
Coresets for Clustering with Fairness Constraints

Lingxiao Huang∗
Yale University, USA

Shaofeng H.-C. Jiang∗
Weizmann Institute of Science, Israel

Nisheeth K. Vishnoi∗
Yale University, USA

Abstract

In a recent work, [20] studied the following “fair” variants of classical clustering
problems such as k-means and k-median: given a set of n data points in Rd and
a binary type associated to each data point, the goal is to cluster the points while
ensuring that the proportion of each type in each cluster is roughly the same as
its underlying proportion. Subsequent work has focused on either extending this
setting to when each data point has multiple, non-disjoint sensitive types such as
race and gender [7], or to address the problem that the clustering algorithms in the
above work do not scale well [42, 8, 6]. The main contribution of this paper is an
approach to clustering with fairness constraints that involve multiple, non-disjoint
types, that is also scalable. Our approach is based on novel constructions of
coresets: for the k-median objective, we construct an ε-coreset of size O(Γk2ε−d)
where Γ is the number of distinct collections of groups that a point may belong
to, and for the k-means objective, we show how to construct an ε-coreset of size
O(Γk3ε−d−1). The former result is the first known coreset construction for the fair
clustering problem with the k-median objective, and the latter result removes the
dependence on the size of the full dataset as in [42] and generalizes it to multiple,
non-disjoint types. Plugging our coresets into existing algorithms for fair clustering
such as [6] results in the fastest algorithms for several cases. Empirically, we
assess our approach over the Adult, Bank, Diabetes and Athlete dataset, and
show that the coreset sizes are much smaller than the full dataset; applying coresets
indeed accelerates the running time of computing the fair clustering objective while
ensuring that the resulting objective difference is small. We also achieve a speed-up
to recent fair clustering algorithms [6, 7] by incorporating our coreset construction.

1 Introduction

Clustering algorithms are widely used in automated decision-making tasks, e.g., unsupervised learn-
ing [43], feature engineering [33, 27], and recommendation systems [10, 40, 21]. With the increasing
applications of clustering algorithms in human-centric contexts, there is a growing concern that, if
left unchecked, they can lead to discriminatory outcomes for protected groups, e.g., females/black
people. For instance, the proportion of a minority group assigned to some cluster can be far from
its underlying proportion, even if clustering algorithms do not take the sensitive attribute into its
decision making [20]. Such an outcome may, in turn, lead to unfair treatment of minority groups,
e.g., women may receive proportionally fewer job recommendations with high salary [22, 38] due to
their underrepresentation in the cluster of high salary recommendations.

To address this issue, Chierichetti et al. [20] recently proposed the fair clustering problem that
requires the clustering assignment to be balanced with respect to a binary sensitive type, e.g., sex.2
Given a set X of n data points in Rd and a binary type associated to each data point, the goal is
to cluster the points such that the proportion of each type in each cluster is roughly the same as

∗Authors are listed in alphabetical order of family names. Full version: [31].
2A type consists of several disjoint groups, e.g., the sex type consists of females and males.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

its underlying proportion, while ensuring that the clustering objective is minimized. Subsequent
work has focused on either extending this setting to when each data point has multiple, non-disjoint
sensitive types [7] (Definition 2.3), or to address the problem that the clustering algorithms do not
scale well [20, 41, 42, 8, 6].

Due to the large scale of datasets, several existing fair clustering algorithms have to take samples
instead of using the full dataset, since their running time is at least quadratic in the input size [20, 41, 8,
7]. Very recently, Backurs et al. [6] propose a nearly linear approximation algorithm for fair k-median,
but it only works for a binary type. It is still unknown whether there exists a scalable approximation
algorithm for multiple sensitive types [6]. To improve the running time of fair clustering algorithms,
a powerful technique called coreset was introduced. Roughly, a coreset for fair clustering is a
small weighted point set, such that for any k-subset and any fairness constraint, the fair clustering
objective computed over the coreset is approximately the same as that computed from the full dataset
(Definition 2.1). Thus, a coreset can be used as a proxy for the full dataset – one can apply any fair
clustering algorithm on the coreset, achieve a good approximate solution on the full dataset, and hope
to speed up the algorithm. As mentioned in [6], using coresets can indeed accelerate the computation
time and save storage space for fair clustering problems. Another benefit is that one may want to
compare the clustering performance under different fairness constraints, and hence it may be more
efficient to repeatedly use coresets. Currently, the only known result for coresets for fair clustering
is by Schmidt et al. [42], who constructed an ε-coreset for fair k-means clustering. However, their
coreset size includes a log n factor and only restricts to a sensitive type. Moreover, there is no known
coreset construction for other commonly-used clusterings, e.g., fair k-median.

Our contributions. Our main contribution is an efficient construction of coresets for clustering
with fairness constraints that involve multiple, non-disjoint types. Technically, we show efficient
constructions of ε-coresets of size independent of n for both fair k-median and fair k-means, summa-
rized in Table 1. Let Γ denote the number of distinct collections of groups that a point may belong to
(see the first paragraph of Section 4 for the formal definition).

• Our coreset for fair k-median is of size O(Γk2ε−d) (Theorem 4.1), which is the first known
coreset to the best of our knowledge.

• For fair k-means, our coreset is of size O(Γk3ε−d−1) (Theorem 4.2), which improves the
result of [42] by an Θ(logn

εk2) factor and generalizes it to multiple, non-disjoint types.
• As mentioned in [6], applying coresets can accelerate the running time of fair clustering

algorithms, while suffering only an additional (1+ε) factor in the approxiation ratio. Setting
ε = Ω(1) and plugging our coresets into existing algorithms [42, 7, 6], we directly achieve
scalable fair clustering algorithms, summarized in Table 2.

We present novel technical ideas to deal with fairness constraints for coresets.

• Our first technical contribution is a reduction to the case Γ = 1 (Theorem 4.3) which greatly
simplifies the problem. Our reduction not only works for our specific construction, but also
for all coreset constructions in general.

• Furthermore, to deal with the Γ = 1 case, we provide several interesting geometric ob-
servations for the optimal fair k-median/means clustering (Lemma 4.1), which may be of
independent interest.

We implement our algorithm and conduct experiments on Adult, Bank, Diabetes and Athlete
datasets.

• A vanilla implementation results in a coreset with size that depends on ε−d. Our implemen-
tation is inspired by our theoretical results and produces coresets whose size is much smaller
in practice. This improved implementation is still within the framework of our analysis, and
the same worst case theoretical bound still holds.

• To validate the performance of our implementation, we experiment with varying ε for both
fair k-median and k-means. As expected, the empirical error is well under the theoretical
guarantee ε, and the size does not suffer from the ε−d factor. Specifically, for fair k-median,
we achieve 5% empirical error using only 3% points of the original data sets, and we achieve
similar error using 20% points of the original data set for the k-means case. In addition, our
coreset for fair k-means is better than uniform sampling and that of [42] in the empirical
error.

2

Table 1: Summary of coreset results. T1(n) and T2(n) denote the running time of an O(1)-approximate
algorithm for k-median/means, respectively.

k-Median k-Means
size construction time size construction time

[42] O(Γkε−d−2 logn) Õ(kε−d−2n logn + T2(n))
This O(Γk2ε−d) O(kε−d+1n + T1(n)) O(Γk3ε−d−1) O(kε−d+1n + T2(n))

Table 2: Summary of fair clustering algorithms. ∆ denotes the maximum number of groups that a point may
belong to, and “multi” means the algorithm can handle multiple non-disjoint types.

k-Median k-Means
multi approx. ratio time multi approx. ratio time

[20] O(1) Ω(n2)

[42] O(1) nO(k)

[6] Õ(d logn) O(dn logn + T1(n))
[8] (3.488, 1) Ω(n2) (4.675, 1) Ω(n2)
[7] X (O(1), 4∆ + 4) Ω(n2) X (O(1), 4∆ + 4) Ω(n2)

This Õ(d logn) O(dlk2 log(lk) + T1(lk2)) O(1) (lk)O(k)

This X (O(1), 4∆ + 4) Ω(l2∆k4) X (O(1), 4∆ + 4) Ω(l2∆k6)

• The small size of the coreset translates to more than 200x speed-up (with error ~10%) in the
running time of computing the fair clustering objective when the fair constraint F is given.
We also apply our coreset on the recent fair clustering algorithm [6, 7], and drastically
improve the running time of the algorithm by approximately 5-15 times to [6] and 15-30
times to [7] for all above-mentioned datasets plus a large dataset Census1990 that consists
of 2.5 million records, even taking the coreset construction time into consideration.

1.1 Other related works

There are increasingly more works on fair clustering algorithms. Chierichetti et al. [20] introduced
the fair clustering problem for a binary type and obtained approximation algorithms for fair k-
median/center. Backurs et al. [6] improved the running time to nearly linear for fair k-median,
but the approximation ratio is Õ(d log n). Rösner and Schmidt [41] designed a 14-approximate
algorithm for fair k-center, and the ratio is improved to 5 by [8]. For fair k-means, Schmidt et al. [42]
introduced the notion of fair coresets, and presented an efficient streaming algorithm. More generally,
Bercea et al. [8] proposed a bi-criteria approximation for fair k-median/means/center/supplier/facility
location. Very recently, Bera et al. [7] presented a bi-criteria approximation algorithm for fair (k, z)-
clustering problem (Definition 2.3) with arbitrary group structures (potentially overlapping), and
Anagnostopoulos et al. [5] improved their results by proposing the first constant-factor approximation
algorithm. It is still open to design a near linear time O(1)-approximate algorithm for the fair
(k, z)-clustering problem.

There are other fair variants of clustering problems. Ahmadian et al. [4] studied a variant of the
fair k-center problem in which the number of each type in each cluster has an upper bound, and
proposed a bi-criteria approximation algorithm. Chen et al. [19] studied the fair clustering problem
in which any n/k points are entitled to form their own cluster if there is another center closer in
distance for all of them. Kleindessner et al. [34] investigate the fair k-center problem in which each
center has a type, and the selection of the k-subset is restricted to include a fixed amount of centers
belonging to each type. In another paper [35], they developed fair variants of spectral clusterings
(a heuristic k-means clustering framework) by incorporating the proportional fairness constraints
proposed by [20].

The notion of coreset was first proposed by Agarwal et al. [2]. There has been a large body of work
for unconstrained clustering problems in Euclidean spaces [3, 28, 18, 29, 36, 24, 25, 9]). Apart from
these, for the general (k, z)-clustering problem, Feldman and Langberg [24] presented an ε-coreset of
size Õ(dkε−2z) in Õ(nk) time. Huang et al. [30] showed an ε-coreset of size Õ(ddim(X) ·k3ε−2z),
where ddim(X) is doubling dimension that measures the intrinsic dimensionality of a space. For

3

the special case of k-means, Braverman et al. [9] improved the size to Õ(kε−2 ·min {k/ε, d}) by a
dimension reduction approach. Works such as [24] use importance sampling technique which avoid
the size factor ε−d, but it is unknown if such approaches can be used in fair clustering.

2 Problem definition

Consider a set X ⊆ Rd of n data points, an integer k (number of clusters), and l groups P1, . . . , Pl ⊆
X . An assignment constraint, which was proposed by Schmidt et al. [42], is a k × l integer matrix
F . A clustering C = {C1, . . . , Ck}, which is a k-partitioning of X , is said to satisfy assignment
constraint F if

|Ci ∩ Pj | = Fij , ∀i ∈ [k], j ∈ [l].

For a k-subset C = {c1, . . . , ck} ⊆ X (the center set) and z ∈ R>0, we define Kz(X,F,C) as the
minimum value of

∑
i∈[k]

∑
x∈Ci

dz(x, ci) among all clustering C = {C1, . . . , Ck} that satisfies
F , which we call the optimal fair (k, z)-clustering value. If there is no clustering satisfying F ,
Kz(X,F,C) is set to be infinity. The following is our notion of coresets for fair (k, z)-clustering.
This generalizes the notion introduced in [42] which only considers a partitioned group structure.
Definition 2.1 (Coreset for fair clustering). Given a set X ⊆ Rd of n points and l groups
P1, . . . , Pl ⊆ X , a weighted point set S ⊆ Rd with weight function w : S → R>0 is an ε-
coreset for the fair (k, z)-clustering problem, if for each k-subset C ⊆ Rd and each assignment
constraint F ∈ Zk×l≥0 , it holds that Kz(S, F,C) ∈ (1± ε) · Kz(X,F,C).

Since points in S might receive fractional weights, we change the definition of Kz a little, so that in
evaluating Kz(S, F,C), a point x ∈ S may be partially assigned to more than one cluster and the
total amount of assignments of x equals w(x).

The currently most general notion of fairness in clustering was proposed by [7], which enforces both
upper bounds and lower bounds of any group’s proportion in a cluster.
Definition 2.2 ((α, β)-proportionally-fair). A clustering C = (C1, . . . , Ck) is (α, β)-
proportionally-fair (α, β ∈ [0, 1]l), if for each clusterCi and j ∈ [l], it holds that αj ≤ |Ci∩Pj |

|Ci| ≤ βj .

The above definition directly implies for each cluster Ci and any two groups Pj1 , Pj2 ∈ [l], αj1

βj2
≤

|Ci∩Pj1 |
|Ci∩Pj2 |

≤ βj1

αj2
. In other words, the fraction of points belonging to groups Pj1 , Pj2 in each cluster

is bounded from both sides. Indeed, similar fairness constraints have been investigated by works
on other fundamental algorithmic problems such as data summarization [14], ranking [16, 44],
elections [12], personalization [17, 13], classification [11], and online advertising [15]. Naturally,
Bera et al. [7] also defined the fair clustering problem with respect to (α, β)-proportionally-fairness
as follows.
Definition 2.3 ((α, β)-proportionally-fair (k, z)-clustering). Given a set X ⊆ Rd of n points,
l groups P1, . . . , Pl ⊆ X , and two vectors α, β ∈ [0, 1]l, the objective of (α, β)-proportionally-
fair (k, z)-clustering is to find a k-subset C = {c1, . . . , ck} ∈ Rd and (α, β)-proportionally-fair
clustering C = {C1, . . . , Ck}, such that the objective function

∑
i∈[k]

∑
x∈Ci

dz(x, ci) is minimized.

Our notion of coresets is very general, and we relate our notion of coresets to the (α, β)-proportionally-
fair clustering problem, via the following observation, which is similar to Proposition 5 in [42].
Proposition 2.1. Given a k-subset C, the assignment restriction required by (α, β)-proportionally-
fairness can be modeled as a collection of assignment constraints.

As a result, if a weighted set S is an ε-coreset satisfying Definition 2.1, then for any α, β ∈ [0, 1]l, the
(α, β)-proportionally-fair (k, z)-clustering value computed from S must be a (1± ε)-approximation
of that computed from X .

3 Technical overview

We introduce novel techniques to tackle the assignment constraints. Recall that Γ denotes the number
of distinct collections of groups that a point may belong to. Our first technical contribution is a general

4

reduction to the Γ = 1 case which works for any coreset construction algorithm (Theorem 4.3). The
idea is to divide X into Γ parts with respect to the groups that a point belongs to, and construct a fair
coreset with parameter Γ = 1 for each group. The observation is that the union of these coresets is a
coreset for the original instance and Γ.

Our coreset construction for the case Γ = 1 is based on the framework of [29] in which unconstrained
k-median/means coresets were provided. The main observation of [29] is that it suffices to deal with
X that lies on a line. Specifically, they show that it suffices to construct at most O(kε−d+1) lines,
project X to their closest lines and construct an ε/3-coreset for each line. The coreset for each line
is then constructed by partitioning the line into poly(k/ε) contiguous sub-intervals, and designate
at most two points to represent each sub-interval and include these points in the coreset. In their
analysis, a crucially used property is that the clustering for any given centers partitions X into k
contiguous parts on the line, since each point must be assigned to its nearest center. However, this
property might not hold in fair clustering, which is our main difficulty. Nonetheless, we manage
to show a new structural lemma, that the optimal fair k-median/means clustering partitions X into
O(k) contiguous intervals. Specifically, for fair k-median, the key geometric observation is that there
always exists a center whose corresponding optimal fair k-median cluster forms a contiguous interval
(Claim 4.1), and this combined with an induction implies the optimal fair clustering partitions X into
2k − 1 intervals. For fair k-means, we show that each optimal fair cluster actually forms a single
contiguous interval. Thanks to the new structural properties, plugging in a slightly different set of
parameters in [29] yields fair coresets.

4 Coresets for fair clustering

For each x ∈ X , denote Px = {i ∈ [l] : x ∈ Pi} as the collection of groups that x belongs to. Let
ΓX denote the number of distinct Px’s, i.e. ΓX := |{Px : x ∈ X}|. Let Tz(n) denote the running
time of a constant approximation algorithm for the (k, z)-clustering problem. The main theorems are
as follows.
Theorem 4.1 (Coreset for fair k-median (z = 1)). There exists an algorithm that constructs an
ε-coreset for the fair k-median problem of size O(Γk2ε−d), in O(kε−d+1n+ T1(n)) time.
Theorem 4.2 (Coreset for fair k-means (z = 2)). There exists an algorithm that constructs ε-
coreset for the fair k-means problem of size O(Γk3ε−d−1), in O(kε−d+1n+ T2(n)) time.

Note that ΓX is usually small. For instance, if there is only one sensitive attribute [42], then each Px
is singleton and hence ΓX = l. More generally, let Λ denote the maximum number of groups that
any point belongs to, then ΓX ≤ lΛ, but there is often only O(1) sensitive attributes for each point.

As noted above, the main technical difficulty for the coreset construction is to deal with the assign-
ment constraints. We make an important observation (Theorem 4.3), that one only needs to prove
Theorem 4.1 for the case l = 1.The proof of Theorem 4.3 can be found in the full version. This
theorem is a generalization of Theorem 7 in [42], and the coreset of [42] actually extends to arbitrary
group structure thanks to our theorem.
Theorem 4.3 (Reduction from l groups to a single group). Suppose there exists an algorithm
that computes an ε-coreset of size t for the fair (k, z)-clustering problem of X̂ with l = 1, in time
T (|X̂|, ε, k, z). Then there exists an algorithm that takes a set X , and computes an ε-coreset of size
ΓX · t for the fair (k, z)-clustering problem, in time ΓX · T (|X|, ε, k, z).

Our coreset construction for both fair k-median and k-means are similar to that in [29], except using
a different set of parameters. At a high level, the algorithm reduces general instances to instances
where data lie on a line, and it only remains to give a coreset for the line case. Next, we focus on fair
k-median, and the construction for the k-means case is similar and can be found in the full version.
Remark 4.1. Theorem 4.3 can be applied to construct an ε-coreset of size O(ΓXkε

−d+1) for the
fair k-center clustering problem, since Har-Peled’s coreset result [28] directly provides an ε-coreset
of size O(kε−d+1) for the case of l = 1.

4.1 The line case

Since l = 1, we interpret F as an integer vector in Zk≥0. For a weighted point set S with weight
w : S → R≥0, we define the mean of S by S := 1

|S|
∑
p∈S w(p) · p and the error of S by

5

x1 x2 x3 x4 xn−2 xn−1 xn

B1 : w(B1) = 4 B9 : w(B9) = 3

.

B1 : ∆(B1) ≤ ξ B9 : ∆(B9) ≤ ξ

Figure 1: an illustration of Algorithm 1 that divides X into 9 batches.

∆(S) :=
∑
p∈S w(p) · d(p, S). Denote OPT as the optimal value of the unconstrained k-median

clustering. Our construction is similar to [29] and we summarize it in Algorithm 1. An illustration of
Algorithm 1 may be found in Figure 1.

Input: X = {x1, . . . , xn} ⊂ Rd lying on the real line where x1 ≤ . . . ≤ xn, an integer
k ∈ [n], a number OPT as the optimal value of k-median clustering.

Output: an ε-coreset S of X together with weights w : S → R≥0.
1 Set a threshold ξ satisfying that ξ = ε·OPT

30k ;
2 Consider the points from x1 to xn and group them into batches in a greedy way: each batch

B is a maximal point set satisfying that ∆(B) ≤ ξ;
3 Denote B(X) as the collection of all batches. Let S ←

⋃
B∈B(X)B;

4 For each point x = B ∈ S, w(x)← |B|;
5 Return (S,w);

Algorithm 1: FairMedian-1D(X, k)

Theorem 4.4 (Coreset for fair k-median when X lies on a line). Algorithm 1 computes an ε/3-
coreset S for fair k-median clustering of X , in time O(|X|).

The running time is immediate since for each batch B ∈ B(X), it only costs O(|B|) time to compute
B. Hence, Algorithm 1 runs in O(|X|) time. We focus on correctness in the following. In [29],
it was shown that S is an ε/3-coreset for the unconstrained k-median clustering problem. In their
analysis, it is crucially used that the optimal clustering partitions X into k contiguous intervals.
Unfortunately, the nice “contiguous” property does not hold in our case because of the assignment
constraint F ∈ Rk. To resolve this issue, we prove a new structural property (Lemma 4.1) that the
optimal fair k-median clustering actually partitions X into only O(k) contiguous intervals. With this
property, Theorem 4.4 is implied by a similar argument as in [29]. The detailed proof can be found in
the full version.
Lemma 4.1 (Fair k-median clustering consists of 2k − 1 contiguous intervals). Suppose
X := {x1, . . . , xn} ⊂ Rd lies on the real line where x1 ≤ . . . ≤ xn. For every k-subset
C = (c1, . . . , ck) ∈ Rd and every assignment constraints F ∈ Zk≥0, there exists an optimal
fair k-median clustering that partitions X into at most 2k − 1 contiguous intervals.

Proof. We prove by induction on k. The induction hypothesis is that, for every k ≥ 1, Lemma 4.1
holds for any data set X , any k-subset C ⊆ Rd and any assignment constraint F ∈ Zk≥0. The base
case k = 1 holds trivially since all points in X must be assigned to c1.

Assume the lemma holds for k−1 (k ≥ 2) and we will prove the inductive step k. Let C?1 , . . . , C
?
k be

the optimal fair k-median clustering w.r.t. C and F , where C?i ⊆ X is the subset assigned to center
ci. We present the structural property in Claim 4.1, whose proof can be found in the full version.

Claim 4.1. There exists i ∈ [k] such that C?i consists of exactly one contiguous interval.

We continue the proof of the inductive step by constructing a reduced instance (X ′, F ′, C ′) where a)
C ′ := C \ {ci0}; b) X ′ = X \C?i0 ; c) F ′ is formed by removing the i0-th coordinate of F . Applying
the hypothesis on (X ′, F ′, C ′), we know the optimal fair (k − 1)-median clustering consists of at

6

most 2k − 3 contiguous intervals. Combining with C?i0 which has exactly one contiguous interval
would increase the number of intervals by at most 2. Thus, we conclude that the optimal fair k-median
clustering for (X,F,C) has at most 2k− 1 contiguous intervals. This finishes the inductive step.

4.2 Extending to higher dimension

The extension is the same as that of [29]. We start with a set of k centers that is a O(1)-approximate
solution C? to unconstrained k-median. Then we emit O(ε−d+1) rays around each center c in C?
(which correspond to an O(ε)-net on the unit sphere centered at c), and project data points to the
nearest ray, such that the total projection cost is ε · OPT/3. Then for each line, we compute an
ε/3-coreset for fair k-median by Theorem 4.4, and let S denote the combination of coresets generated
from all lines. By the same argument as in Theorem 2.9 of [29], S is an ε-coreset for fair k-median
clustering, which implies Theorem 4.1. The detailed proof can be found in the full version.

Remark 4.2. In fact, it suffices to emit an arbitrary set of rays such that the total projection cost is
at most ε ·OPT/3. This observation is crucially used in our implementations (Section 5) to reduce
the size of the coreset, particularly to avoid the construction of the O(ε)-net which is of O(ε−d) size.

5 Empirical results

We implement our algorithm and evaluate its performance on real datasets.3 The implementation
mostly follows our description of algorithms, but a vanilla implementation would bring in an ε−d
factor in the coreset size. To avoid this, as observed in Remark 4.2, we may actually emit any set
of rays as long as the total projection cost is bounded, instead of ε−d rays. We implement this idea
by finding the smallest integer m and m lines, such that the minimum cost of projecting data onto
m lines is within the error threshold. In our implementation for fair k-means, we adopt the widely
used Lloyd’s heuristic [37] to find the m lines, where the only change to Lloyd’s heuristic is that, for
each cluster, we need to find a line that minimizes the projection cost instead of a point, and we use
SVD to efficiently find this line optimally. Unfortunately, the above approach does not work for fair
k-median, as the SVD does not give the optimal line. As a result, we still need to construct the ε-net,
but we alternatively employ some heuristics to find the net adaptively w.r.t. the dataset.

Our evaluation is conducted on four datasets: Adult (~50k), Bank (~45k) and Diabetes (~100k) from
UCI Machine Learning Repository [23], and Athlete (~200k) from [1], which are also considered in
previous papers [20, 42, 7]. For all datasets, we choose numerical features to form a vector in Rd for
each record, where d = 6 for Adult, d = 10 for Bank, d = 29 for Diabetes and d = 3 for Athlete.
We choose two sensitive types for the first three datasets: sex and marital for Adult (9 groups,
Γ = 14); marital and default for Bank (7 groups, Γ = 12); sex and age for Diabetes (12 groups,
Γ = 20), and we choose a binary sensitive type sex for Athlete (2 groups, Γ = 2). In addition, in the
full version, we will also discuss how the following affects the result: a) choosing a binary type as the
sensitive type, or b) normalization of the dataset. We pick k = 3 (i.e. number of clusters) throughout
our experiment. We define the empirical error as | Kz(S,F,C)

Kz(X,F,C)−1| (which is the same measure as ε) for
some F and C. To evaluate the empirical error, we draw 500 independent random samples of (F,C)
and report the maximum empirical error among these samples. For each (F,C), the fair clustering
objectives Kz(·, F, C) may be formulated as integer linear programs (ILP). We use CPLEX [32] to
solve the ILP’s, report the average running time4 TX and TS for evaluating the objective on dataset
X and coreset S respectively, and also report the running time TC for constructing coreset S.

For both k-median and k-means, we employ uniform sampling (Uni) as a baseline, in which we
partitionX into Γ parts according to distinct Px’s (the collection of groups that x belongs to) and take
uniform samples from each collection. Additionally, for k-means, we select another baseline from
a recent work [42] that presented a coreset construction for fair k-means, whose implementation is
based on the BICO library which is a high-performance coreset-based library for computing k-means
clustering [26]. We evaluate the performance of our coreset for fair k-means against BICO and Uni.
As a remark of BICO and Uni implementations, they do not support specifying parameter ε, but a
hinted size of the resulted coreset. Hence, we start with evaluating our coreset, and set the hinted size
for Uni and BICO as the size of our coreset.

3https://github.com/sfjiang1990/Coresets-for-Clustering-with-Fairness-Constraints.
4The experiments are conducted on a 4-Core desktop CPU with 64 GB RAM.

7

https://github.com/sfjiang1990/Coresets-for-Clustering-with-Fairness-Constraints

We also showcase the speed-up to two recently published approximation algorithms by applying
a 0.5-coreset. The first algorithm is a practically efficient, O(log n)-approximate algorithm for
fair k-median [6] that works for a binary type, referred to as FairTree. The other one is a bi-
criteria approximation algorithm [7] for both fair k-median and k-means, referred to as FairLP. We
slightly modify the implementations of FairTree and FairLP to enable them work with our coreset,
particularly making them handle weighted inputs efficiently. We do experiments on a large dataset
Census1990 which consists of about 2.5 million records (where we select d = 13 features and a
binary type), in addition to the above-mentioned Adult, Bank, Diabetes and Athlete datasets.

Table 3: performance of ε-coresets for fair k-median w.r.t. varying ε.

ε
emp. err. size TS (ms) TC (ms) TX (ms)Ours Uni

A
du

lt

10% 2.36% 12.28% 262 13 408 7101
20% 4.36% 17.17% 215 12 311 -
30% 4.46% 15.12% 161 9 295 -
40% 8.52% 31.96% 139 9 282 -

B
an

k

10% 1.45% 5.32% 2393 111 971 5453
20% 2.24% 3.38% 1101 50 689 -
30% 4.18% 14.60% 506 24 476 -
40% 5.35% 10.53% 293 14 452 -

D
ia

be
te

s 10% 0.55% 6.38% 85822 12112 141212 17532
20% 1.62% 15.44% 34271 3267 16040 -
30% 3.61% 1.92% 6693 411 5017 -
40% 5.33% 3.67% 2949 160 3916 -

A
th

le
te 10% 1.14% 2.87% 3959 96 8141 74851

20% 2.59% 4.38% 685 19 3779 -
30% 4.86% 4.98% 316 11 2763 -
40% 8.25% 16.59% 112 7 2390 -

Table 4: performance of ε-coresets for fair k-means w.r.t. varying ε.

ε
emp. err. size TS (ms) TC (ms)

TX (ms)Ours BICO Uni Ours BICO

A
du

lt

10% 0.28% 1.04% 10.63% 880 44 1351 786 7404
20% 0.55% 1.12% 2.87% 610 29 511 788 -
30% 1.17% 4.06% 19.91% 503 26 495 750 -
40% 2.20% 4.45% 48.10% 433 22 492 768 -

B
an

k

10% 2.85% 2.71% 30.68% 409 19 507 718 5128
20% 2.93% 4.59% 45.09% 280 14 478 712 -
30% 2.68% 6.10% 24.82% 230 11 531 711 -
40% 2.30% 5.66% 33.42% 194 10 505 690 -

D
ia

be
te

s 10% 4.39% 10.54% 1.91% 50163 5300 65189 2615 16312
20% 11.24% 11.32% 4.41% 3385 168 5138 1544 -
30% 14.52% 20.54% 13.46% 958 44 2680 1480 -
40% 13.95% 22.05% 10.92% 775 35 2657 1462 -

A
th

le
te 10% 5.43% 4.94% 10.96% 1516 36 14534 1160 73743

20% 11.41% 21.31% 10.62% 213 9 3566 1090 -
30% 13.18% 29.97% 16.93% 98 7 2591 1076 -
40% 13.01% 29.74% 152.31% 83 6 2613 1066 -

5.1 Results

Table 3 and 4 summarize the accuracy-size trade-off of our coresets for fair k-median and k-means
respectively, under different error guarantee ε. Since the coreset construction time TC for Uni is very
small (usually less than 50 ms) we do not report it in the table. From the table, a key finding is that
the size of the coreset does not suffer from the ε−d factor thanks to our optimized implementation.

8

Table 5: speed-up of fair clustering algorithms using our coreset. objALG/objALG is the runtime/clustering
objective w/o our coreset and T ′ALG/obj′ALG is the runtime/clustering objective on top of our coreset.

ALG objALG obj′ALG TALG (s) T ′ALG (s) TC (s)

Adult FairTree (z = 1) 2.09 × 109 1.23 × 109 12.62 0.38 0.63
FairLP (z = 2) 1.23 × 1014 1.44 × 1014 19.92 0.20 1.03

Bank FairTree (z = 1) 5.69 × 106 4.70 × 106 14.62 0.64 0.60
FairLP (z = 2) 1.53 × 109 1.46 × 109 17.41 0.08 0.50

Diabetes FairTree (z = 1) 1.13 × 106 9.50 × 105 19.26 1.70 2.96
FairLP (z = 2) 1.47 × 107 1.08 × 107 55.11 0.41 2.61

Athlete FairTree (z = 1) 2.50 × 106 2.42 × 106 29.94 1.34 2.35
FairLP (z = 2) 3.33 × 107 2.89 × 107 37.50 0.03 2.42

Census1990 FairTree (z = 1) 9.38 × 106 7.65 × 106 450.79 23.36 20.28
FairLP (z = 2) 4.19 × 107 1.32 × 107 1048.72 0.06 31.05

As for the fair k-median, the empirical error of our coreset is well under control. In particular, to
achieve 5% empirical error, only less than 3 percents of data is necessary for all datasets, and this
results in a ~200x acceleration in evaluating the objective and 10x acceleration even taking the coreset
construction time into consideration.5 Regarding the running time, our coreset construction time
scales roughly linearly with the size of the coreset, which means our algorithm is output-sensitive.
The empirical error of Uni is comparable to ours on Diabetes, but the worst-case error is unbounded
(2x-10x to our coreset, even larger than ε) in general and seems not stable when ε varies.

Our coreset works well for fair k-means, and it also offers significant acceleration of evaluating the
objective. Compared with BICO, our coreset achieves smaller empirical error for fixed ε and the
construction time is between 0.5x to 2x that of BICO. Again, the empirical error of Uni could be 2x
smaller than ours and BICO on Diabetes, but the worst-case error is unbounded in general.

Table 5 demonstrates the speed-up to FairTree and FairLP with the help of our coreset. We observed
that the adaption of our coresets offers a 5x-15x speed-up to FairTree and a 15x-30x speed-up to
FairLP for all datasets, even taking the coreset construction time into consideration. Specifically,
the runtime on top of our coreset for FairLP is less than 1s for all datasets, which is extremely
fast. We also observe that the clustering objective obj′ALG on top of our coresets is usually within
0.6-1.2 times of objALG which is the objective without the coreset (noting that coresets might shrink
the objective). The only exception is FairLP on Census1990, in which obj′ALG is only 35% of
objALG. A possible reason is that in the implementation of FairLP, an important step is to compute
an approximate (unconstrained) k-means clustering solution on the dataset by employing the sklearn
library [39]. However, sklearn tends to trade accuracy for speed when the dataset gets large. As a
result, FairLP actually finds a better approximate k-means solution on the coreset than on the large
dataset Census1990 and hence applying coresets can achieve a much smaller clustering objective.

6 Future work

This paper constructs ε-coresets for the fair k-median/means clustering problem of size independent
on the full dataset, and when the data may have multiple, non-disjoint types. Our coreset for fair
k-median is the first known coreset construction to the best of our knowledge. For fair k-means, we
improve the coreset size of the prior result [42], and extend it to multiple non-disjoint types. The
empirical results show that our coresets are indeed much smaller than the full dataset and result in
significant reductions in the running time of computing the fair clustering objective.

Our work leaves several interesting futural directions. For unconstrained clustering, there exist several
works using the sampling approach such that the coreset size does not depend exponentially on the
Euclidean dimension d. It is interesting to investigate whether sampling approaches can be applied
for constructing fair coresets and achieve similar size bound as the unconstrained setting. Another
direction is to construct coresets for general fair (k, z)-clustering beyond k-median/means/center.

5The same coreset may be used for clustering with any assignment constraints, so its construction time would
be averaged out if multiple fair clustering tasks are performed.

9

Acknowledgments

This research was supported in part by NSF CCF-1908347, SNSF 200021_182527, ONR Award
N00014-18-1-2364 and a Minerva Foundation grant.

References
[1] 120 years of olympic history: athletes and results. https://www.kaggle.com/heesoo37/

120-years-of-olympic-history-athletes-and-results.

[2] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Approximating extent measures
of points. Journal of the ACM (JACM), 51(4):606–635, 2004.

[3] Pankaj K Agarwal and Cecilia Magdalena Procopiuc. Exact and approximation algorithms for
clustering. Algorithmica, 33(2):201–226, 2002.

[4] Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Clustering without
over-representation. In The 36th International Conference on Machine Learning (ICML), 2019.

[5] Aris Anagnostopoulos, Luca Becchetti, Matteo Böhm, Adriano Fazzone, Stefano Leonardi,
Cristina Menghini, and Chris Schwiegelshohn. Principal fairness: Removing bias via projections.
In The 36th International Conference on Machine Learning (ICML), 2019.

[6] Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and Tal Wagner.
Scalable fair clustering. In The 36th International Conference on Machine Learning (ICML),
2019.

[7] Suman K. Bera, Deeparnab Chakrabarty, and Maryam Negahbani. Fair algorithms for clustering.
CoRR, abs/1901.02393, 2019.

[8] Ioana O Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R
Schmidt, and Melanie Schmidt. On the cost of essentially fair clusterings. arXiv preprint
arXiv:1811.10319, 2018.

[9] Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and streaming
coreset constructions. CoRR, abs/1612.00889, 2016.

[10] Robin Burke, Alexander Felfernig, and Mehmet H Göker. Recommender systems: An overview.
AI Magazine, 32(3):13–18, 2011.

[11] L. Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K. Vishnoi. Classification
with fairness constraints: A meta-algorithm with provable guarantees. In Proceedings of the
Conference on Fairness, Accountability, and Transparency, pages 319–328. ACM, 2019.

[12] L. Elisa Celis, Lingxiao Huang, and Nisheeth K. Vishnoi. Multiwinner voting with fairness
constraints. In Proceedings of the 27th International Joint Conference on Artificial Intelligence,
pages 144–151. AAAI Press, 2018.

[13] L. Elisa Celis, Sayash Kapoor, Farnood Salehi, and Nisheeth K. Vishnoi. Controlling po-
larization in personalization: An algorithmic framework. In Fairness, Accountability, and
Transparency in Machine Learning, 2019.

[14] L. Elisa Celis, Vijay Keswani, Damian Straszak, Amit Deshpande, Tarun Kathuria, and
Nisheeth K. Vishnoi. Fair and diverse DPP-based data summarization. In International
Conference on Machine Learning, pages 715–724, 2018.

[15] L. Elisa Celis, Anay Mehrotra, and Nisheeth K. Vishnoi. Towards controlling discrimination in
online Ad auctions. In International Conference on Machine Learning, 2019.

[16] L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. Ranking with fairness constraints.
In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018),
volume 107, page 28. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

10

https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results
https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results

[17] L. Elisa Celis and Nisheeth K. Vishnoi. Fair personalization. In Fairness, Accountability, and
Transparency in Machine Learning, 2017.

[18] Ke Chen. On k-median clustering in high dimensions. In SODA, pages 1177–1185. Society for
Industrial and Applied Mathematics, 2006.

[19] Xingyu Chen, Brandon Fain, Charles Lyu, and Kamesh Munagala. Proportionally fair clustering.
In The 36th International Conference on Machine Learning (ICML), 2019.

[20] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering
through fairlets. In Advances in Neural Information Processing Systems, pages 5029–5037,
2017.

[21] Joydeep Das, Partha Mukherjee, Subhashis Majumder, and Prosenjit Gupta. Clustering-based
recommender system using principles of voting theory. In 2014 International Conference on
Contemporary Computing and Informatics (IC3I), pages 230–235. IEEE, 2014.

[22] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated experiments on Ad privacy
settings: A tale of opacity, choice, and discrimination. Proceedings on Privacy Enhancing
Technologies, 2015(1):92–112, 2015.

[23] Dheeru Dua and Casey Graff. UCI machine learning repository. http://archive.ics.uci.
edu/ml, University of California, Irvine, School of Information and Computer Sciences, 2017.

[24] D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In
STOC, pages 569–578, 2011.

[25] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-
size coresets for k-means, PCA and projective clustering. In SODA, pages 1434–1453, 2013.

[26] Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn, and Christian
Sohler. BICO: BIRCH meets coresets for k-means clustering. In ESA, 2013.

[27] Elena L Glassman, Rishabh Singh, and Robert C Miller. Feature engineering for clustering
student solutions. In Proceedings of the first ACM conference on Learning@ scale conference,
pages 171–172. ACM, 2014.

[28] Sariel Har-Peled. Clustering motion. Discrete & Computational Geometry, 31(4):545–565,
2004.

[29] Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering.
Discrete & Computational Geometry, 37(1):3–19, 2007.

[30] Lingxiao Huang, Shaofeng Jiang, Jian Li, and Xuan Wu. Epsilon-coresets for clustering
(with outliers) in doubling metrics. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 814–825. IEEE, 2018.

[31] Lingxiao Huang, Shaofeng H.-C. Jiang, and Nisheeth K. Vishnoi. Coresets for clustering with
fairness constraints. CoRR, abs/1906.08484, 2019.

[32] IBM. IBM ILOG CPLEX optimization studio CPLEX user’s manual, version 12 release 6,
2015.

[33] Sheng-Yi Jiang, Qi Zheng, and Qian-Sheng Zhang. Clustering-based feature selection. Acta
Electronica Sinica, 36(12):157–160, 2008.

[34] Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. Fair k-center clustering for
data summarization. In The 36th International Conference on Machine Learning (ICML), 2019.

[35] Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, and Jamie Morgenstern. Guarantees
for spectral clustering with fairness constraints. In The 36th International Conference on
Machine Learning (ICML), 2019.

[36] Michael Langberg and Leonard J. Schulman. Universal ε-approximators for integrals. In SODA,
pages 598–607, 2010.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[37] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

[38] Claire Cain Miller. Can an algorithm hire better than a human? The New York Times, 25, 2015.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[40] Manh Cuong Pham, Yiwei Cao, Ralf Klamma, and Matthias Jarke. A clustering approach for
collaborative filtering recommendation using social network analysis. J. UCS, 17(4):583–604,
2011.

[41] Clemens Rösner and Melanie Schmidt. Privacy preserving clustering with constraints. In 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[42] Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. Fair coresets and streaming
algorithms for fair k-means clustering. arXiv preprint arXiv:1812.10854, 2018.

[43] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, et al. Cluster analysis: basic concepts and
algorithms. Introduction to data mining, 8:487–568, 2006.

[44] Ke Yang and Julia Stoyanovich. Measuring fairness in ranked outputs. In Proceedings of the
29th International Conference on Scientific and Statistical Database Management, page 22.
ACM, 2017.

12

