
We thank the reviewers for their constructive and positive comments. They will improve the quality of the paper.1

About motivation and potential practical applications (Reviewers 1 and 3). The study of the generalization of2

this learning problem from real-valued distributions (i.i.d. setup) to Markov chains is interesting in itself from a3

theoretical perspective: In contrast to our studied problem where various regimes appear as the budget varies, in the4

i.i.d. case only a single regime exists. Markov chains have been successfully used for modeling a broad range of5

practical problems, and their success makes “active learning in Markov chains” relevant in practice. Furthermore, there6

are practical applications in reinforcement learning (RL) and in rested Markov bandits, for which our results could7

prove beneficial. As an instance in RL, we mention the problem of “active exploration in MDPs” (see [28]), where the8

task is to estimate the transition kernel of an unknown MDP uniformly well over state-action space, using a budget of n9

samples. For the case of ergodic MDPs, each policy in the MDP defines an ergodic chain, and hence, the leaning task10

becomes actively learning multiple Markov chains (we also note that compared to the setup in the present paper, active11

learning in MDPs poses more challenges, as one has to consider a subset of all policies due to overlap among them.12

However, we believe that our contribution could be beneficial for researchers in the RL community studying problems13

related to active learning and exploration in MDPs). We may also refer to applications falling in the framework of14

rested Markov bandits, for example channel allocation in wireless communication systems where a given channel’s state15

follows a Markov chain (e.g., Gilbert-Elliot channel model). Active learning in Markov chains is a relevant problem for16

such applications, and we believe our contributions could serve as a technical tool for these applications. We agree to17

strengthen the motivation of studying this problem and to widen the scope of the paper in view of this discussion.18

About the use of empirical stationary distribution in the loss function (Reviewer 1). The intention for using the19

term “less meaningful” is partly illustrated in the paper (lines 207–218). We provide further detailed explanation20

below, and agree to rewrite the corresponding part in Section 2.3, in view of the following discussion, so as to further21

clarify the motivation of using π̂k,n. We aim to derive performance guarantees on the algorithm’s loss that hold with22

high probability (for 1− δ portions of the sample paths of the algorithm for a given δ), as opposed to those holding23

only in expectation. To this end, the loss Ln (which uses π̂k,n) is more natural and meaningful than L′′n (which uses24

πk; see line 189) as Ln penalizes the algorithm’s performance by the relative visit counts of various states in a given25

sample path (through π̂k,n), and not by the expected value of these. This matters a lot in the small-budget regime26

(n < ncutoff ), where π̂k,n could differ significantly from πk — Otherwise when n ≥ ncutoff , π̂k,n is well concentrated27

around πk with high probability. Reiterating the discussion in Section 2.3, let us consider the small-budget regime, and28

some state x where πk(x) is not small. In the case of Ln, using π̂k,n we penalize the performance by the mismatch29

between P̂k,n(x, ·) and Pk(x, ·), weighted proportionally to the number of rounds the algorithm has actually visited x.30

In contrast, in the case of L′′n, weighting the mismatch proportionally to πk(x) does not seem reasonable since in a31

given sample path, the algorithm might not have visited x enough even though πk(x) is not small.32

Minor comments. About chains with
∑

xGk(x) = 0 (Reviewer 2): There exists ergodic chains with
∑

xGk(x) =33

0. The definition of the Gini index implies that such chains are necessarily deterministic (or degenerate), i.e. their34

transition matrices belong to {0, 1}S×S . One example is a deterministic cycle with S nodes. So by assuming35 ∑
xGk(x) > 0, the analysis of Theorem 2 indeed excludes degenerate ergodic chains (satisfying

∑
xGk(x) = 0). In36

other words, the theorem is valid for almost all ergodic chains. We note however that the assertion of Theorem 1 still37

holds even if
∑

xGk(x) = 0. We will provide a footnote in page 7 to clarify this.38

About estimator for empirical stationary distribution (Reviewer 2): This is indeed a nice remark. Our algorithm and39

proofs do not rely on this fact, and we will include a remark on this in the paper. We also note that we use empirical40

estimate π̂k,n of πk in Ln as it naturally corresponds to the occupancy of various states according to a given sample41

path, and hence, its use can be intuitively justified.42

About Remark 1 (Reviewer 2): The proof of Theorem 1 uses entry-wise concentration of P̂k,n around Pk, under the43

event C (which occurs with probability greater than 1− δ); the proof does not rely on any trajectory-wise concentration.44

As a result, the theorem is valid even if irreducibility and aperiodicity are dropped. Moreover, the proof does not use the45

arguments in the proof of Theorem 2, which require
∑

xGk(x) > 0. Hence, Theorem 1 is valid even for deterministic46

ergodic chains for which
∑

xGk(x) = 0. We agree to make Remark 1 more precise in view of this discussion.47

About sketch proof of Lemma 1 (Reviewer 3): We explain the second step of the proof with more details.48

Typos (all reviewers): We will fix typos. Thanks a lot for constructive comments!49


