

1. The following finite-time bound on the regret, for C = | TRV
n 2

3 32(1 4 1/11)02In(TN)

R(T) < A + <N(6C+ 1) +4> > A

k:Ar>0

2. The corresponding asymptotic bound:

R(T) < Z O'QIII(TN>+ N1n(N)

< Ay
k:Ap>0 Ak VIn(1/|Az[) ;

For simplicity and comparison purposes we set the value of 7 and ¢ to specific values. For a general
version of see the supplementary material. Note that the algorithm needs to know
A2, the second largest eigenvalue of P in absolute value, since it is used to compute C', which is a
parameter that indicates when values are close enough to be mixed. However, if we use DDUCB with
C set to any upper bound F of C' = [log(2N/e)/+/21n(1/]|A2|)]| the inequality of the finite-time

analysis above still holds true, substituting C' by E. In the asymptotic bound, N In N/+/In(1/ |A2|)
would be substituted by NE. The knowledge of the spectral gap is an assumption that is widely
made throughout the decentralized literature [13} [14] [30]. We can use to derive an
instance-independent analysis of the regret. See[Theorem A.3|in the supplementary material.

Remark 3.3 (Lower bound). In order to interpret the regret obtained in the previous theorem, it is
useful to note that running the centralized UCB algorithm for 7'V steps incurs a regret bounded above

2
by D a0 %(;‘FN) + Zszl Ay, up to a constant. Moreover, running NV separate instances of
2
UCB at each node without allowing communication incurs a regret of R(7') < 3.4, >0 %:(T) +

N Zle Ag. On the other han;i, Tt)he following is an asymptotic lower bound for any consistent

centralized policy [23]: liTHi> io%f IIET > kiALS0 %.

Thus, we see that the regret obtained in[Theorem 3.2]improves significantly the dependence on N
of the regret with respect to the trivial algorithm that does not involve communication, and that it
is asymptotically optimal in terms of 7', with N and K fixed. Since in the first iteration of this
problem N arms have to be pulled and there is no prior information on the arms’ distribution, any
asymptotically optimal algorithm in terms of /N and K must pull @(% + 1) times each arm, yielding

regret of at least (% + 1) Z,f:l Ag, up to a constant. Hence, by the lower bound above and the
latter argument, we can give the following lower bound for the problem we consider. The regret of

our problem must be

Q( Z o2In(TN) n (NJrl)iA )

Ak K k|
k:Ak>0 k=1

and the regret obtained in is asymptotically optimal up to at most a factor of
min(K, N)In(N)/+/In(1/ |A2]) in the second summand of the regret.

Remark 3.4 (Comparison with previous work). We note that in [25] the regret bounds were
computed applying a concentration inequality that cannot be used, since it does not take into account
that the number of times an arm was pulled is a random variable. They claim their analysis follows
the one in [4], which does not present this problem. If we changed their upper confidence bound



to be proportional to 1/6 In(¢tN) instead of to /2 1n(¢) at time ¢ and follow [4] then, for their best
algorithm in terms of regret, named coopUCB, we can get a very similar regret bound to the one they

obtained. The regret of their algorithm is bounded by A + B Zle Ay, where

N ; N
1670 (1 + 1) v Al
A= — <% In(TN B =N|—— N J .
Ty, 5 o-n( 2Ry )

The difference between this bound and the one presented in [25] is the N inside the logarithm in A
and a factor of 2 in A. Here, v > 1 is an exploration parameter that the algorithm receives as input
and ¢/ is a non-negative graph-dependent value, which is only O when the graph is the complete graph.

2
Thus A is at least ), AL>0 %H:TN). Hence, up to a constant, A is always greater than the first

summand in the regret of our algorithm in[Theorem 3.2| Note that —2- > 1 and —+— > —1—
y—1 1—|A2| In(JA2|7%)

X,
BZN<HWN/X2>)’

where \, := /N |\o| € [0,v/N). The factor multiplying Ele Ay, in the second summand in

Theorem 3.2 is NInN/y/In(1/|A2]) < NInN/In(1/| 2|) < 2B, for |A2] > 1/e, since the
inequality below holds.

X, ) NInN
n(VN/X)/ = In(VN/)

See the case [\2| < 1/e in[Appendix D} In the case of a complete graph, the problem reduces to
a centralized batched bandit problem, in which N actions are taken at each time step [29]. The
communication in this case is trivial, just send the obtained rewards to your neighbors, so not
surprisingly our work and [25]] incur the same regret in such a case. The previous reasoning proves,
however, that for every graph our asymptotic regret is never worse and for many graphs we get
substantial improvement. Depending on the graph, A and B can be much greater than the lower
bound we have used for both of them for comparison purposes. In the supplementary material, for
instance, we show that in the case of a cycle graph with a natural communication matrix these two
parts are substantially worse in [25]], namely ©(N?) versus ©(1) and ©(N7/2) versus ©(N? log N)
for the term multiplying > ;. A, <o o2In(T'N)/Ay, in A and for B, respectively. In general, the
algorithm we propose presents several improvements. We get a graph-independent value multiplying
In(7T'N) in the first summand of the regret whereas A contains the 1 + £/ graph-dependent values.

In B, just the sum N (% ++/N 1‘7’\‘2/‘\2‘ ) is of greater order than our second summand. Moreover,
B contains other terms depending on the eigenvalues A; for j > 3. Furthermore, we get this while
using less global information about the graph. This is of interest for decentralization purposes. Note
however it has computational implications as well, since in principle the computation of £/ needs the
entire set of eigenvalues and eigenvectors of P. Thus, even if P were input to coopUCB, it would
need to run an expensive procedure to compute these values before starting executing the decision

process, while our algorithm does not need.

Remark 3.5 (Variants of DDUCB). The algorithm can be modified slightly to obtain better estima-
tions of m¥ /N and n¥ /N, which implies the regret is improved. The easiest (and recommended)
modification is the following. While waiting for the vectors ; and b;, i = 1, ... N to be mixed, each
node 4 adds to the variables «; and a; the information of the pulls that are done times 1/N. The
variable s accounting for the time step has to be modified accordingly. It contains the number of
pulls made to obtain the approximations of «; and a;, so it needs to be increased by one when adding
one extra reward. This corresponds to uncommenting lines [[4}{I3]in the pseudocode
in the supplementary material. Since the values of «; and a; are overwritten after the for loop, the
assignment of s after the loop remains unchanged. Note that if the lines are not uncommented then
each time the for loop is executed the C pulls that are made in a node are taken with respect to the
same arm. Another variant that would provide better estimations and therefore better regret, while
keeping the communication cost O(K') would consist of also sending the information of the new
pull, 7; and p;, to the neighbors of ¢, receiving their respective values of their new pulls and adding
these values to «; and a; multiplied by 1/N, respectively. We analyze the algorithm without any
modification for the sake of clarity of exposition. The same asymptotic upper bound on the regret in

can be computed for these two variations.

& InN —2In(\;) + 2\, > In N.
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We can vary the communication rate with some trade-offs. On the one hand, we can mix values
of §; and d; at each iteration of the for loop, in an unaccelerated way and with (see
line[I7)in the supplementary material), to get even more precise estimations. In such a
case, we could use 9; and d; to compute the upper confidence bounds instead of «; and a;. However,
that approach cannot benefit from using the information from local pulls obtained during the stage.
On the other hand, if each agent could not communicate 2K values per iteration, corresponding to the
mixing in line[TT] the algorithm can be slightly modified to account for it at the expense of incurring
greater regret. Suppose each agent can only communicate L values to her neighbors per iteration.
Let F be [2KC/L]. If each agent runs the algorithm in stages of E iterations, ensuring to send
each element of 5; and b; exactly C times and using the mixing step C' times, then the bounds in
substituting C by E, still hold. Again, in the asymptotic bound, N In N/~/In(1/ A[)
would be substituted by N E. In each iteration, agents have to send values corresponding to the same
entries of 3; or b;. The factor of C' in the second summand of the regret accounts for the number of
rounds of delay since a reward is obtained until it is used to compute upper confidence bounds. If
we decrease the communication rate and compensate it with a greater delay, the approximations in
«; and a; satisfy the same properties as in the original algorithm. Only the second summand in the
regret increases because of an increment of the delay.

Experiments. We show that the algorithm proposed in this work, DDUCB, does not only enjoy a
better theoretical regret guarantee but it also performs better in practice. In general we have observed
that the accelerated method performs well with the recommended values, that is, no tuning, for the
exploration parameter 1 and the parameter ¢ that measures the precision of the mixing after a stage.
Remember these values are n = 2, ¢ = i On the other hand the constant C' that results in the
unaccelerated method is usually excessively large, so it is convenient to heuristically decrease it,
which corresponds to using a different value of . We set ¢ so the value of C' for the unaccelerated
method is the same as the value of C for the accelerated one. We have used the recommended
modification of DDUCB consisting of adding to the variables a; and a, the information of the pulls
that are done times 1/N while waiting for the vectors 3; and b; to be mixed. This modification adds

extra information that is at hand at virtually no computational cost so it is always convenient to use it.

We tuned ~, the exploration parameter of coopUCB [25]], to get best results for that algorithm and
plot the executions for the best +’s and also v = 2 for comparison purposes. In the figures one can
observe that after a few stages, DDUCB algorithms learn with high precision which the best arm is
and the regret curve that is observed afterwards shows an almost horizontal behavior. After 10000
iterations, coopUCB not only accumulates a greater regret but the slope indicates that it still has not
learned effectively which the best arm is.

See for a more detailed description about the experiments.
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Figure 1: Simulation of DDUCB and coopUCB for cycles (top) and square grids (bottom) for 100
nodes (left) , 200 nodes (top right) and 225 nodes (bottom right).
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