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Abstract

It is becoming increasingly important to understand the vulnerability of machine
learning models to adversarial attacks. In this paper we study the feasibility of
robust learning from the perspective of computational learning theory, considering
both sample and computational complexity. In particular, our definition of robust
learnability requires polynomial sample complexity. We start with two negative
results. We show that no non-trivial concept class can be robustly learned in
the distribution-free setting against an adversary who can perturb just a single
input bit. We show moreover that the class of monotone conjunctions cannot
be robustly learned under the uniform distribution against an adversary who can
perturb !(log n) input bits. However if the adversary is restricted to perturbing
O(log n) bits, then the class of monotone conjunctions can be robustly learned with
respect to a general class of distributions (that includes the uniform distribution).
Finally, we provide a simple proof of the computational hardness of robust learning
on the boolean hypercube. Unlike previous results of this nature, our result does
not rely on another computational model (e.g. the statistical query model) nor on
any hardness assumption other than the existence of a hard learning problem in the
PAC framework.

1 Introduction

There has been considerable interest in adversarial machine learning since the seminal work
of Szegedy et al. [25], who coined the term adversarial example to denote the result of apply-
ing a carefully chosen perturbation that causes a classification error to a previously correctly classified
datum. Biggio et al. [4] independently observed this phenomenon. However, as pointed out by Biggio
and Roli [3], adversarial machine learning has been considered much earlier in the context of spam
filtering [8, 19, 20]. Their survey also distinguished two settings: evasion attacks, where an adversary
modifies data at test time, and poisoning attacks, where the adversary modifies the training data.1

Several different definitions of adversarial learning exist in the literature and, unfortunately, in some
instances the same terminology has been used to refer to different notions (for some discussion see
e.g., [11, 10]). Our goal in this paper is to take the most widely-used definitions and consider their
implications for robust learning from a statistical and computational viewpoint. For simplicity, we
will focus on the setting where the input space is the boolean hypercube X = {0, 1}n and consider
the realizable setting, i.e. the labels are consistent with a target concept in some concept class.

An adversarial example is constructed from a natural example by adding a perturbation. Typically,
the power of the adversary is curtailed by specifying an upper bound on the perturbation under some

1For an in-depth review and definitions of different types of attacks, the reader may refer to [3, 11].
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(a) (b) (c)

Figure 1: (a) The support of the distribution is such that RC
⇢ (h, c) = 0 can only be achieved if c is

constant. (b) The ⇢-expansion of the support of the distribution and target c admit hypotheses h such
that RC

⇢ (h, c) = 0. (c) An example where R
C
⇢ and R

E
⇢ differ. The red concept is the target, while

the blue one is the hypothesis. The dots are the support of the distribution and the shaded regions
represent their ⇢-expansion. The diamonds represent perturbed inputs which cause R

E
⇢ > 0.

norm; in our case, the only meaningful norm is the Hamming distance. For a point x 2 X , let
B⇢(x) denote the Hamming ball of radius ⇢ around x. Given a distribution D on X , we consider
the adversarial risk of a hypothesis h with respect to a target concept c and perturbation budget
⇢. We focus on two definitions of risk. The exact in the ball risk R

E
⇢ (h, c) is the probability

P
x⇠D

(9y 2 B⇢(x) · h(y) 6= c(y)) that the adversary can perturb a point x drawn from distribution

D to a point y such that h(y) 6= c(y). The constant in the ball risk R
C
⇢ (h, c) is the probability

P
x⇠D

(9y 2 B⇢(x) · h(y) 6= c(x)) that the adversary can perturb a point x drawn from distribution

D to a point y such that h(y) 6= c(x). These definitions encode two different interpretations of
robustness. In the first view, robustness speaks about the fidelity of the hypothesis to the target
concept, whereas in the latter view robustness concerns the sensitivity of the output of the hypothesis
to corruptions of the input. In fact, the latter view of robustness can in some circumstances be in
conflict with accuracy in the traditional sense [26].

1.1 Overview of Our Contributions

We view our conceptual contributions to be at least as important as the technical results and believe
that the issues highlighted in our work will result in more concrete theoretical frameworks being
developed to study adversarial learning.

Impossibility of Robust Learning in Distribution-Free PAC Setting

We first consider the question of whether achieving zero (or low) robust risk is possible under either
of the two definitions. If the balls of radius ⇢ around the data points intersect so that the total region
is connected, then unless the target function is constant, it is impossible to achieve R

C
⇢ (h, c) = 0

(see Figure 1). In particular, in most cases RC
⇢ (c, c) 6= 0, i.e., even the target concept does not have

zero risk with respect to itself. We show that this is the case for extremely simple concept classes
such as dictators or parities. When considering the exact on the ball notion of robust learning, we at
least have R

E
⇢ (c, c) = 0; in particular, any concept class that can be exactly learned can be robustly

learned in this sense. However, even in this case we show that no “non-trivial” class of functions
can be robustly learned. We highlight that these results show that a polynomial-size sample from
the unknown distribution is not sufficient, even if the learning algorithm has arbitrary computational
power (in the sense of Turing computability).2

2We do require any operation performed by the learning algorithm is computable; the results of Bubeck et al.
[7] imply that an algorithm that can potentially evaluate uncomputable functions can always robustly learn using
a polynomial-size sample. See the discussion on computational hardness below.
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Robust Learning of Monotone Conjunctions

Given the impossibility of distribution-free robust learning, we consider robust learning under specific
distributions. We consider one of the simplest concept class studied in PAC Learning, the class of
monotone conjunctions, under the class of log-Lipschitz distributions (which includes the uniform
distribution) and show that this class of functions is robustly learnable provided ⇢ = O(log n) and is
not robustly learnable with polynomial sample complexity for ⇢ = !(log n). A class of distributions
is said to be ↵-log-Lipschitz if the logarithm of the density function is log(↵)-Lipschitz with respect
to the Hamming distance. Our results apply in the setting where the learning algorithm only receives
random labeled examples. On the other hand, a more powerful learning algorithm that has access to
membership queries can exactly learn monotone conjunctions and as a result can also robustly learn
with respect to exact in the ball loss.

Computational Hardness of PAC Learning

Finally, we consider computational aspects of robust learning. Our focus is on two questions:
computability and computational complexity. Recent work by Bubeck et al. [7] provides a result
that states that minimizing the robust loss on a polynomial-size sample suffices for robust learning.
However, because of the existential quantifier over the ball implicit in the definition of the exact
in the ball loss, the empirical risk cannot be computed as this requires enumeration over the reals.
Even if one restricted attention to concepts defined over Qn, computing the loss would be recursively
enumerable, but not recursive. In the case of functions defined over finite instance spaces, such as
the boolean hypercube, the loss can be evaluated provided the learning algorithm has access to a
membership query oracle; for the constant in the ball loss membership queries are not required. For
functions defined on Rn it is unclear how either loss function can be evaluated even if the learner
has access to membership queries, since in principle it requires enumerating over the reals. Under
strong assumptions of inductive bias on the target and hypothesis class, it may be possible to evaluate
the loss functions; however this would have to be handled on a case by case basis – for example,
properties of the target and hypothesis, such as Lipschitzness or large margin, could be used to
compute the exact in the ball loss in finite time.

Second, we consider the computational complexity of robust learning. Bubeck et al. [6] and Degwekar
and Vaikuntanathan [9] have shown that there are concept classes that are hard to robustly learn
under cryptographic assumptions, even when robust learning is information-theoretically feasible.
Bubeck et al. [7] establish super-polynomial lower bounds for robust learning in the statistical query
framework. We give an arguably simpler proof of hardness, based simply on the assumption that
there exist concept classes that are hard to PAC learn. In particular, our reduction also implies that
robust learning is hard even if the learning algorithm is allowed membership queries, provided the
concept class that we reduce from is hard to learn using membership queries. Since the existence
of one-way functions implies the existence of concept classes that are hard to PAC learn (with or
without membership queries), our result is also based on a slightly weaker assumption than Bubeck
et al. [7]3.

1.2 Related work on the Existence of Adversarial Examples

There is a considerable body of work that studies the inevitability of adversarial examples, e.g., [12,
14, 13, 16, 24]. These papers characterize robustness in the sense that a classifier’s output on a point
should not change if a perturbation of a certain magnitude is applied to it. Among other things, these
works study geometrical characteristics of classifiers and statistical characteristics of classification
data that lead to adversarial vulnerability.

Closer to the present paper are [10, 21, 22], which work the with exact-in-a-ball notion of robust risk.
In particular, [10] considers the robustness of monotone conjunctions under the uniform distribution
on the boolean hypercube for this notion of risk (therein called the error region risk). However [10]
does not address the sample and computational complexity of learning: their results rather concern
the ability of an adversary to magnify the missclassification error of any hypothesis with respect to
any target function by perturbing the input. For example, they show that an adversary who can perturb
O(

p
n) bits can increase the missclassification probability from 0.01 to 1/2. By contrast we show

3It is believed that the existence of hard to PAC learn concept classes is not sufficient to construct one-way
functions. [1].
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that a weaker adversary, who can perturb only !(log n) bits, renders it impossible to learn monotone
conjunctions with polynomial sample complexity. The main tool used in [10] is the isoperimetric
inequality for the Boolean hypercube, which gives lower bounds on the volume of the expansions of
arbitrary subsets. On the other hand, we use the probabilistic method to establish the existence of a
single hard-to-learn target concept for any given algorithm with polynomial sample complexity.

2 Definition of Robust Learning

The notion of robustness can be accommodated within the basic set-up of PAC learning by adapting
the definition of risk function. In this section we review two of the main definitions of robust risk
that have been used in the literature. For concreteness we consider an input space X = {0, 1}n with
metric d : X ⇥X ! N, where d(x, y) is the Hamming distance of x, y 2 X . Given x 2 X , we write
B⇢(x) for the ball {y 2 X : d(x, y)  ⇢} with centre x and radius ⇢ � 0.

The first definition of robust risk asks that the hypothesis be exactly equal to the target concept in the
ball B⇢(x) of radius ⇢ around a “test point” x 2 X :

Definition 1. Given respective hypothesis and target functions h, c : X ! {0, 1}, distribution D on
X , and robustness parameter ⇢ � 0, we define the “exact in the ball” robust risk of h with respect to
c to be

R
E
⇢ (h, c) = P

x⇠D
(9z 2 B⇢(x) : h(z) 6= c(z)) .

While this definition captures a natural notion of robustness, an obvious disadvantage is that evaluating
the risk function requires the learner to have knowledge of the target function outside of the training
set, e.g., through membership queries. Nonetheless, by considering a learner who has oracle access
to the predicate 9z 2 B⇢(x) : h(z) 6= c(z), we can use the exact-in-the-ball framework to analyse
sample complexity and to prove strong lower bounds on the computational complexity of robust
learning.

A popular alternative to the exact-in-the-ball risk function in Definition 1 is the following constant-in-
the-ball risk function:

Definition 2. Given respective hypothesis and target functions h, c : X ! {0, 1}, distribution D on
X , and robustness parameter ⇢ � 0, we define the “constant in the ball” robust risk of h with respect
to c as

R
C
⇢ (h, c) = P

x⇠D
(9z 2 B⇢(x) : h(z) 6= c(x)) .

An obvious advantage of the constant in the ball risk over the exact in the ball version is that in the
former, evaluating the loss at point x 2 X requires only knowledge of the correct label of x and the
hypothesis h. In particular, this definition can also be carried over to the non-realizable setting, in
which there is no target. However, from a foundational point of view the constant in the ball risk
has some drawbacks: recall from the previous section that under this definition it is possible to have
strictly positive robust risk in the case that h = c. (Let us note in passing that the risk functions RC

⇢

and R
E
⇢ are in general incomparable. Figure 1c gives an example in which R

C
⇢ = 0 and R

E
⇢ > 0.)

Additionally, when we work in the hypercube, or a bounded input space, as ⇢ becomes larger, we
eventually require the function to be constant in the whole space. Essentially, to ⇢-robustly learn
in the realisable setting, we require concept and distribution pairs to be represented as two sets D+

and D� whose ⇢-expansions don’t intersect, as illustrated in Figures 1a and 1b. These limitations
appear even more stringent when we consider simple concept classes such as parity functions, which
are defined for an index set I ✓ [n] as fI(x) =

P

i xi + b mod 2 for b 2 {0, 1}. This class can
be PAC-learned, as well as exactly learned with n membership queries. However, for any point, it
suffices to flip one bit of the index set to switch the label, so R

C
⇢ (fI , fI) = 1 for any ⇢ � 1 if I 6= ;.

Ultimately, we want the adversary’s power to come from creating perturbations that cause the
hypothesis and target functions to differ in some regions of the input space. For this reason we favor
the exact-in-the-ball definition and henceforth work with that.

Having settled on a risk function, we now formulate the definition of robust learning. For our
purposes a concept class is a family C = {Cn}n2N, with Cn a class of functions from {0, 1}n to
{0, 1}. Likewise a distribution class is a family D = {Dn}n2N, with Dn a set of distributions on
{0, 1}n. Finally a robustness function is a function ⇢ : N ! N.
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Definition 3. Fix a function ⇢ : N ! N. We say that an algorithm A efficiently ⇢-robustly learns
a concept class C with respect to distribution class D if there exists a polynomial poly(·, ·, ·) such
that for all n 2 N, all target concepts c 2 Cn, all distributions D 2 Dn, and all accuracy and
confidence parameters ✏, � > 0, there exists m  poly(1/✏, 1/�, n), such that when A is given access

to a sample S ⇠ Dm it outputs h : {0, 1}n ! {0, 1} such that P
S⇠Dm

⇣

R
E
⇢(n)(h, c) < ✏

⌘

> 1� �.

Note that the definition of robust learning requires polynomial sample complexity and allows improper
learning (the hypothesis h need not belong to the concept class Cn).

In the standard PAC framework, a hypothesis h is considered to have zero risk with respect to a
target concept c when P

x⇠D
(h(x) 6= c(x)) = 0. We have remarked that exact learnability implies

robust learnability; we next give an example of a concept class C and distribution D such that C is
PAC learnable under D with zero risk and yet cannot be robustly learned under D (regardless of the
sample complexity).

Lemma 4. The class of dictators is not 1-robustly learnable (and thus not robustly learnable for any
⇢ � 1) with respect to the robust risk of Definition 1 in the distribution-free setting.

Proof. Let c1 and c2 be the dictators on variables x1 and x2, respectively. Let D be such that
P

x⇠D
(x1 = x2) = 1 and P

x⇠D
(xk = 1) = 1

2 for k � 3. Draw a sample S ⇠ Dm and label it

according to c ⇠ U(c1, c2). By the choice of D, the elements of S will have the same label regardless
of whether c1 or c2 was picked. However, for x ⇠ D, it suffices to flip any of the first two bits to

cause c1 and c2 to disagree on the perturbed input. We can easily show that, for any h 2 {0, 1}
X

,
R
E
1 (c1, h) + R

E
1 (c2, h) � R

E
1 (c1, c2) = 1. Then

E
c⇠U(c1,c2)

E
S⇠Dm

⇥
R
E
1 (h, c)

⇤
� 1/2 .

We conclude that one of c1 or c2 has robust risk at least 1/2.

Note that a PAC learning algorithm with error probability threshold " = 1/3 will either output c1 or
c2 and will hence have standard risk zero. We refer the reader to Appendix B for further discussion
on the relationship between robust and zero-risk learning.

3 No Distribution-Free Robust Learning in {0, 1}n

In this section, we show that no non-trivial concept class is efficiently 1-robustly learnable in
the boolean hypercube. Such a class is thus not efficiently ⇢-robustly learnable for any ⇢ � 1.
Efficient robust learnability then requires access to a more powerful learning model or distributional
assumptions.

Let Cn be a concept class on {0, 1}
n

, and define a concept class as C =
S

n�1 Cn. We say that a class

of functions is trivial if Cn has at most two functions, and that they differ on every point.

Theorem 5. Any concept class C is efficiently distribution-free robustly learnable iff it is trivial.

The proof of the theorem relies on the following lemma:

Lemma 6. Let c1, c2 2 {0, 1}X and fix a distribution on X . Then for all h : {0, 1}
n ! {0, 1}

R
E
⇢ (c1, c2)  R

E
⇢ (c1, h) + R

E
⇢ (c2, h) .

Proof. Let x 2 {0, 1}
n

be arbitrary, and suppose that c1 and c2 differ on some z 2 B⇢(x). Then
either h(z) 6= c1(z) or h(z) 6= c2(z). The result follows.

The idea of the proof of Theorem 5 (which can be found in Appendix C) is a generalization of
the proof of Lemma 4 that dictators are not robustly learnable. However, note that we construct a
distribution whose support is all of X . It is possible to find two hypotheses c1 and c2 and create a
distribution such that c1 and c2 will likely look identical on samples of size polynomial in n but have

robust risk Ω(1) with respect to one another. Since any hypothesis h in {0, 1}
X

will disagree either

5



with c1 or c2 on a given point x if c1(x) 6= c2(x), by choosing the target hypothesis c at random from
c1 and c2, we can guarantee that h won’t be robust against c with positive probability. Finally, note
that an analogous argument can be made for a more general setting (for example in Rn).

4 Monotone Conjunctions

It turns out that we do not need recourse to “bad” distributions to show that very simple classes of
functions are not efficiently robustly learnable. As we demonstrate in this section, MON-CONJ,
the class of monotone conjunctions, is not efficiently robustly learnable even under the uniform
distribution for robustness parameters that are superlogarithmic in the input dimension.

4.1 Non-Robust Learnability

The idea to show that MON-CONJ is not efficiently robustly learnable is in the same vein as the
proof of Theorem 5. We first start by proving the following lemma, which lower bounds the robust
risk of two disjoint monotone conjunctions.

Lemma 7. Under the uniform distribution, for any n 2 N, disjoint c1, c2 2 MON-CONJ of length
3  l  n/2 on {0, 1}

n
and robustness parameter ⇢ � l/2, we have that RE

⇢ (c1, c2) is bounded

below by a constant that can be made arbitrarily close to 1
2 as l gets larger.

Proof. For a hypothesis c 2 MON-CONJ , let Ic be the set of variables in c. Let c1, c2 2 C be as in
the theorem statement. Then the robust risk R

E
⇢ (c1, c2) is bounded below by

P
x⇠D

(c1(x) = 0 ^ x has at least l/2 1’s in Ic2) = (1� 2�l)/2 .

Now, the following lemma shows that if we choose the length of the conjunctions c1 and c2 to be
super-logarithmic in n, then, for a sample of size polynomial in n, c1 and c2 will agree on S with
probability at least 1/2. The proof can be found in Appendix D.1.

Lemma 8. For any functions l(n) = !(log(n)) and m(n) = poly(n), for any disjoint monotone
conjunctions c1, c2 such that |Ic1 | = |Ic2 | = l(n), there exists n0 such that for all n � n0, a sample
S of size m(n) sampled i.i.d. from D will have that c1(x) = c2(x) = 0 for all x 2 S with probability
at least 1/2.

We are now ready to prove our main result of the section.

Theorem 9. MON-CONJ is not efficiently ⇢-robustly learnable for ⇢(n) = !(log(n)) under the
uniform distribution.

Proof. Fix any algorithm A for learning MON-CONJ . We will show that the expected robust risk
between a randomly chosen target function and any hypothesis returned by A is bounded below by a
constant. Fix a function poly(·, ·, ·, ·, ·), and note that, since size(c) and ⇢ are both at most n, we can
simply consider a function poly(·, ·, ·) in the variables 1/✏, and 1/�, n instead. Let � = 1/2, and fix a
function l(n) = !(log(n)) that satisfies l(n)  n/2, and let ⇢(n) = l(n)/2 (n is not yet fixed). Let
n0 be as in Lemma 8, where m(n) is the fixed sample complexity function.Then Equation (8) holds
for all n � n0.

Now, let D be the uniform distribution on {0, 1}
n

for n � max(n0, 3), and choose c1, c2 as in
Lemma 7. Note that RE

⇢ (c1, c2) >
5
12 by the choice of n. Pick the target function c uniformly at

random between c1 and c2, and label S ⇠ Dm with c, where m = poly(1/✏, 1/�, n). By Lemma 8,
c1 and c2 agree with the labeling of S (which implies that all the points have label 0) with probability
at least 1

2 over the choice of S.

Define the following three events for S ⇠ Dm:

E : c1|S = c2|S , Ec1 : c = c1 , Ec2 : c = c2 .

Then, by Lemmas 8 and 6,
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E
c,S

⇥
R
E
⇢ (A(S), c)

⇤
� P

c,S
(E) E

c,S

⇥
R
E
⇢ (A(S), c) | E

⇤

>
1

2

✓

P
c,S

(Ec1)E
S

⇥
R
E
⇢ (A(S), c) | E \ Ec1

⇤
+ P

c,S
(Ec2)E

S

⇥
R
E
⇢ (A(S), c) | E \ Ec2

⇤
◆

=
1

4
E
S

⇥
R
E
⇢ (A(S), c1) + R

E
⇢ (A(S), c2) | E

⇤

� 1

4
E
S

⇥
R
E
⇢ (c2, c1)

⇤

> 0.1 .

4.2 Robust Learnability Against a Logarithmically-Bounded Adversary

The argument showing the non-robust learnability of MON-CONJ under the uniform distribution
in the previous section cannot be carried through if the conjunction lengths are logarithmic in the
input dimension, or if the robustness parameter is small compared to that target conjunction’s length.
In both cases, we show that it is possible to efficiently robustly learn these conjunctions if the class
of distributions is ↵-log-Lipschitz, i.e. there exists a universal constant ↵ � 1 such that for all
n 2 N, all distributions D on {0, 1}

n
and for all input points x, x0 2 {0, 1}

n
, if dH(x, x0) = 1, then

| log(D(x))� log(D(x0))|  log(↵) (see Appendix A.3 for further details and useful facts).

Theorem 10. Let D = {Dn}n2N, where Dn is a set of ↵-log-Lipschitz distributions on {0, 1}n for
all n 2 N. Then the class of monotone conjunctions is ⇢-robustly learnable with respect to D for
robustness function ⇢(n) = O(log n).

The proof can be found in Appendix D. This combined with Theorem 10 shows that ⇢(n) = log(n)
is essentially the threshold for efficient robust learnability of the class MON-CONJ .

5 Computational Hardness of Robust Learning

In this section, we establish that the computational hardness of PAC-learning a concept class C with
respect to a distribution class D implies the computational hardness of robustly learning a family of
concept-distribution pairs from a related class C0 and a restricted class of distributions D0. This is
essentially a version of the main result of [7], which used the constant-in-the-ball definition of robust
risk. Our proof also uses the [7] trick of encoding a point’s label in the input for the robust learning
problem. Interestingly, our proof does not rely on any assumption other than the existence of a hard
learning problem in the PAC framework and is valid under both Definitions 1 and 2 of robust risk.

Construction of C0. Suppose we are given C = {Cn}n2N
and D = {Dn}n2N

with Cn and Dn

defined on Xn = {0, 1}
n

. Given k 2 N, we define the family of concept and distribution pairs

{(c0, D0)}D02D0

c0
,c02C0 , where C0 = {C0

(k,n)}k,n2N on X 0
k,n = {0, 1}

(2k+1)n+1
as follows. Let

majk : X 0
k,n ! Xn be the function that returns the majority vote on each subsequent block of k

bits, and ignores the last bit. We define C0
(k,n) =

�
c � maj2k+1 | c 2 Cn

 
. Let 'k : Xn ! X 0

k,n be

defined as

'k(x) := x1 . . . x1x2 . . . xd�1xd . . . xd
| {z }

2k+1 copies of each xi

c(x) , 'k(S) := {'k(xi) | xi 2 S} ,

for x = x1x2 . . . xd 2 X and S ✓ X . For a concept c 2 Cn, each D 2 Dn induces a distribution
D0 2 D0

c0 , where c0 = c � maj2k+1 and D0(z) = D(x) if z = 'k(x), and D0(z) = 0 otherwise.

As shown below, this set up allows us to see that any algorithm for learning Cn with respect to
Dn yields an algorithm for learning the pairs {(c0, D0)}D02D0

c0
,c02C0 . However, any robust learning

algorithm cannot solely rely on the last bit of the input, as it could be flipped by an adversary. Then,
this algorithm can be used to PAC-learn Cn. This establishes the equivalence of the computational dif-
ficulty between PAC-learning Cn with respect to Dn and robustly learning {(c0, D0)}D02D0

c0
,c02C0

(k,n)
.
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As mentioned earlier, we can still efficiently PAC-learn the pairs {(c0, D0)}D02D0

c0
,c02C0 simply by

always outputting a hypothesis that returns the last bit of the input.

Theorem 11. For any concept class Cn, family of distributions Dn over {0, 1}
n

and k 2 N, there

exists a concept class C0
(k,n) and a family of distributions D0

(k,n) over {0, 1}
(2k+1)n+1

such that

efficient k-robust learnability of the concept-distribution pairs {(c0, D0)}D02D0

c0
,c02C0

(k,n)
and either

of the robust risk functions RC
k or RE

k implies efficient PAC-learnability of Cn with respect to Dn.

Before proving the above result, let us first prove the following proposition.

Proposition 12. The concept-distribution pairs {(c0, D0)}D02D0

c0
,c02C0

(k,n)
can be k-robustly learned

using O
�
1
✏

�
log |Cn|+ log 1

�

��
examples.

Proof. First note that, since Cn is finite, we can use PAC-learning sample bounds for the realizable set-
ting (see for example [23]) to get that the sample complexity of learning Cn is O

�
1
✏
(log |Cn|+ log 1

�
)
�
.

Now, if we have PAC-learned Cn with respect to Dn, and h is the hypothesis returned on a sample
labeled according to a target concept c 2 Cn, we can compose it with the function majk to get a
hypothesis h0 for which any perturbation of at most k bits of x0 ⇠ D0 (where D0 is the distribution
induced by the target concept c and distribution D) will not change h0(x0). Thus, we also have
k-robustly learned C0

(k,n).

Remark 13. The sample complexity in Proposition 12 is independent of k, and so the construction of
the class C0 on X 0 allows the adversary to modify 1

2n fraction of the bits. There are ways to make the
adversary more powerful and keep the sample complexity unchanged. Indeed, the fraction of the bits
the adversary can flip can be increased by using error correction codes. For example, BCH codes
[5, 17] would allow us to obtain an input space X 0 of dimension n+ k log n where the adversary can

flip k
n+k logn

bits.

We are now ready to prove the main result of this section.

Proof of Theorem 11. Given Cn and D, let C0
(k,n) and {D0

c0}c02C0

(k,n)
be constructed as above. Sup-

pose that it is hard to PAC-learn Cn with respect to the distribution family Dn. Suppose that we are
given an algorithm A0 to k-robustly learn {(c0, D0)}D02D0

c0
,c02C0

(k,n)
and a sample complexity m.

Let ✏, � > 0 be arbitrary and c 2 Cn be an arbitrary target concept and let c0 2 C0
(k,n) be such that

c0 = c � maj2k+1. Let D 2 Dn be a distribution on Xn, and let D0 2 D0
c0 be its induced distribution

on X 0
k,n. A PAC-learning algorithm for Cn is as follows. Draw a sample S ⇠ Dm and let S0 = 'k(S).

Note that this simulates a sample S0 ⇠ D0m, and that c0 will give the same label to all points in the
⇢-ball centred at x0 for any x0 in the support of D0.

Since A0 k-robustly learns the concept-distribution pairs {(c0, D0)}D02D0

c0
,c02C0

(k,n)
, with probability

at least 1� � over S0, for any x ⇠ D, we have that h0 will be wrong on 'k(x) (where the last bit is
random) with probability at most ✏. So by outputting h = h0 �'k, we have an algorithm to PAC-learn
Cn with respect to the distribution family Dn.

6 Conclusion

We have studied robust learnability from a computational learning theory perspective and have shown
that efficient robust learning can be hard – even in very natural and apparently straightforward settings.
We have moreover given a tight characterization of the strength of an adversary to prevent robust
learning of monotone conjunctions under certain distributional assumptions. An interesting avenue
for future work is to see whether this result can be generalised to other classes of functions. Finally,
we have provided a simpler proof of the previously established result of the computational hardness
of robust learning.

In the light of our results, it seems to us that more thought needs to be put into what we want out of
robust learning in terms of computational efficiency and sample complexity, which will inform our
choice of risk functions. Indeed, at first glance, robust learning definitions that have appeared in prior
work seem in many ways natural and reasonable; however, their inadequacies surface when viewed

8



under the lens of computational learning theory. Given our negative results in the context of the
current robustness models, one may surmise that requiring a classifier to be correct in an entire ball
near a point is asking for too much. Under such a requirement, we can only solve “easy problems”
with strong distributional assumptions. Nevertheless, it may still be of interest to study these notions
of robust learning in different learning models, for example where one has access to membership
queries.
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