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Abstract

We provide efficient algorithms for overconstrained linear regression problems
with size n⇥d when the loss function is a symmetric norm (a norm invariant under
sign-flips and coordinate-permutations). An important class of symmetric norms
are Orlicz norms, where for a function G and a vector y 2 Rn, the corresponding
Orlicz norm kykG is defined as the unique value ↵ such that

Pn
i=1 G(|yi|/↵) = 1.

When the loss function is an Orlicz norm, our algorithm produces a (1 + ")-
approximate solution for an arbitrarily small constant " > 0 in input-sparsity
time, improving over the previously best-known algorithm which produces a
d · polylog n-approximate solution. When the loss function is a general symmetric
norm, our algorithm produces a

p
d · polylog n · mmc(`)-approximate solution

in input-sparsity time, where mmc(`) is a quantity related to the symmetric norm
under consideration. To the best of our knowledge, this is the first input-sparsity
time algorithm with provable guarantees for the general class of symmetric norm
regression problem. Our results shed light on resolving the universal sketching
problem for linear regression, and the techniques might be of independent interest
to numerical linear algebra problems more broadly.

1 Introduction

Linear regression is a fundamental problem in machine learning. For a data matrix A 2 Rn⇥d and a
response vector b 2 Rn with n � d, the overconstrained linear regression problem can be formulated
as solving the following optimization problem:

min
x2Rd

L(Ax� b), (1)

where L : Rn ! R is a loss function. Via the technique of linear sketching, we have witnessed many
remarkable speedups for linear regression for a wide range of loss functions. Such technique involves
designing a sketching matrix S 2 Rr⇥n, and showing that by solving a linear regression instance on
the data matrix SA and the response vector Sb, which is usually much smaller in size, one can obtain
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Table 1: M -estimators

HUBER

⇢
x2/2 |x|  c
c(|x|� c/2) |x| > c

`1 � `2 2(
p

1 + x2/2� 1)
“FAIR" c2 (|x|/c� log(1 + |x|/c))

an approximate solution to the original linear regression instance in (1). Sarlós showed in [29] that by
taking S as a Fast Johnson-Lindenstrauss Transform matrix [1], one can obtain (1 + ")-approximate
solutions to the least square regression problem (L(y) = kyk22) in O(nd log n + poly(d/")) time.
The running time was later improved to O(nnz(A) + poly(d/")) [12, 26, 28, 23, 15]. Here nnz(A)
is the number of non-zero entries in the data matrix A, which could be much smaller than nd for
sparse data matrices. This technique was later generalized to other loss functions. By now, we
have eO(nnz(A) + poly(d/")) time algorithms for `p norms (L(y) = kykpp) [18, 26, 35, 16, 32], the
quantile loss function [36], M -estimators [14, 13] and the Tukey loss function [11].

Despite we have successfully applied the technique of linear sketching to many different loss functions,
ideally, it would be more desirable to design algorithms that work for a wide range of loss functions,
instead of designing a new sketching algorithm for every specific loss function. Naturally, this leads
to the following problem, which is the linear regression version of the universal sketching problem2

studied in streaming algorithms [10, 9]. We note that similar problems are also asked and studied for
various algorithmic tasks, including principal component analysis [31], sampling [21], approximate
nearest neighbor search [4, 3], discrepancy [17, 8], sparse recovery [27] and mean estimation with
statistical queries [19, 22].
Problem 1. Is it possible to design sketching algorithms for linear regression, that work for a wide
range of loss functions?

Prior to our work, [14, 13] studied this problem in terms of M -estimators, where the loss function
employs the form L(y) =

Pn
i=1 G(yi) for some function G. See Table 1 for a list of M -estimators.

However, much less is known for the case where the loss function L(·) is a norm, except for `p norms.
Recently, Andoni et al. [2] tackle Problem 1 for Orlicz norms, which can be seen as a scale-invariant
version of M -estimators. For a function G and a vector y 2 Rn with y 6= 0, the corresponding Orlicz
norm kykG is defined as the unique value ↵ such that

nX

i=1

G(|yi|/↵) = 1. (2)

When y = 0, we define kykG to be 0. Note that Orlicz norms include `p norms as special cases, by
taking G(z) = |z|p for some p � 1. Under certain assumptions on the function G, [2] obtains the
first input-sparsity time algorithm for solving Orlicz norm regression. More precisely, in eO(nnz(A)+
poly(d log n)) time, their algorithm obtains a solution bx 2 Rd such that kAbx� bkG  d ·polylog n ·
minx2Rd kAx� bkG.

There are two natural problems left open by the work of [2]. First, the algorithm in [2] has approxi-
mation ratio as large as d · polylog n. Although this result is interesting from a theoretical point of
view, such a large approximation ratio is prohibitive for machine learning applications in practice.
Is it possible to obtain an algorithm that runs in eO(nnz(A) + poly(d/")) time, with approximation
ratio 1 + ", for arbitrarily small ", similar to the case of `p norms? Moreover, although Orlicz norm
includes a wide range of norms, many other important norms, e.g., top-k norms (the sum of absolute
values of the leading k coordinates of a vector), max-mix of `p norms (e.g. max{kxk2, ckxk1} for
some c > 0), and sum-mix of `p norms (e.g. kxk2 + ckxk1 for some c > 0), are not Orlicz norms.
More complicated examples include the k-support norm [5] and the box-norm [25], which have found
applications in sparse recovery. In light of Problem 1, it is natural to ask whether it is possible to apply
the technique of linear sketching to a broader class of norms. In this paper, we obtain affirmative
answers to both problems, and make progress towards finally resolving Problem 1.

Notations. We use eO(f) to denote f polylog f . For a matrix A 2 Rn⇥d, we use Ai 2 Rd to
denote its i-th row, viewed as a column vector. For n real numbers x1, x2, . . . , xn, we define

2
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diag(x1, x2, . . . , xn) 2 Rn⇥n to be the diagonal matrix where the i-th diagonal entry is xi. For a
vector x 2 Rn and p � 1, we use kxkp to denote its `p norm, and kxk0 to denote its `0 norm, i.e.,
the number of non-zero entries in x. For two vectors x, y 2 Rn, we use hx, yi to denote their inner
product. For any n > 0, we use [n] to denote the set {1, 2, . . . , n}. For 0  p  1, we define Ber(p)
to be the Bernoulli distribution with parameter p. We use Sn�1 to denote the unit `2 sphere in Rn,
i.e., Sn�1 = {x 2 Rn | kxk2 = 1}. We use R�0 to denote the set of all non-negative real numbers,
i.e., R�0 = {x 2 R | x � 0}.

1.1 Our Contributions

Algorithm for Orlicz Norms. Our first contribution is a unified algorithm which produces (1+ ")-
approximate solutions to the linear regression problem in (1), when the loss function L(·) is an Orlicz
norm. Before introducing our results, we first give our assumptions on the function G which appeared
in (2).
Assumption 1. We assume the function G : R ! R�0 satisfies the following properties:

1. G is a strictly increasing convex function on [0,1);

2. G(0) = 0, and for all x 2 R, G(x) = G(�x);

3. There exists some CG > 0, such that for all 0 < x < y, G(y)/G(x)  CG(y/x)2.

The first two conditions in Assumption 1 are necessary to make sure the corresponding Orlicz norm
k · kG is indeed a norm, and the third condition requires the function G to have at most quadratic
growth, which can be satisfied by all M -estimators in Table 1 and is also required by prior work [2].
Notice that our assumptions are weaker than those in [2]. In [2], it is further required that G(x) is a
linear function when x > 1, and G is twice differentiable on an interval (0, �G) for some �G > 0.
Given our assumptions on G, our main theorem is summarized as follows.
Theorem 1. For a function G that satisfies Assumption 1, there exists an algorithm that, on any input
A 2 Rn⇥d and b 2 Rn, finds a vector x⇤ in time eO(nnz(A)+ poly(d/")), such that with probability
at least 0.9, kAx⇤ � bkG  (1 + ")minx2Rd kAx� bkG.

To the best of our knowledge, this is the first input-sparsity time algorithm with (1+")-approximation
guarantee, that goes beyond `p norms, the quantile loss function, and M -estimators. See Table 2 for
a more comprehensive comparison with previous results.

Algorithm for Symmetric Norms. We further study the case when the loss function L(·) is a
symmetric norm. Symmetric norm is a more general class of norms, which includes all norms that
are invariant under sign-flips and coordinate-permutations. Formally, we define symmetric norms as
follow.
Definition 1. A norm k · k` is called a symmetric norm, if k(y1, y2, . . . , yn)k` =
k(s1y�1 , s2y�2 , . . . , sny�n)k` for any permutation � and any assignment of si 2 {�1, 1}.

Symmetric norm includes `p norms and Orlicz norms as special cases. It also includes all examples
provided in the introduction, i.e., top-k norms, max-mix of `p norms, sum-mix of `p norms, the
k-support norm [5] and the box-norm [25], as special cases. Understanding this general set of loss
functions can be seen as a preliminary step to resolve Problem 1. Our main result for symmetric
norm regression is summarized in the following theorem.
Theorem 2. Given a symmetric norm k · k`, there exists an algorithm that, on any input A 2 Rn⇥d

and b 2 Rn, finds a vector x⇤ in time eO(nnz(A) + poly(d)), such that with probability at least 0.9,
kAx⇤ � bk` 

p
d · polylog n ·mmc(`) ·minx2Rd kAx� bk`.

In the above theorem, mmc(`) is a characteristic of the symmetric norm k ·k`, which has been proven
to be essential in streaming algorithms for symmetric norms [7]. See Definition 7 for the formal
definition of mmc(`), and Section 3 for more details about mmc(`). In particular, for `p norms with
p  2, top-k norms with k � n/ polylog n, max-mix of `2 norm and `1 norm (max{kxk2, ckxk1} for
some c > 0), sum-mix of `2 norm and `1 norm (kxk2 + ckxk1 for some c > 0), the k-support norm,
and the box-norm, mmc(`) can all be upper bounded by polylog n, which implies our algorithm has
approximation ratio

p
d · polylog n for all these norms. This clearly demonstrates the generality of

our algorithm.
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Table 2: Comparison among input-sparsity time linear regression algorithms

Reference Loss Function Approximation Ratio
[18, 26, 35, 16, 32] `p norms 1 + "

[36] Quantile loss function 1 + "
[14, 13] M -estimators 1 + "

[2] Orlicz norms d · polylog n
Theorem 1 Orlicz norms 1 + "
Theorem 2 Symmetric norms

p
d · polylog n ·mmc(`)

Empirical Evaluation. In Section E of the supplementary material, we test our algorithms on real
datasets. Our empirical results quite clearly demonstrate the practicality of our methods.

1.2 Technical Overview

Similar to previous works on using linear sketching to speed up solving linear regression, our core
technique is to provide efficient dimensionality reduction methods for Orlicz norms and general
symmetric norms. In this section, we discuss the techniques behind our results.

Row Sampling Algorithm for Orlicz Norms. Compared to prior work on Orlicz norm regres-
sion [2] which is based on random projection3, our new algorithm is based on row sampling. For
a given matrix A 2 Rn⇥d, our goal is to output a sparse weight vector w 2 Rn with at most
poly(d log n/") non-zero entries, such that with high probability, for all x 2 Rd,

(1� ")kAx� bkG  kAx� bkG,w  (1 + ")kAx� bkG. (3)

Here, for a weight vector w 2 Rn and a vector y 2 Rn, the weighted Orlicz norm kykG,w is defined
as the unique value ↵ such that

Pn
i=1 wiG(|yi|/↵) = 1. See Definition 4 for the formal definition of

weighted Orlicz norm. To obtain a (1 + ")-approximate solution to Orlicz norm regression, by (3), it
suffices to solve

min
x2Rd

kAx� bkG,w. (4)

Since the vector w 2 Rn has at most poly(d log n/") non-zero entries, and we can ignore all rows
of A with zero weights, there are at most poly(d log n/") remaining rows in A in the optimization
problem in (4). Furthermore, as we show in Lemma 3, k · kG,w is a seminorm, which implies
we can solve the optimization problem in (4) in poly(d log n/") time, by simply solving a convex
program with size poly(d log n/"). Thus, we focus on how to obtain the weight vector w 2 Rn in
the remaining part. Furthermore, by taking A to be a matrix whose first d columns are A and last
column is b, to satisfy (3), it suffices to find a weight vector w such that for all x 2 Rd+1,

(1� ")kAxkG  kAxkG,w  (1 + ")kAxkG. (5)

Hence, we ignore the response vector b in the remaining part of the discussion.

We obtain the weight vector w via importance sampling. We compute a set of sampling probabilities
{pi}ni=1 for each row of the data matrix A, and sample the rows of A according to these probabilities.
The i-th entry of the weight vector w is then set to be wi = 1/pi with probability pi and wi = 0 with
probability 1� pi. However, unlike `p norms, Orlicz norms are not “entry-wise” norms, and it is not
even clear that such a sampling process gives an unbiased estimation. Our key insight here is that for
a vector Ax with unit Orlicz norm, if for all x 2 Rd,

(1� ")
nX

i=1

G((Ax)i) 
nX

i=1

wiG((Ax)i)  (1 + ")
nX

i=1

G((Ax)i), (6)

then (5) holds, which follows from the convexity of the function G. See Lemma 7 and its proof for
more details. Therefore, it remains to develop a way to define and calculate {pi}ni=1, such that the
total number of sampled rows is small.

3Even for `p norms with p < 2, embeddings based on random projections will necessarily induce a distortion
factor polynomial in d, as shown in [32].
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Our method for defining and computing sampling probabilities pi is inspired by row sampling
algorithms for `p norms [18]. Here, the key is to obtain an upper bound on the contribution of
each entry to the summation

Pn
i=1 G((Ax)i). Indeed, suppose for some vector u 2 Rn such that

G(Ax)i  ui for all x 2 Rd with kAxkG = 1, we can then sample each row of A with sampling
probability proportional to ui. Now, by standard concentration inequalities and a net argument, (6)
holds with high probability. It remains to upper bound the total number of sampled rows, which is
proportional to

Pn
i=1 ui.

We use the case of `2 norm, i.e., G(x) = x2, as an example to illustrate our main ideas for choosing
the vector u 2 Rn. Suppose U 2 Rn⇥d is an orthonormal basis matrix of the column space of A,
then the leverage score4 is defined to be the squared `2 norm of each row of U . Indeed, leverage
score gives an upper bound on the contribution of each row to kUxk22, since by Cauchy-Schwarz
inequality, for each row Ui of U , we have hUi, xi2  kUik22kxk22 = kUik22kUxk22, and thus we can
set ui = kUik22. It is also clear that

Pn
i=1 ui = d.

For general Orlicz norms, leverage scores are no longer upper bounds on G((Ux)i). Inspired by the
role of orthonormal bases in the case of `2 norm, we first define well-conditioned basis for general
Orlicz norms as follow.
Definition 2. Let k · kG be an Orlicz norm induced by a function G which satisfies Assumption 1.
We say U 2 Rn⇥d is a well-conditioned basis with condition number G = G(U) if for all x 2 Rd,
kxk2  kUxkG  Gkxk2.

Given this definition, when kUxkG = 1, by Cauchy-Schwarz inequality and monotonicity of G, we
can show that G((Ux)i)  G(kUik2kxk2)  G(kUik2kUxkG)  G(kUik2). This also leads to our
definition of Orlicz norm leverage scores.
Definition 3. Let k · kG be an Orlicz norm induced by a function G which satisfies Assumption 1.
For a given matrix A 2 Rn⇥d and a well-conditioned basis U of the column space of A, the Orlicz
norm leverage score of the i-th row of A is defined to be G(kUik2).

It remains to give an upper bound on the summation of Orlicz norm leverage scores of all rows. Unlike
the `2 norm, it is not immediately clear how to use the definition of well-conditioned basis to obtain
such an upper bound for general Orlicz norms. To achieve this goal, we use a novel probabilistic
argument. Suppose one takes x to be a vector with i.i.d. Gaussian random variables. Then each entry
of Ux has the same distribution as kUik2 · gi, where {gi}ni=1 is a set of standard Gaussian random
variables. Thus, with constant probability,

Pn
i=1 G((Ux)i) is an upper bound on the summation

of Orlicz norm leverage scores. Furthermore, by the growth condition of the function G, we havePn
i=1 G((Ux)i)  CGkUxk2G. Now by Definition 2, kUxkG  Gkxk2, and kxk2  O(

p
d) with

constant probability by tail inequalities of Gaussian random variables. This implies an upper bound
on the summation of Orlicz norm leverage scores. See Lemma 4 and its proof for more details.

Our approach for constructing well-conditioned bases is inspired by [30]. In Lemma 5, we show that
given a subspace embedding ⇧ which embeds the column space of A with Orlicz norm k · kG into
the `2 space with distortion , then one can construct a well-conditioned basis with condition number
G  . The running time is dominated by calculating ⇧A and doing a QR-decomposition on ⇧A. To
this end, we can use the oblivious subspace embedding for Orlicz norms in Corollary 125 to construct
well-conditioned bases. The embedding in Corollary 12 has O(d) rows and  = poly(d log n), and
calculating ⇧A can be done in eO(nnz(A) + poly(d)) time. Using such an embedding to construct
the well-conditioned basis, our row sampling algorithm produces a vector w that satisfies (6) with
kwk0  poly(d log n/") in time eO(nnz(A) + poly(d)).

We would like to remark that our sampling algorithm still works if the third condition in Assumption 1
does not hold. In general, suppose the function G : R ! R satisfies that for all 0 < x < y,
G(y)/G(x)  CG(y/x)p, for the Orlicz norm induced by G, given a well-conditioned basis with
condition number G, our sampling algorithm returns a matrix with roughly O((

p
dG)p · d/"2)

rows such that Theorem 1 holds. One may use the Löwner–John ellipsoid as the well-conditioned

4See, e.g., [24], for a survey on leverage scores.
5Alternatively, we can use the oblivious subspace embedding in [2] for this step. However, as we have

discussed, the oblivious subspace embedding in [2] requires stronger assumptions on the function G : R ! R�0

than those in Assumption 1, which restricts the class of Orlicz norms to which our algorithm can be applied.
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basis (as in [18]) which has condition number G =
p
d for any norm. However, calculating the

Löwner–John ellipsoid requires at least O(nd5) time. Moreover, our method described above fails
when p > 2 since it requires an oblivious subspace embedding with poly(d) distortion, and it is
known that such embedding does not exist when p > 2 [10]. Since we focus on input-sparsity time
algorithms in this paper, we only consider the case that p  2.

Finally, we would like to compare our sampling algorithm with that in [13]. First, the algorithm
in [13] works for M -estimators, while we focus on Orlicz norms. Second, our definitions for Orlicz
norm leverage score and well-conditioned basis, as given in Definition 2 and 3, are different from all
previous works and are closely related to the Orlicz norm under consideration. The algorithm in [13],
on the other hand, simply uses `p leverage scores. Under our definition, we can prove that the sum of
leverage scores is bounded by O(CGd2

G) (Lemma 4), whose proof requires a novel probabilistic
argument. In contrast, the upper bound on sum of leverage scores in [13] is O(

p
nd) (Lemma 38 in

[11]). Thus, the algorithm in [13] runs in an iterative manner since in each round the algorithm can
merely reduce the dimension from n to O(

p
nd), while our algorithm is one-shot.

Oblivious Subspace Embeddings for Symmetric Norms. To obtain a faster algorithm for linear
regression when the loss function is a general symmetric norm, we show that there exists a distribution
over embedding matrices, such that if S is a random matrix drawn from that distribution, then for
any n⇥ d matrix A, with constant probability, for all x 2 Rd, kAxk`  kSAxk2  poly(d log n) ·
mmc(`) · kAxk`. Moreover, the embedding matrix S is sparse, and calculating SA requires only
eO(nnz(A) + poly(d)) time. Another favorable property of S is that it is an oblivious subspace
embeeding, meaning the distribution of S does not depend on A. To achieve this goal, it is sufficient
to construct a random diagonal matrix D such that for any fixed vector x 2 Rn,

Pr[kDxk2 � ⌦(1/ poly(d log n)) · kxk`] � 1� exp(�⌦(d log n)), (7)

and
Pr[kDxk2  poly(d log n) ·mmc(`) · kxk`] � 1�O(1/d). (8)

Our construction is inspired by the sub-sampling technique in [20], which was used for sketching
symmetric norms in data streams [7]. Throughout the discussion, we use ⇠(q) 2 Rn to denote a vector
with q non-zero entries and each entry is 1/pq. Let us start with a special case where the vector
x 2 Rn has s non-zero entries and each non-zero entry is 1. It is easy to see kxk` =

p
sk⇠(s)k`.

Now consider a random diagonal matrix D which corresponds to a sampling process, i.e., each
diagonal entry is set to be 1 with probability p and 0 with probability 1 � p. Our goal is to
show that

p
1/pk⇠(1/p)k` · kDxk2 is a good estimator of kxk`. If p = ⇥(d log n/s), then with

probability at least 1 � exp (�⌦(d log n)), Dx will contain at least one non-zero entry from x, in
which case (7) is satisfied. However, we do not know s in advance. Thus, we use t = O(log n)
different matrices D1, D2, . . . , Dt, where Di has sampling probability 1/2i. Clearly at least one
such Dj can establish (7). For the upper bound part, if p is much smaller than 1/s, then Dx will
never contain a non-zero entry from x. Otherwise, in expectation Dx will contain ps non-zero
entries, in which case our estimation will be roughly

p
sk⇠(1/p)k`, which can be upper bounded by

O(log n ·mmc(`) ·
p
sk⇠(s)k`). At this point, (8) follows from Markov’s inequality. See Section C.5

for the formal argument, and Section 3 for a detailed discussion on mmc(`).

To generalize the above argument to general vectors, for a vector x 2 Rn, we conceptually partition
its entries into ⇥(log n) groups, where the i-th group contains entries with magnitude in [2i, 2i+1).
By averaging, at least one group of entries contributes at least ⌦(1/ log n) fraction to the value of
kxk`. To establish (7), we apply the lower bound part of the argument in the previous paragraph to
this “contributing” group. To establish (8), we apply the upper bound part of the argument to all
groups, which will only induce an additional O(log n) factor in the approximation ratio, by triangle
inequality.

Since our oblivious subspace embedding embeds a given symmetric norm into the `2 space, in order
to obtain an approximate solution to symmetric norm regression, we only need to solve a least squares
regression instance with much smaller size. This is another advantage of our subspace embedding,
since the least square regression problem is a well-studied problem in optimization and numerical
linear algebra, for which many efficient algorithms are known, both in theory and in practice.
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2 Linear Regression for Orlicz Norms

In this section, we introduce our results for Orlicz norm regression. We first give the definition of
weighted Orlicz norm.

Definition 4. For a function G that satisfies Assumption 1 and a weight vector w 2 Rn such that
wi � 0 for all i 2 [n], for a vector x 2 Rn, if

Pn
i=1 wi · |xi| = 0, then the weighted Orlicz norm

kxkG,w is defined to be 0. Otherwise, the weighted Orlicz norm kxkG,w is defined as the unique
value ↵ > 0 such that

Pn
i=1 wiG(|xi|/↵) = 1.

When wi = 1 for all i 2 [n], we have kxkG,w = kxkG where kxkG is the (unweighted) Orlicz norm.
It is well known that k · kG is a norm. We show in the following lemma that k · kG,w is a seminorm.

Lemma 3. For a function G that satisfies Assumption 1 and a weight vector w 2 Rn such that wi � 0
for all i 2 [n], for all x, y 2 Rn, we have (i) kxkG,w � 0, (ii) kx+ ykG,w  kxkG,w + kykG,w, and
(iii) kaxkG,w = |a| · kxkG,w for all a 2 R.

Leverage Scores and Well-Conditioned Bases for Orlicz Norms. The following lemma estab-
lishes an upper bound on the summation of Orlicz norm leverage scores defined in Definition 3.

Lemma 4. Let k · kG be an Orlicz norm induced by a function G which satisfies Assumption 1. Let
U 2 Rn⇥d be a well-conditioned basis with condition number G as in Definition 2. Then we havePn

i=1 G(kUik2)  O(CGd2
G),

Now we show that given a subspace embedding which embeds the column space of A with Orlicz
norm k · kG into the `2 space with distortion , then one can construct a well-conditioned basis with
condition number G  .

Lemma 5. Let k · kG be an Orlicz norm induced by a function G which satisfies Assumption 1.
For a given matrix A 2 Rn⇥d and an embedding matrix ⇧ 2 Rs⇥n, suppose for all x 2 Rd,
kAxkG  k⇧Axk2  kAxkG. Let Q ·R = 1

⇧A be a QR-decomposition of 1
⇧A. Then AR�1 is

a well-conditioned basis (see Definition 2) with G(AR�1)  .

The following lemma shows how to estimate Orlicz norm leverage scores given a change of basis
matrix R 2 Rd⇥d, in eO(nnz(A) + poly(d)) time.

Lemma 6. Let k · kG be an Orlicz norm induced by a function G which satisfies Assumption 1. For
a given matrix A 2 Rn⇥d and R 2 Rd⇥d, there exists an algorithm that outputs {ui}ni=1 such that
with probability at least 0.99, ui = ⇥(G(k(AR�1)ik2)) for all 1  i  n. The algorithm runs in
eO(nnz(A) + poly(d)) time.

The Row Sampling Algorithm. Based on the notion of Orlicz norm leverage scores and well-
conditioned bases, we design a row sampling algorithm for Orlicz norms.

Lemma 7. Let k · kG be an Orlicz norm induced by a function G which satisfies Assumption 1.
Let U 2 Rn⇥d be a well-conditioned basis with condition number G = G(U) as in Definition
2. For sufficiently small " and �, and sufficiently large constant C, let {pi}ni=1 be a set of sampling
probabilities satisfying pi � min

�
1, C (log(1/�) + d log(1/")) "�2G (kUik2)

 
. Let w be a vector

whose i-th entry is set to be wi = 1/pi with probability pi and wi = 0 with probability 1� pi, then
with probability at least 1��, for all x 2 Rd, we have (1�")kUxkG  kUxkG,w  (1+")kUxkG.

Solving Linear Regression for Orlicz Norms. Now we combine all ingredients to give an algo-
rithm for Orlicz norm regression. We use A 2 Rn⇥(d+1) to denote a matrix whose first d columns
are A and the last column is b. The algorithm is described in Figure 1, and we prove its running time
and correctness in Theorem 8. We assume we are given an embedding matrix ⇧, such that for all
x 2 Rd+1, kAxkG  k⇧Axk2  kAxkG. The construction of ⇧ and the value  will be given in
Corollary 12. In Section D.1 of the supplementary material, we use Theorem 8 and Corollary 12 to
formally prove Theorem 1.
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1. For the given embedding matrix ⇧, calculate ⇧A and invoke QR-decomposition on
⇧A/ to obtain Q ·R = ⇧A/.

2. Invoke Lemma 6 to obtain {ui}ni=1 such that ui = ⇥(G(k(AR�1)ik2)).
3. For a sufficiently large constant C, let {pi}ni=1 be a set of sampling probabilities with

pi � min
�
1, C · d · "�2 log(1/") ·G

�
k(AR�1)ik2

� 
, and w be a vector whose i-th

entry wi = 1/pi with probability pi and wi = 0 with probability 1� pi.
4. Calculate x⇤ = argminx2Rd kAx� bkG,w. Return x⇤.

Figure 1: Algorithm for Orlicz norm regression

Theorem 8. Let k · kG be an Orlicz norm induced by a function G which satisfies Assumption 1.
Given an embedding matrix ⇧, such that for all x 2 Rd, kAxkG  k⇧Axk2  kAxkG, with
probability at least 0.9, the algorithm in Figure 1 outputs x⇤ 2 Rd in time poly(d/") + TQR(⇧A),
such that kAx⇤ � bkG  (1 + ")minx2Rd kAx � bkG. Here, TQR(⇧A) is the running time for
calculating ⇧A and invoking QR-decomposition on ⇧A.

3 Linear Regression for Symmetric Norms

In this section, we introduce SymSketch, a subspace embedding for symmetric norms.

Definition of SymSketch. We first formally define SymSketch. Due to space limitation, we
give the definition of Gaussian embeddings, CountSketch embeddings and their compositions in
Section C.1.1 of the supplementary material.

Definition 5 (Symmetric Norm Sketch (SymSketch)). Let t = ⇥(log n). Let eD 2 Rn(t+1)⇥n be a
matrix defined as eD =

⇥
(w0D0)> (w1D1)> . . . (wtDt)>

⇤>, where for each i 2 {0, 1, . . . , t},
Di = diag(zi,1, zi,2, . . . , zi,n) 2 Rn⇥n and zi,j ⇠ Ber(1/2i) for each j 2 [n]. Moreover, wi =
k(1, 1, . . . , 1, 0, . . . , 0)k` (there are 2i 1s). Let ⇧ 2 RO(d)⇥n(t+1) be a composition of Gaussian
embedding and CountSketch embedding (Definition 12) with " = 0.1, and S = ⇧ eD. We say
S 2 RO(d)⇥n is a SymSketch.

Modulus of Concentration. Now we give the definition of mmc(`) for a symmetric norm.
Definition 6 ([7]). Let X denote the uniform distribution over Sn�1. The median of a symmetric norm
k · k` is the unique value M` such that Prx⇠X [kxk` � M`] � 1/2 and Prx⇠X [kxk`  M`] � 1/2.
Definition 7 ([7]). For a given symmetric norm k · k`, we define the modulus of concentration to be
mc(`) = maxx2Sn�1 kxk`/M`, and define the maximum modulus of concentration to be mmc(`) =
maxk2[n] mc(`(k)), where k · k`(k) is a norm on Rk which is defined to be k(x1, x2, . . . , xk)k`(k) =
k(x1, x2, . . . , xk, 0, . . . , 0)k`.

It has been shown in [7] that mmc(`) = ⇥(n1/2�1/p) for `p norms when p > 2, mmc(`) = ⇥(1)

for `p norms when p  2, mmc(`) = e⇥(
p
n/k) for top-k norms, and mmc(`) = O(log n) for the

k-support norm [5] and the box-norm [25]. We show that mmc(`) is upper bounded by O(1) for
max-mix of `2 norm and `1 norm and sum-mix of `2 norm and `1 norm.
Lemma 9. For a real number c > 0, let kxk`a = kxk2 + ckxk1 and kxk`b = max{kxk2, ckxk1}.
We have mmc(`a) = O(1) and mmc(`b) = O(1).

Moreover, we show that for an Orlicz norm k · kG induced by a function G which satisfies Assump-
tion 1, mmc(`) is upper bounded by O(

p
CG log n).

Lemma 10. For an Orlicz norm k · kG on Rn induced by a function G which satisfies Assumption 1,
mmc(`) is upper bounded by O(

p
CG log n).
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Subspace Embedding. The following theorem shows that SymSketch is a subspace embedding.

Theorem 11. Let S 2 RO(d)⇥n be a SymSketch as defined in Definition 5. For a given matrix
A 2 Rn⇥d, with probability at least 0.9, for all x 2 Rd,

⌦
⇣
1/(

p
d · log3 n)

⌘
· kAxk`  kSAxk2  O

⇣
mmc(`) · d2 · log5/2 n

⌘
· kAxk`.

Furthermore, the running time of computing SA is eO(nnz(A) + poly(d)).

Combine Theorem 11 with Lemma 10, we have the following corollary.
Corollary 12. Let k · kG be an Orlicz norm induced by a function G which satisfies Assumption 1.
Let S 2 RO(d)⇥n be a SymSketch as defined in Definition 5. For a given matrix A 2 Rn⇥d, with
probability at least 0.9, for all x 2 Rd,

⌦
⇣
1/(

p
d · log3 n)

⌘
· kAxk`  kSAxk2  O

⇣p
CG · d2 · log7/2 n

⌘
· kAxk`.

Furthermore, the running time of computing SA is eO(nnz(A) + poly(d)).

4 Conclusion

In this paper, we give efficient algorithms for solving the overconstrained linear regression problem,
when the loss function is a symmetric norm. For the special case when the loss function is an Orlicz
norm, our algorithm produces a (1+")-approximate solution in eO(nnz(A)+poly(d/")) time. When
the loss function is a general symmetric norm, our algorithm produces a

p
d · polylog n ·mmc(`)-

approximate solution in eO(nnz(A) + poly(d)) time.

In light of Problem 1, there are a few interesting problems that remain open. Is that possible to design
an algorithm that produces (1 + ")-approximate solutions to the linear regression problem, when
the loss function is a general symmetric norm? Furthermore, is that possible to use the technique of
linear sketching to speed up the overconstrained linear regression problem, when the loss function is
a general norm? Answering these problems could lead to a better understanding of Problem 1.
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