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Abstract

Reconstructing observed images from fMRI brain recordings is challenging. Unfor-
tunately, acquiring sufficient “labeled” pairs of {Image, fMRI} (i.e., images with
their corresponding fMRI responses) to span the huge space of natural images is
prohibitive for many reasons. We present a novel approach which, in addition to
the scarce labeled data (training pairs), allows to train fMRI-to-image reconstruc-
tion networks also on “unlabeled” data (i.e., images without fMRI recording, and
fMRI recording without images). The proposed model utilizes both an Encoder
network (image-to-fMRI) and a Decoder network (fMRI-to-image). Concatenating
these two networks back-to-back (Encoder-Decoder & Decoder-Encoder) allows
augmenting the training with both types of unlabeled data. Importantly, it allows
training on the unlabeled test-fMRI data. This self-supervision adapts the re-
construction network to the new input test-data, despite its deviation from the
statistics of the scarce training data.

Project Website: http://www.wisdom.weizmann.ac.il/~vision/ssfmri2im/

1 Introduction
Developing a method for high-quality reconstruction of seen images from the corresponding brain
activity is an important milestone towards decoding the contents of dreams and mental imagery
(Fig 1a). In this task, one attempts to solve for the mapping between fMRI recordings and their
corresponding natural images, using many “labeled” {Image, fMRI} pairs (i.e., images and their
corresponding fMRI responses). A good fMRI-to-image decoder is one that will generalize well to
reconstruction of new never-before-seen images from new fMRI recordings (we refer to these as
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Figure 1: Our proposed method. (a) The task: reconstructing images from evoked brain activity, inferred
from fMRI responses. (b), (c) Supervised training for decoding (b) and encoding (c) using limited training
pairs. This gives rise to poor generalization. (d), (e) Illustration of our added self-supervision, which enables
training on “unlabeled images” (any natural image with no fMRI recording – (d)), and on the “unlabeled fMRI”
(fMRI data without any corresponding images – (e)). In particular, the latter allows adapting the decoder to the
statistics of the target test-fMRI despite not having any information about their corresponding images.

“test-data” or “test-fMRI”). However, the lack in “labeled” training data limits the generalization
power of today’s fMRI decoders. Acquiring a large number of labeled pairs {Image, fMRI} is
prohibitive, due to the limited time a human can spend in an MRI scanner. As a result, most datasets
are limited to a few thousands of such pairs. Such limited samples cannot span the huge space of
natural images, nor the space of their fMRI recordings. Moreover, the poor spatio-temporal resolution
of fMRI signals, as well as their low Signal-to-Noise Ratio (SNR), reduce the reliability of the already
scarce labeled training data. Lastly, the train-set and test-set of the fMRI data often differ in their
statistical properties, specifically in their SNR. This SNR discrepancy is due to averaging a different
number of repeated recordings per image (typical of many fMRI datasets). It therefore introduces an
additional challenge of ‘domain transfer/adaptation’, which makes generalization even harder, and
affects the performance of current decoding methods.

Prior work in image reconstruction from fMRI. The task of reconstructing a visual stimulus from
fMRI has been approached by a number of methods which can broadly be classified into three
families: (i) Linear regression between fMRI data and handcrafted image-features (e.g., Gabor
wavelets) [1, 2, 3], (ii) Linear regression between fMRI data and Deep (CNN-based) image-features
(e.g., using pretrained AlexNet) [4, 5, 6], and (iii) End-to-end Deep Learning [7, 8, 9, 10].

The first two regression-based methods compute a linear model that relates fMRI voxels to image
feature representation. This can be done by either linearly predicting each voxel’s responses from
the image features [1, 2, 3, 5], or by linearly mapping voxel responses to image features from
which the image can be easily recovered [4, 6]. The feature representation is chosen such that it
closely mimics the neural activity in the visual cortex, with the hope that a simple model (like
linear regression) will suffice to capture the remaining mapping. Methods in the second category
benefited from utilizing data-driven learned features from leading CNN models trained for natural
image classification [5, 11, 12, 13, 7, 14, 15]. The last category refers to recent attempts to train
high-complexity deep models which directly decode an fMRI recording into its corresponding image
stimulus. To our best knowledge, methods [6] and [8] are the current state-of-the-art in this field.
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All these methods are supervised (i.e., train their decoder on pairs of {Image, fMRI}), hence suffer
from the very limited training data. Purely supervised models are prone to poor generalization to new
test-data (fMRI of new images). To overcome this problem, recent methods [6, 8, 9, 10] constrain the
reconstructed image to have natural-image statistics by introducing Generative Adversarial Networks
(GANs) into their decoder. These methods gave leap advancement in reconstruction quality from
fMRI, and tend to produce natural-looking images. Nevertheless, despite their pleasant natural
appearance, their reconstructed images are often unfaithful to the actual images underlying the
test-fMRI (see Fig 5a).

We present a new approach to overcome the inherent lack of training data and the discrepancy
between the train/test statistics, by introducing self-supervision using unlabeled data. Our approach
is illustrated in Fig 1. We train two types of networks: an Encoder E, to map natural images to
their corresponding fMRI response, and a Decoder D, to map fMRI recordings to their correspond-
ing images. Concatenating those two networks back-to-back, E-D, yields a combined network
whose input and output are the same image (Fig. 1d). This allows for unsupervised training on
unlabeled images (i.e., images without fMRI recordings, e.g., 50,000 randomly sampled natural
images in our experiments). Such self-supervision adapts the network to the statistics of never-
before-seen images. Moreover, concatenating our two networks the other way around, D-E, yields a
combined network with the same shared weights as E-D, but whose input and output are now an fMRI
signal (Fig. 1e). This allows unsupervised training on unlabeled fMRI. Specifically, those unla-
beled fMRI samples can be legitimately drawn from the test-fMRI cohort, while their corresponding
images (“test-images”) are excluded from training (Fig 1e).

Training on these unlabeled test-fMRI (without their images) is a key feature of our method:
it enables to adapt the network to the statistics of the new (unlabeled) test-data. Learning the statistics
of the test-fMRI directly addresses the lack in labeled training data and the train/test statistics
discrepancy. Note that our “training on test data”, which may seem ”illegal” at first sight, is in fact
valid. It refers only to training on unlabeled samples from the Decoder’s input space (test-fMRI),
whereas the test-images (the “labels”) are never used at any stage of the training.

Fig. 2 exemplifies the power of adding unsupervised training on unlabeled data. Notably, we found
the unsupervised training on the unlabeled test-fMRI (Fig 1e) to provide the greatest boost in
performance.

Unsupervised training on unlabeled natural images was also recently proposed in [8], where they used
these images to produce additional surrogate fMRI-data to train their model. This, however, does not
help to adapt the network to the statistics of the new test-fMRI. To the best of our knowledge, we
are the first to provide an approach for adding self-supervised training on unlabeled fMRI. This self-
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supervision provides an improvement in decoding of never-before-seen images from brain activity,
despite the very limited training data.

Insufficient training data and domain-adaptation [17] are the focus of many recent machine learning
works, including transfer learning [18], unsupervised and self-supervised learning [19, 20, 21, 22],
semi-supervised and transductive learning [23, 24, 25, 26]. Nevertheless, these approaches often
assume that there is sufficient labeled data in the ‘source domain’, and that the problem is the
generalization to the unlabeled ‘target domain’. This, however, is not the case here. There is too little
data (both labeled or unlabeled) to work with in this challenge. The approach we took is inspired by
the recent advances in “Deep-Internal-Learning” [27, 28, 29], which train an image-specific network,
at test time, on the test-image alone, without requiring any prior training examples. Our approach
combines ideas from Internal-Learning with supervised-learning, to get the best of both worlds.

Our contributions are therefore several-fold:

• We propose a new approach to handle the inherent lack in Image-fMRI training data.
• To the best of our knowledge, we are the first to suggest an approach for self-supervised training

on unlabeled fMRI data (with no images), and in particular, on the test-fMRI data.
• We demonstrate the power and versatility of our approach by applying it (with the same architecture

and same hyperparameters) to two very different fMRI datasets. We achieve competitive results in
image reconstruction on both datasets (‘fMRI on ImageNet’ [16], and ‘vim-1’ [1]). Most methods,
including those we compared our results with, are adapted to only one dataset.

2 Method overview
Our training consists of two phases which are illustrated in Fig 3. In the first phase, we apply
supervised training of the Encoder E alone. We train it to predict the fMRI responses of input images
using the image-fMRI training pairs (Fig 3a). In the second phase, we use the pretrained Encoder
(from the first phase) and train the Decoder D, keeping the weights of E fixed. D is trained jointly
using both the labeled and the unlabeled data, simultaneously. Each training batch consists of three
types of training data: (i) labeled image-fMRI pairs from the training set (Fig 1b), (ii) unlabeled
natural images (Fig 1d), and (iii) unlabeled fMRI (Fig 1e).

Specifically, we draw the unlabeled images from a large external database of 50K ImageNet images,
which is disjoint to the considered image-fMRI dataset. This promotes adaptation of the Decoder
to the statistics of natural images. The unlabeled fMRI data is drawn from the unlabeled test-fMRI
cohort (without any test-images, i.e., without their “labels”). This promotes adaptation of the Decoder
to the statistics of the fMRI test data. Once completed, inference of test stimuli is carried out by
feeding-forward the test-fMRI through the trained Decoder.

Note that our “training on test data”, which may seem ”illegal” at first sight, is in fact valid. It
refers only to training on unlabeled samples from the Decoder’s input space (test-fMRI), whereas
the test-images (the “labels”) are never used at any stage of the training.

The motivation for using two training phases is to allow the Encoder to converge at the first phase,
and then serve as strong guidance for the more severely ill-posed decoding task, which is the focus of
the second phase. The weights of the Encoder are kept fixed during the Decoder training, to ensure
that the Encoder’s output representation does not diverge from predicting fMRI responses by the
unsupervised training objectives 1d,e.

We next describe each phase in more detail. We start by supervised training of the Encoder.

2.1 The Encoder E (Images→ fMRI)

The training of the Encoder is illustrated in Fig. 3a. Let r̂ = E (s) denote the encoded fMRI response
from image, s, by Encoder E. We define fMRI loss by a convex combination of mean square error
and cosine proximity with respect to the ground truth fMRI, r. The fMRI loss is defined as:

Lr (r̂, r) = α ‖r̂ − r‖2 − (1− α) cos (∠ (r̂, r)) , (1)

where α is a hyperparameter set empirically (see Implementation Details). We use this loss for
training the Encoder E. However, this loss is also used to define the Decoder-Encoder loss (unlabeled
fMRI) on which we detail later.
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Figure 3: Training phases & Architecture. (a) The first training phase: Supervised training of the
Encoder with {Image, fMRI} pairs. (b) Second phase: Training the Decoder simultaneously with 3 types of
data: {Image, fMRI} pairs (supervised examples), unlabeled natural images (self-supervision), and unlabeled
test-fMRI (self-supevision). Note that the test-images are never used for training. The pretrained Encoder from
the first training phase is kept fixed in the second phase. (c) Encoder and Decoder architectures. BN, US, and
ReLU stand for batch normalization, up-sampling, and rectified linear unit, respectively.

Notably, in the considered fMRI datasets, the subjects who participated in the experiments were
instructed to fixate at the center of the images. Nevertheless, eye movements were not recorded
during the scans thus the fixation performance is not known. To accommodate the center-fixation
uncertainty, we introduced random shifts of the input images during Encoder training. This resulted in
a substantial improvement in the Encoder performance and subsequently in the image reconstruction
quality. Upon completion of Encoder training, we transition to training the Decoder together with the
fixed Encoder.

2.2 The Decoder D (fMRI→ Images)

The training loss of our Decoder consists of three main losses illustrated in Fig. 3b:

LD + LED + LDE . (2)
LD is a supervised loss on training pairs of image-fMRI. LED and LDE are unsupervised losses
on unlabeled images (without fMRIs) and unlabeled fMRIs (without images). All 3 components
of the loss are normalized to have the same order of magnitude (all in the range [0, 1], with equal
weights), to guarantee that the total loss is not dominated by any individual component. We found our
reconstruction results to be relatively insensitive to the exact balancing between the three components
(see Supplementary-Material).

We next detail each component of the loss.

Decoder Supervised Training is illustrated in Fig. 1b. Given training pairs {(r, s)}, the supervised
loss LD is applied on the decoded stimulus, ŝ = D (r), and is defined via the image reconstruction
objective, Ls, as

LD = Ls (ŝ, s) .

Ls consists of losses on image RGB values, LRGB , and its features, Lfeatures. We denote the
features extracted from an image, s, by ϕ (s), and chose ϕ to be pretrained a feature-extractor.
Specifically we used activations from the first and the second convolutional layers of VGG19 [30].
The Image loss for a reconstructed image ŝ reads:

Ls (ŝ, s) = LRGB (ŝ, s) + Lfeatures (ŝ, s) +R (ŝ) (3)

LRGB (ŝ, s) ∝ ‖ŝ− s‖1 , Lfeatures (ŝ, s) ∝ ‖ϕ (ŝ)− ϕ (s)‖2 , R (ŝ) ∝ TV (ŝ) . (4)

The last term corresponds to total variation (TV) regularization of the reconstructed image, ŝ = D (r).
In addition to defining the Decoder supervised loss, the Image loss is also used to define the Encoder-
Decoder loss (unlabeled images) explained later.
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We now detail on the crux of our method: Unsupervised training with unlabeled data.

Encoder-Decoder training on unlabeled Natural Images is illustrated in Fig. 1d. This objective
enables to train on any desired unlabeled image, well beyond the 1200 images included in the
main fMRI dataset. To train on images without corresponding fMRI responses, we map images to
themselves through Encoder-Decoder transformation,

s 7→ ŝED = D (E (s)) .

The unsupervised component LED of the loss in Eq 2 on unlabeled images, s, reads:

LED = Ls (ŝED, s) ,

where Ls is Image loss defined in Eq 3.

Decoder-Encoder training on unlabeled test fMRI is illustrated in Fig. 1e. Adding this objective
greatly improved our reconstruction quality compared to training on paired samples only. To train
on fMRI data without corresponding images, we map an fMRI response to itself through Decoder-
Encoder transformation:

r 7→ r̂DE = E (D (r)) .

This yields the following unsupervised component LDE of the loss in Eq 2 on unlabeled fMRI
responses r:

LDE = Lr (r̂DE , r) ,

where Lr is fMRI loss defined in Eq 1.

Importantly, the fMRI samples which we used here were drawn from the test cohort. This enables
to adapt the Decoder to the statistics of the test-fMRI data (which we want to decode). The same
test-fMRI data is subsequently used at inference.

2.3 Implementation details

We focused on 112x112 RGB or grayscale image reconstruction (depending on the dataset), although
our method works well also on other resolutions.

Architectures of the Encoder and the Decoder are illustrated in Fig. 3c. For the Decoder we used
a fully connected layer to transform and reshape the vector-form fMRI input into 64 feature maps
with spatial resolution 14x14. This representation is then followed by three blocks, each consists of:
(i) 3x3 convolution with unity stride, 64 channels, and ReLU activation, (ii) x2 up-sampling, and
(iii) batch normalization. To yield the output image we finally performed an additional convolution,
similar to the preceding ones, but with three channels to represent colors, and a sigmoid activation
to keep the output values in the 0-1 range. We used Glorot-normal[31] to initialize the weights.
The design of the Encoder consists of feature extraction using pretrained AlexNet conv1 weights,
followed by batch normalization. The next operations include three blocks of 3x3 convolution with
32 channels, ReLU activation with stride 2, and batch normalization. Lastly, we use a fully connected
layer to bring the output to voxel space. We initialized the weights using Glorot normal initializer.

Hyperparameter tuning. We trained the Encoder with α = 0.9 using SGD optimizer for 80 epochs
with an initial learning rate of 0.1, with a predefined learning rate scheduler. During Decoder
training with supervised and unsupervised objectives, each training batch contained 60% paired data
(supervised training), 20% unlabeled natural images (without fMRI), and 20% unlabeled test-fMRI
(without images). We trained the Decoder for 150 epochs using Adam optimizer with an initial
learning rate of 1e-3, and 80% learning rate drop after every 30 epochs.

Runtime. Our system completes the two-stage training within approximately 15 min using a single
Tesla V100 GPU while inference (decoding) is performed in real time.

Experimental datasets. We experimented with two publicly available (and very different) benchmark
fMRI datasets, using the same architectures and hyperparameters: (i) fMRI on ImageNet [16], and
(ii) vim-1 [1]. These datasets provide fMRI recordings paired with their corresponding underlying
images. Subjects were instructed to fixate at a cross located at center of the presented images. ‘fMRI
on ImageNet’ comprises 1250 distinct ImageNet images drawn from 200 selected categories. The
train- and test-fMRI data consist of 1 and 35 (repeated recordings) per presented stimulus, respectively.
Fifty image categories provided the fifty test images, one from each category. The remaining 1200

6

https://openneuro.org/datasets/ds001246/versions/1.0.1
https://crcns.org/data-sets/vc/vim-1/about-vim-1


were defined as train set (with only one fMRI recording). We considered approximately 4500 voxels
from the visual cortex provided by the authors of [16]. ‘vim-1’ comprises 1870 distinct grayscale
images. fMRI was recorded (i) twice for 1750 images and defined the training data, and (ii) 13 times
for the remaining 120 images, defining the test data.

We screened approximately 8500 out of the 50K recorded voxels by their SNR. We used additional
50K unlabeled natural images from ImageNet [32] validation data for the unsupervised training on
unlabeled images (Encoder-Decoder objective, Fig. 1d). We verified that the images in our additional
unlabeled external dataset, are distinct from those in the “fMRI on ImageNet”.

Performance evaluation. The reconstruction quality of images from fMRI was assessed both
visually and objectively, and was compared with the two leading methods [6, 8] (Fig. 5). The
similarity measure was based on correlating pixel values between the reconstructed image and an
original image. However, the absolute correlation value on its own is meaningless, and cannot be
compared across different types of reconstructions, because of its sensitivity to variations in edge
intensity, edge misalignments, etc. For example, when the edges of the reconstructed image are not
aligned with those of the ground-truth image (as in the reconstructed white goat in Fig. 4d), standard
image-to-image similarity measures will favor a blurrier version of the reconstructed image (e.g.,
the goat in Fig. 4c) over a sharp one (the goat in Fig. 4d). To alleviate this inherent bias, we used
an objective image-reconstruction quality measure by computing its ‘correct-identification rate’ in
a multi-image identification task (as proposed in [6]). The correlation measure, while not ideal,
would still produce higher correlation value with the ground-truth image, than with other random
sharp images. For each reconstructed image, the task is to identify its ground truth image among
n candidate images (n= 2, 5 or 10), one being the true ground truth, while the rest were randomly
selected. This identification was based on the same correlation measure (between the reconstructed
image and each candidate image). The candidate image which scored the max Pearson correlation
was determined to be the identified ‘ground truth’.

Because of the randomness in our training process we repeated the analysis multiple times and
averaged over the reconstructed images: 20 runs for ‘fMRI on ImageNet’, and 10 runs for ‘vim-1’.

3 Experimental results
Fig. 2 shows our results with the proposed method, which includes the combined supervised and
unsupervised training. These results (in red frames) are contrasted with the results obtainable when
using supervised training only (with the 1200 labeled training pairs). All the displayed images were
reconstructed from the test-fMRI. The red-framed images show many faithfully-reconstructed shapes,
textures, and colors, which depict recognizable scenes and objects. In contrast, using the supervised
objective alone led to reconstructions that were considerably less faithful and recognizable (middle
columns in Fig. 2). The reconstructions of the entire test cohort (50 images) can be found in the
Supplementary-Material.

Ablation study of the method components

Fig. 4 shows an analysis of the merit of our unsupervised training. Our complete method, which
includes training on unlabeled images and on unlabeled test-fMRI is compared against three baselines:

(i) A purely supervised approach (Fig. 1b), relying only on image-fMRI pairs (Fig. 4b). (ii) Adding
also unsupervised training on many external unlabeled images (Fig. 4c). Our results suggest a
discernible albeit moderate improvement due to this objective. (iii) Adding also unsupervised training
on unlabeled fMRI data from the test-fMRI cohort (Fig. 4d). This provides a dramatic improvement
in the results, However, excluding the single unlabeled target-fMRI of the specific test-image
(Fig. 4e) leads to a marked degradation in reconstruction quality. This indicates the importance of
adapting our model to the actual test-fMRI which is designated for inference.

We evaluated the reconstruction quality of each component of our method using n-way identification-
task based on pixel-level similarity of the reconstructed images and candidate ground truth images.
This evaluation confirmed the qualitative trend of better reconstruction by the full method compared
to the ablated versions 1b,d,e, at varying number of candidate ground-truth images: n = 2, 5, 10 (see
Performance Evaluation). For a 2-way identification task (detecting the source of a reconstructed
image among two candidate images) we report average scores of 80.1% for supervised training-only,
83.2% when adding the training on additional unlabeled images, and 85.3% for the full method. The
identification accuracy dropped to 84.1% when the target test-fMRI was excluded from training.
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A major factor underlying the performance leap when training on unlabeled test-fMRI (incorporating
LDE) was the repeat-count of test-fMRI recordings. Averaging over multiple repeats results in fMRI
samples with higher SNR, compared to those in the training data which only have a single repeat. Our
ablation studies showed that reconstruction improves as the number of averaged test-fMRI repeats
increases (see Supplementary-Material). This shows that our D-E architecture exploits the better SNR
of the test-fMRI and adapts D to the statistics of the test-fMRI, which deviates from the statistics
(SNR) of the training data.

Comparison with state-of-the-art methods

We compared our results both visually and quantitatively against the two leading methods: Shen et
al. [6]) and St-Yves et al. [8] – each on its relevant dataset.

Visual comparison. Fig 5a,b compares the results of our method with the corresponding ones
proposed in [6, 8]. Each of these methods focused on one specific fMRI dataset, either ‘fMRI on
ImageNet’ [16] or ‘vim-1’ [1]. Both methods used GANs as natural image priors to increase their
generalization power when having very limited training data, resulting in natural-looking images
in some cases however substantially deviant from the actual images underlying the fMRI (Shen et
al. [6]) and/or low quality (St-Yves et al. [8]). Our method seems to better reconstruct shapes, details
and global layout in the reconstructed images than [6, 8]. This is supported visually and numerically.

Quantitative comparison. We report quantitative objective comparisons of the reconstructed images
by our method and those by [6, 8] in Fig. 5c,d. These panels show the correct-identification rate
(within a method) for n-way classification tasks for n = 2, 5, 10 (see Performance Evaluation). We
evaluate our method and two variants of the method of [6] on the ‘fMRI on ImageNet’ benchmark
dataset (Fig. 5c). Our method scored 85.3% mean identification accuracy, competing favorably
against both variants of [6] by a margin of at least 5% across all task difficulty levels (n = 2, 5, 10).
We repeated the analysis for ‘vim-1’ fMRI dataset (Fig. 5d), where our method scored accuracy of
70.5% (for n = 2), outperforming the method from [8] by at least 3% across difficulty levels. Taken
together, our method competes favorably and slightly outperform state-of-the-art methods. This
advantage holds at least with respect to the two considered datasets, and is robust to varying difficulty
levels of the identification task.

Conclusion

This work highlights the importance of self-supervised training on unlabeled input test data. This
addresses the inherent lack in labeled (supervised) training data, and the discrepancy between the
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statistics of the train/test data. Our experiments show that self-supervised training on unlabeled
test-fMRI (without using any test-images for training) has a dramatic effect on the decoded images.
It further has a stronger effect than self-supervised training on unlabeled natural images only. Particu-
larly, including self-supervision on the target-fMRI shows the highest impact on the reconstruction
of the corresponding target image. These suggest the importance of adapting the network to the
statistics of the input test data.

While image reconstruction can eventually become a strong neuroscientific tool, this is not the
focus of the current work. This work highlights a new learning method, which is exemplified on a
difficult neuroscientific problem, but is not limited to it. The characteristics of the fMRI-inference
problem are common to other ill-posed learning tasks where labeled training data is scarce, while
high generalization power is desired. Adapting to the statistics of the target test data may be useful
for promoting generalization for those other problem areas as well.
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