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Abstract

Recent works propose using the discriminator of a GAN to filter out unrealistic
samples of the generator. We generalize these ideas by introducing the implicit
Metropolis-Hastings algorithm. For any implicit probabilistic model and a target
distribution represented by a set of samples, implicit Metropolis-Hastings operates
by learning a discriminator to estimate the density-ratio and then generating a
chain of samples. Since the approximation of density ratio introduces an error on
every step of the chain, it is crucial to analyze the stationary distribution of such
chain. For that purpose, we present a theoretical result stating that the discriminator
loss upper bounds the total variation distance between the target distribution and
the stationary distribution. Finally, we validate the proposed algorithm both for
independent and Markov proposals on CIFAR-10, CelebA and ImageNet datasets.

1 Introduction

Learning a generative model from an empirical target distribution is one of the key tasks in unsu-
pervised machine learning. Currently, Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) are among the most successful approaches in building such models. Unlike conventional
sampling techniques, such as Markov Chain Monte-Carlo (MCMC), they operate by learning the
implicit probabilistic model, which allows for sampling but not for a density evaluation. Due to
the availability of large amounts of empirical data, GANs find many applications in computer vi-
sion: image super-resolution (Ledig et al., 2017), image inpainting (Yu et al., 2018), and learning
representations (Donahue et al., 2016).

Despite the practical success, GANs remain hard for theoretical analysis and do not provide any
guarantees on the learned model. For now, most of the theoretical results assume optimality of the
learned discriminator (critic) what never holds in practice (Goodfellow et al., 2014; Nowozin et al.,
2016; Arjovsky et al., 2017). Moreover, there is empirical evidence that GANs do not learn to sample
from a target distribution (Arora & Zhang, 2017).

Recently, the idea of a GAN postprocessing by filtering the generator was proposed in several
works. Under the assumption that the learned discriminator evaluates the exact density-ratio they
filter samples from a generator by rejection sampling (Azadi et al., 2018) or by the independent
Metropolis-Hastings algorithm (Neklyudov et al., 2018; Turner et al., 2018). Since the assumption
of the discriminator optimality never holds in practice, we still cannot be sure that the resulting
distribution will be close to the target, we even cannot guarantee that we will improve the output of
the generator.

In this work, we present a theoretical result that justifies the heuristic proposed by Neklyudov
et al. (2018); Turner et al. (2018) and generalize the proposed algorithm to the case of any implicit
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probabilistic models — both independent and Markov. To do that, we consider some, maybe not
optimal, discriminator in the Metropolis-Hastings test, and approach the problem from the MCMC
perspective. Under reasonable assumptions, we derive an upper bound on the total variation distance
between the target distribution and the stationary distribution of the produced chain, that can be
minimized w.r.t. parameters of the discriminator.

On real-world datasets (CIFAR-10, CelebA, ImageNet), we validate our approach using different
deep generative models as independent proposals: DCGAN (Radford et al., 2015); Wasserstein GAN
with gradient penalty (Gulrajani et al., 2017); variational auto-encoder (Kingma & Welling, 2014);
BigGAN (Brock et al., 2018); MMD-GAN (Li et al., 2017). Every model is learned independently
optimizing its original objective, what allows us to test the algorithm on a wide range of different
proposals. For every proposal, we learn the discriminator from scratch (except BigGAN) and observe
monotonous improvements of metrics throughout the learning. Further, we construct a Markov
proposal by traversing the latent space of WPGAN generator via a Markov chain. Our experiments
demonstrate that this proposal compares favorably against the independent proposal while using the
same generator network.

We consider the provided theoretical analysis and the empirical evaluation as a result that allows to
alleviate or even eliminate the bias of any generative model learned from the empirical distribution.
To be more factual, we summarize our main contributions as follows.

• We propose the implicit Metropolis-Hastings algorithm, that can be seen as an adaptation of
the classical Metropolis-Hastings algorithm to the case of an implicit probabilistic model
and an empirical target distribution (Section 3).

• We justify the algorithm proposed by Neklyudov et al. (2018) and Turner et al. (2018).
In particular, we demonstrate that learning the discriminator via the binary cross-entropy
minimizes an upper bound on the distance between the target distribution and the stationary
distribution of the chain (Section 3.5).

• We empirically validate the obtained theoretical result on real-world datasets (CIFAR-10,
CelebA, ImageNet) (Section 4.1). We also demonstrate empirical gains by applying our
algorithm for Markov proposals (Section 4.2).

2 Background

2.1 The Metropolis-Hastings algorithm

The MH algorithm allows for sampling from an analytic target distribution p(x) by filtering samples
from a proposal distribution q(x | y) that is also given in the analytic form. It operates by sampling a
chain of correlated samples that converge in distribution to the target (see Algorithm 1).

Algorithm 1 The Metropolis-Hastings algorithm

input density of target distribution p̂(x) ∝ p(x)
input proposal distribution q(x | y)
y ← random init
for i = 0 . . . n do

sample proposal point x ∼ q(x | y)
P = min{1, p̂(x)q(y | x)

p̂(y)q(x | y)}

xi =

�
x, with probability P

y, with probability (1− P )
y ← xi

end for
output {x0, . . . , xn}

Algorithm 2 Metropolis-Hastings GAN

input target dataset D
input learned generator q(x), discriminator d(·)
y ∼ D initialize from the dataset
for i = 0 . . . n do

sample proposal point x ∼ q(x)

P = min{1, d(x)(1−d(y))
(1−d(x))d(y)}

xi =

�
x, with probability P

y, with probability (1− P )
y ← xi

end for
output {x0, . . . , xn}

If we take a proposal distribution that is not conditioned on the previous point, we will obtain the
independent MH algorithm. It operates in the same way, but samples all of the proposal points
independently q(x | y) = q(x).
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2.2 Metropolis-Hastings GAN

Recent works (Neklyudov et al., 2018; Turner et al., 2018) propose to treat the generator of a GAN
as an independent proposal distribution q(x) and perform an approximate Metropolis-Hastings test
via the discriminator. Authors motivate this approximation by the fact that the optimal discriminator
evaluates the true density-ratio

d∗(x) =
p(x)

p(x) + q(x)
= argmin

d

�
− Ex∼p(x) log d(x)− Ex∼q(x) log(1− d(x))

�
. (1)

Substituting the optimal discriminator in the acceptance test, one can obtain the Metropolis-Hastings
correction of a GAN, that is described in Algorithm 2.

In contrast to the previous works, we take the non-optimality of the discriminator as given and analyze
the stationary distribution of the resulting chain for both independent and Markov proposals. In
Section 3, we formulate the implicit Metropolis-Hastings algorithm and derive an upper bound on the
total variation distance between the target distribution and the stationary distribution of the chain.
Then, in Appendix F, we justify Algorithm 2 by relating the obtained upper bound with the binary
cross-entropy.

3 The Implicit Metropolis-Hastings Algorithm

Algorithm 3
The implicit Metropolis-Hastings algorithm

input target dataset D
input implicit model q(x | y)
input learned discriminator d(·, ·)

y ∼ D initialize from the dataset
for i = 0 . . . n do

sample proposal point x ∼ q(x | y)
P = min{1, d(x,y)

d(y,x)}

xi =

�
x, with probability P

y, with probability (1− P )
y ← xi

end for
output {x0, . . . , xn}

In this section, we describe the implicit
Metropolis-Hastings algorithm and present a the-
oretical analysis of its stationary distribution.

The Implicit Metropolis-Hastings algorithm is
aimed to sample from an empirical target dis-
tribution p(x), x ∈ RD, while being able to
sample from an implicit proposal distribution
q(x | y). Given a discriminator d(x, y), it gen-
erates a chain of samples as described in Algo-
rithm 3.

We build our reasoning by first assuming that
the chain is generated using some discriminator
and then successively introducing conditions on
the discriminator and upper bounding the dis-
tance between the chain and the target. Finally,
we come up with an upper bound that can be
minimized w.r.t. parameters of the discriminator.
Here we consider the case of an implicit Markov proposal, but all of the derivations also hold for
independent proposals.

The transition kernel of the implicit Metropolis-Hastings algorithm is

t(x | y) = q(x | y)min

�
1,

d(x, y)

d(y, x)

�
+ δ(x− y)

�
dx�q(x� | y)

�
1−min

�
1,

d(x�, y)
d(y, x�)

��
. (2)

Firstly, we require the proposal distribution q(x | y) and the discriminator d(x, y) to be continuous
and positive on RD × RD. In Appendix A, we show that these requirements guarantee the following
properties of the transition kernel t:

• the kernel t defines a correct conditional distribution;
• the Markov chain defined by t is irreducible;
• the Markov chain defined by t is aperiodic.

To ensure the existence of the unique invariant probabilistic measure of the chain, we should assume
the recurrence of the chain (Theorem 10.0.1, Meyn & Tweedie (2012)). We satisfy the assumption on
the recurrence by introducing the minorization condition in the next subsection (Orey, 1971). Then
the aforementioned properties imply the convergence of the Markov chain defined by the transition
kernel t(x | y) to the stationary distribution t∞ (Theorem 4, Roberts et al. (2004)) from any point y.
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Further, we want the stationary distribution t∞ of our Markov chain to be as close as possible to the
target distribution p. To measure the closeness of distributions, we consider a standard metric for
analysis in MCMC — the total variation distance

�t∞ − p�TV =
1

2

�
|t∞(x)− p(x)|dx. (3)

We assume the proposal q(x | y) to be given, but different d(x, y) may lead to different t∞. That is
why we want to derive an upper bound on the distance �t∞ − p�TV and minimize it w.r.t. parameters
of the discriminator d(x, y). We derive this upper bound in three steps in the following subsections.

3.1 Fast convergence

In practice, estimation of the stationary distribution t∞ by running a chain is impossible. Nevertheless,
if we know that the chain converges fast enough, we can upper bound the distance �t∞ − p�TV using
the distance �t1 − p�TV , where t1 is the one-step distribution t1(x) =

�
t(x | y)t0(y)dy, and t0 is

some initial distribution of the chain.

To guarantee fast convergence of a chain, we propose to use the minorization condition (Roberts
et al., 2004). For a transition kernel t(x | y), it requires that exists such ε > 0 and a distribution ν that
the following condition is satisfied

t(x | y) > εν(x) ∀(x, y) ∈ RD × RD. (4)

When a transition kernel satisfies the minorization condition, the Markov chain converges "fast" to
the stationary distribution. We formalize this statement in the following Proposition.

Proposition 1 Consider a transition kernel t(x | y) that satisfies the minorization condition t(x | y) >
εν(x) for some ε > 0, and distribution ν. Then the distance between two consequent steps decreases
as:

�tn+2 − tn+1�TV ≤ (1− ε) �tn+1 − tn�TV , (5)

where distribution tk+1(x) =
�
t(x | y)tk(y)dy.

This result could be considered as a corollary of Theorem 8 in Roberts et al. (2004). For consistency,
we provide an independent proof of Proposition 1 in Appendix B.

To guarantee minorization condition of our transition kernel t(x | y), we require the proposal q(x | y)
to satisfy minorization condition with some constant ε and distribution ν (note that for an independent
proposal, the minorization condition holds automatically with ε = 1). Also, we limit the range of
the discriminator as d(x, y) ∈ [b, 1] ∀x, y, where b is some positive constant that can be treated as a
hyperparameter of the algorithm. These requirements imply

t(x | y) ≥ bq(x | y) > bεν(x). (6)

Using Proposition 1 and minorization condition (6) for t, we can upper bound the TV-distance
between an initial distribution t0 and the stationary distribution t∞ of implicit Metropolis-Hastings.

�t∞ − t0�TV ≤
∞�

i=0

�ti+1 − ti�TV ≤
∞�

i=0

(1− bε)i �t1 − t0�TV =
1

bε
�t1 − t0�TV (7)

Taking the target distribution p(x) as the initial distribution t0(x) of our chain t(x | y), we reduce
the problem of estimation of the distance �t∞ − p�TV to the problem of estimation of the distance
�t1 − p�TV :

�t∞ − p�TV ≤ 1

bε
�t1 − p�TV =

1

bε
· 1
2

�
dx

����
�

t(x | y)p(y)dy − p(x)

����. (8)

However, the estimation of this distance raises two issues. Firstly, we need to get rid of the inner
integral

�
t(x | y)p(y)dy. Secondly, we need to bypass the evaluation of densities t(x | y) and p(x).

We address these issues in the following subsections.
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3.2 Dealing with the integral inside of the nonlinearity

For now, assume that we have access to the densities t(x | y) and p(x). However, evaluation of the
density t1(x) is an infeasible problem in most cases. To estimate t1(x), one would like to resort to
the Monte-Carlo estimation:

t1(x) =

�
t(x | y)p(y)dy = Ey∼p(y)t(x | y). (9)

However, straightforward estimation of t1(x) results in a biased estimation of �t1 − p�TV , since the
expectation is inside of a nonlinear function. To overcome this problem, we upper bound this distance
in the following proposition.

Proposition 2 For the kernel t(x | y) of the implicit Metropolis-Hastings algorithm, the distance
between initial distribution p(x) and the distribution t1(x) has the following upper bound

�t1 − p�TV ≤ 2

����q(y |x)p(x)− q(x | y)p(y)d(x, y)
d(y, x)

����
TV

, (10)

where the TV-distance on the right side is evaluated in the joint space (x, y) ∈ RD × RD.

For the proof of this proposition, see Appendix C. Note that the obtained upper bound no longer
requires evaluation of an integral inside of a nonlinear function. Moreover, the right side of (10) has
a reasonable motivation since it is an averaged l1 error of the density ratio estimation.
����q(y |x)p(x)− q(x | y)p(y)d(x, y)

d(y, x)

����
TV

=
1

2

�
p(y)q(x | y)

����
q(y |x)p(x)
q(x | y)p(y) − d(x, y)

d(y, x)

����dxdy (11)

In this formulation, we see that we still could achieve zero value of �t1 − p�TV if we could take such
discriminator that estimates the desired density ratio d(x,y)

d(y,x) =
q(y | x)p(x)
q(x | y)p(y) .

3.3 Dealing with the evaluation of densities

For an estimation of the right side of (10), we still need densities p(x) and q(x | y). To overcome this
issue, we propose to upper bound the obtained TV distance via KL-divergence. Then we show that
obtained KL divergence decomposes into two terms: the first term requires evaluation of densities
but does not depend on the discriminator d(x, y), and the second term can be estimated only by
evaluation of d(x, y) on samples from p(x) and q(x | y).
To upper bound the TV-distance �α− β�TV via KL-divergence KL(α�β) one can use well-known
Pinsker’s inequality:

2 �α− β�2TV ≤ KL(α�β). (12)

However, Pinsker’s inequality assumes that both α and β are distributions, while it is not always true
for function q(x | y)p(y)d(x,y)d(y,x) in (10). In the following proposition, we extend Pinsker’s inequality
to the case when one of the functions is not normalized.

Proposition 3 For a distribution α(x) and some positive function f(x) > 0 ∀x the following
inequality holds:

�α− f�2TV ≤
�
2Cf + 1

6

�
(�KL(α�f) + Cf − 1), (13)

where Cf is the normalization constant of function f : Cf =
�
f(x)dx, and �KL(α�f) is the formal

evaluation of the KL divergence

�KL(α�f) =
�

α(x) log
α(x)

f(x)
dx. (14)

The proof of the proposition is in Appendix D.
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Now we use this proposition to upper bound the right side of (10):
����q(y |x)p(x)− q(x | y)p(y)d(x, y)

d(y, x)

����
2

TV

≤ (15)

≤
�
2C + 1

6

��
�KL

�
q(y |x)p(x)

����q(x | y)p(y)
d(x, y)

d(y, x)

�
+ C − 1

�
.

Here C is the normalization constant of q(x | y)p(y)d(x,y)d(y,x) . For the multiplicative term (2C + 1)/6,
we upper bound C as

C =

�
q(x | y)p(y)d(x, y)

d(y, x)
dxdy ≤

�
q(x | y)p(y)1

b
dxdy =

1

b
, (16)

since we limit the range of the discriminator as d(x, y) ∈ [b, 1] ∀x, y.

Summing up the results (8), (10), (15), (16), we obtain the final upper bound as follows.

�t∞ − p�2TV ≤ 1

b2ε2
�t1 − p�2TV ≤ 4

b2ε2

����q(y |x)p(x)− q(x | y)p(y)d(x, y)
d(y, x)

����
2

TV

≤ (17)

≤
�
4 + 2b

3ε2b3

��
E x ∼ p(x)

y ∼ q(y |x)

�
log

d(y, x)

d(x, y)
+

d(y, x)

d(x, y)

�

� �� �
loss for the discriminator

−1 + KL

�
q(y |x)p(x)

����q(x | y)p(y)
��

Minimization of the resulting upper bound w.r.t. the discriminator d(x, y) is equivalent to the
following optimization problem:

min
d
E x ∼ p(x)

y ∼ q(y |x)

�
log

d(y, x)

d(x, y)
+

d(y, x)

d(x, y)

�
. (18)

Thus, we derive the loss function that we can unbiasedly estimate and minimize w.r.t. parameters of
d(x, y). We analyze the optimal solution in the following subsection.

3.4 The optimal discriminator

By taking the derivative of objective (18), we show (see Appendix E) that the optimal discriminator
d∗ must satisfy

d∗(x, y)
d∗(y, x)

=
q(y |x)p(x)
q(x | y)p(y) . (19)

When the loss function (18) achieves its minimum, it becomes

E x ∼ p(x)
y ∼ q(y |x)

�
log

q(x | y)p(y)
q(y |x)p(x) +

q(x | y)p(y)
q(y |x)p(x)

�
= −KL

�
q(y |x)p(x)

����q(x | y)p(y)
�
+ 1 (20)

Substituting this equation into (17), we achieve �t∞ − p�TV = 0. However, since we limit the
range of the discriminator d(x, y) ∈ [b, 1], the optimal solution could be achieved only when the
density-ratio lies in the following range:

∀x, y q(y |x)p(x)
q(x | y)p(y) ∈ [b, b−1]. (21)

Therefore, b should be chosen small enough that range [b, b−1] includes all the possible values of
density-ratio. Such b > 0 exists if the support of the target distribution is compact. Indeed, if we have
positive p(x) and q(x | y) on compact support, we can find a minimum of the density-ratio and set
b to that minimum. Moreover, taking a positive q(x | y) on a compact support yields minorization
condition for the q(x | y).
If the support of target distribution is not compact, we may resort to the approximation of the target
distribution on some smaller compact support that contains say 99.9% of the whole mass of target
distribution. In practice, many problems of generative modeling are defined on compact support, e.g.
the distribution of images lies in finite support since we represent an image by pixels values.
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Table 1: Different losses for a density-ratio estimation.

Proposal Name Loss

Markov
Upper bound (UB)

�
dxdy p(x)q(y |x)

�
log

d(y, x)

d(x, y)
+

d(y, x)

d(x, y)

�

Markov cross-entropy (MCE)
�

dxdy p(x)q(y |x)[− log d(x, y)− log(1− d(y, x))]

Independent Conventional cross-entropy (CCE)
�

dxdy p(x)q(y)[− log d(x)(1− d(y))]

3.5 Relation to the cross-entropy

It is possible to upper bound the loss (18) by the binary cross-entropy. For a Markov proposal, it is

E x ∼ p(x)
y ∼ q(y |x)

�
log

d(y, x)

d(x, y)
+
d(y, x)

d(x, y)

�
≤E x ∼ p(x)

y ∼ q(y |x)

�
−log d(x, y)−log(1−d(y, x))+

1

b

�
. (22)

In the case of an independent proposal, we factorize the discriminator as d(x, y) = d(x)(1− d(y))
and obtain the following inequality (see Appendix F).

E x ∼ p(x)
y ∼ q(y |x)

�
log

d(y, x)

d(x, y)
+

d(y, x)

d(x, y)

�
≤ −Ex∼p(x) log d(x)− Ey∼q(y) log(1− d(y)) +

1

b
(23)

Thus, learning a discriminator via the binary cross-entropy, we also minimize the distance
�t∞ − p�TV . This fact justifies Algorithm 2.

4 Experiments

We present the empirical evaluation of the proposed algorithm and theory for both independent and
Markov proposals. For independent proposals, we validate our theoretical result by demonstrating
monotonous improvements of the sampling procedure throughout the learning of the discriminator.
Further, the implicit MH algorithm with a Markov proposal compares favorably against Algorithm 2
proposed by (Neklyudov et al., 2018; Turner et al., 2018). In both cases, sampling via the implicit MH
algorithm always improves over the straightforward sampling from the proposal. Code reproducing
all experiments is available online3.

To assess our theoretical result in practice, we demonstrate that the minimization of the derived upper
bounds (17), (22), (23) results in the minimization of the distance between the target distribution and
the distribution of the chain. Since one can evaluate the total variation distance only when explicit
densities are given, we show its monotonous fall only for synthetic examples (Appendix G). Also, we
provide an analysis of the algorithm with the growth of dimensionality (Appendix G).

For complex empirical distributions, we consider the problem of sampling from the space of images
(CIFAR-10, CelebA, ImageNet datasets) and resort to the conventional metrics for the performance
evaluation: the Inception Score (IS) (Salimans et al., 2016) and Frechet Inception Distance (FID)
(Heusel et al., 2017). Note that these metrics rely heavily on the implementation of Inception network
(Barratt & Sharma, 2018); therefore, for all experiments, we use PyTorch version of the Inception V3
network (Paszke et al., 2017).

4.1 Independent proposals

Since we propose to use the implicit MH algorithm for any generative model learned from the
empirical distribution, we consider five models that are learned with completely different objec-
tives: Deep Convolutional GAN (DCGAN) (Radford et al., 2015), Variational Auto-Encoder (VAE)
(Kingma & Welling, 2014), Wasserstein GAN with gradient penalty (WPGAN) (Gulrajani et al.,

3https://github.com/necludov/implicit-MH
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2017), MMD-GAN (Li et al., 2017), BigGAN (Brock et al., 2018). We take the generative part
from each already learned model and treat it as an independent proposal distribution in Algorithm
3. For GANs, we take the generator, for VAE, we take the decoder and the prior. Then we learn
the discriminator from scratch for all models (except BigGAN; there we finetune the head of the
discriminator) and monitor the performance of the Algorithm 3 with iterations.

Our theoretical result says that the total variation distance between the stationary distribution and
the target can be upper bounded by different losses (see Table 1). Note, that we also can learn a
discriminator by UB and MCE for independent proposals; however, in practice, we found that CCE
performs slightly better. In Figure 8, we demonstrate that the minimization of CCE leads to better
IS and FID throughout the learning of a discriminator (see plots for all models in Appendix H).
However, for a finite empirical distribution, expressive enough discriminator could overfit to the target
dataset. In such a case, the implicit MH algorithm would become infeasible since it would accept
only samples that match points of the dataset. This can be averted by monitoring the acceptance rate
and early stopping to prevent overfitting.
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Figure 1: Monotonous improvements in terms of FID and IS for the learning of discriminator by
CCE. During iterations, we evaluate metrics several times (scatter) and then average them (solid
lines). For a single metric evaluation, we use 10k samples. Higher values of IS and lower values of
FID are better. Performance for the original models corresponds to the 0th iteration on the plots.

4.2 Markov proposals

To simulate Markov proposals we take the same WPGAN as in the independent case and traverse its
latent space by a Markov chain. Taking the latent vector zy for the previous image y, we sample the
next vector zx via HMC and obtain the next image x = g(zx) by the generator g(·), thus simulating
a Markov proposal q(x | y). Sampling via HMC from the Gaussian is equivalent to the interpolation
between the previous accepted point zy and the random vector v:

zx = cos(t)zy + sin(t)v, v ∼ N (0, I). (24)

In our experiments, we take t = π/3. For loss estimation, we condition samples from the proposal on
samples from the dataset x ∼ q(x | y), y ∼ p(y). However, to sample an image x ∼ q(x | y) we need
to know the latent vector zy for an image y from the dataset. We find such vectors by optimization in
the latent space, minimizing the l2 reconstruction error (reconstructions are in Fig. 2).

To filter a Markov proposal, we need to learn a pairwise discriminator, as suggested in Section 3. For
this purpose, we take the same architecture of the discriminator as in the independent case and put

8



the difference of its logits net(·) into the sigmoid.

d(x, y) =
1

1 + exp(net(y)− net(x))
(25)

Then we learn this discriminator by minimization of UB and MCE (see Table 1).

In Figure 3, we demonstrate that our Markov proposal compares favorably not only against the original
generator of WPGAN, but also against the chain obtained by the independent sampler (Algorithm 2).
To provide the comparison, we evaluate both the performance (IS, FID) and computational efforts
(rejection rate), showing that for the same rejection rate, our method results in better metrics.

Figure 2: Samples from CIFAR-10 (top line) and their reconstructions (bottom line)
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Figure 3: Comparison between different discriminators for the same generator of WPGAN in terms
of performance (IS, FID) and computational efforts (rejection rate). Higher values of IS and lower
values of FID are better. For a single metric evaluation, we use 10k samples. For every snapshot of a
discriminator, we evaluate metrics 5 times (scatter) and then average them (solid lines).

5 Conclusion

In this paper, we propose the implicit Metropolis-Hastings algorithm for sampling from the empirical
target distribution, assuming that the proposal only able to generate samples (without an access to
the density). In the theoretical part of the paper, we upper bound the distance between the target
distribution and the stationary distribution of the chain. The contribution of the derived upper bound
is two-fold. We justify the heuristic algorithm proposed by (Neklyudov et al., 2018; Turner et al.,
2018) and derive the loss functions for the case of Markov proposal. Moreover, the post-processing
with the implicit Metropolis-Hastings algorithm can be seen as the theoretical justification of any
generative model learned from the empirical target distribution. In the experimental part of the
paper, we empirically validate the proposed algorithm on the real-world datasets (CIFAR-10, CelebA,
ImageNet) using different generative models as proposals. For all models and datasets filtering via
the proposed algorithm alleviates the gap between target and proposal distributions.
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