
We thank all reviewers for their valuable and constructive feedback. Below are our responses.1

Revs. 1,2,3 - Formatting & Citation: We will fix any typos, cite the reference (Durmus et al., 2016), clarify the2

definitions of dB
(i)
u , X̄t, and “smoothness”, supply a reference for eq (6), and correct the reference letter case issue.3

Revs. 1,3 - Eq (13-14): We will provide a short instructive derivation for eqs (13-14) in the appendix.4

Rev. 1 - Sec. 4.2: We will add more clarification on the class of non-convex potentials at the beginning of the section.5
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Rev. 1 - dimension dependence: Figure on the right shows the asymptotic bias vs6

dimensionality for a Gaussian mixture problem. We estimated W2 with the Monte7

Carlo estimator detailed in App. F and fitted a line with least squares.8

Rev. 1 - x-axis in Fig. 1(b): The original motivation was to showcase the evolution9

of the distance of SRK-LD iterates to the target distribution across iterations. The key10

point made is that SRK-LD produces a sequence of iterates with lower asymptotic11

bias than that produced by EM. However, we agree that a refined measure is required12

to demonstrate the algorithm’s performance in terms of computational resource usage.13

To this end, we performed a wall time analysis, whose results were included in App.14

G.1.3 of our original submission. To summarize the findings, SRK-LD is 2.5-3 times15

as costly as EM (on a CPU) per iteration. However, the scheme can still beat EM in terms of total cost if we select a16

much larger step size for it than that for EM. Recall, Sec. 5.1 and Fig. 1(a) demonstrated that SRK-LD can be run with17

large step sizes, at which running EM results in divergence.18

Rev. 1 - MSE in Fig. 1c: We simulate with EM using a small step size of 10−6 until we obtain an initial batch19

of particles roughly distributed as the target distribution. We evolve this same initial batch in three ways: (i) using20

EM with a small step size of 10−6, (ii) using SRK-ID with a step size of 10−3, and (iii) using EM with a step size21

of 10−3. We treat (i) as the true continuous-time process and estimate the MSE of EM and SRK-ID at each iteration22

with the formula 1
N

∑N
i=1 ‖X

(i)
t −X

(i)
hk‖, where Xt is the continuous-time process computed by (i), and Xhk is the23

discrete-time Markov chain (either (ii) or (iii)). Here, hk = t, h is the step size, and k is the iteration index. The24

superscript is used to index entries in a batch with N samples. The MSE increases since we started off from an initial25

batch that is roughly distributed as the target distribution, and the discrete-time Markov chains (ii) and (iii) each has26

their own biases. The purpose was to demonstrate that (ii) has a smaller bias than (iii). Note the setting was detailed in27

Section 5.2 and App. G.2 in our original submission. We preferred to show these plots as opposed to error-vs-iteration28

plots since we found it hard to choose a good initialization such that neither method took very long to converge.29

Rev. 2 - condition number dependence in Thm. 2: A convergence bound where the exponent of the Lipschitz30

constant L in the numerator matches up with the exponent of the strong convexity constant m in the denominator would31

give us insight into the convergence behaviour at varying worst-case curvature cases. Yet, the two exponents don’t32

match up in our bound (such type of bounds aren’t uncommon; see e.g. [17, Thm. 5]). Plugging constants C2 and C333

into (35) shows that the dominating term decided by the condition number is O(κ5/3), where κ = L/m. However, our34

(slightly pessimistic) bound has additional terms dependent on smoothness with the dominant term being O(1 ∨ L6).35

Rev. 2 - uniform deviation: Local deviation orders are well-studied in the SDE literature typically using the Itô-36

Taylor expansion on the continuous process [38, 42]. In our case, to unroll the recursion and obtain a converging37

bound, it is instructive to rely on contraction of diffusion, high-order Lipschitz smoothness, and Markov chain moment38

bounds. We chose the more hands-on approach for tight constants, but note there are established results without explicit39

constants [42, Lem. 2.2.2]. We believe our approach might be the most straightforward in deriving uniform bounds.40

Rev. 2 - benefit with higher-order discretization: Indeed, Metropolis-adjusted algorithms allow exact sampling41

with fast convergence rates. We thank the reviewer for the pointer to Chen et al., 2019; we will discuss this in the42

final version. On the other hand, to the best of our knowledge, there has been limited success in modifying these43

methods to take advantage of data subsampling, which is typically required for scaling to large datasets. By contrast,44

Bayesian learning has witnessed considerable success in practice with SGLD [54], a gradient-subsampled version45

of the (asymptotically biased) gradient Langevin dynamics algorithm. We may expect direct discretizations (w/o46

Metropolis-adjustment) of exponentially contracting diffusions to take advantage of the data subsampling paradigm.47

A systematic study on this topic warrants an independent investigation. Yet, SRK-LD can be easily adapted to this48

scenario using existing techniques in the literature; see the next comment for more on this.49

Revs. 2,3 - stochastic oracle: Thank you for this recommendation. We assume an oracle model where (i) the50

randomness in the oracle is independent of that of the Brownian motion, (ii) the stochastic gradient ∇̂f is unbiased,51

i.e. E[∇̂f(x)] = ∇f(x) for all x ∈ Rd, and (iii) the stochastic gradient ∇̂f has bounded variance at iterates of the52

Markov chain and the “interpolated” random variables, i.e. E[‖∇f(Y )‖22] ≤ dσ2, where Y may be X̃k, H̃1 or H̃2.53

Compared to the full gradient case, the key differences in this setting are (a) Markov chain moment bounds become54

slightly “inflated”, and (b) local deviations have extra terms dependent on the variance of the oracle. Note that only55

(b) affects the rate’s dependence on ε. Under assumptions (i,ii,iii), one may show that SRK-LD achieves the same56

convergence rate when the variance dσ2 = O(ε2/h) for step size h. On the other hand, we recover the rate of Õ(dε−2)57

for gradient Langevin dynamics if the variance is large. The analysis and proof are mostly mechanical, following along58

similar lines of [12]. We will include a detailed discussion on this result.59


