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Abstract

Learning-to-learn or meta-learning leverages data-driven inductive bias to increase
the efficiency of learning on a novel task. This approach encounters difficulty when
transfer is not advantageous, for instance, when tasks are considerably dissimilar
or change over time. We use the connection between gradient-based meta-learning
and hierarchical Bayes to propose a Dirichlet process mixture of hierarchical
Bayesian models over the parameters of an arbitrary parametric model such as a
neural network. In contrast to consolidating inductive biases into a single set of
hyperparameters, our approach of task-dependent hyperparameter selection better
handles latent distribution shift, as demonstrated on a set of evolving, image-based,
few-shot learning benchmarks.

1 Introduction

Meta-learning algorithms aim to increase the efficiency of learning by treating task-specific learning
episodes as examples from which to generalize [47]. The central assumption of a meta-learning
algorithm is that some tasks are inherently related and so inductive transfer can improve sample
efficiency and generalization [8, 9, 5]. In learning a single set of domain-general hyperparameters
that parameterize a metric space [53] or an optimizer [40, 14], recent meta-learning algorithms
make the assumption that tasks are equally related, and therefore non-adaptive, mutual transfer is
appropriate. This assumption has been cemented in recent few-shot learning benchmarks, which
comprise a set of tasks generated in a uniform manner [e.g., 53, 14].

However, the real world often presents scenarios in which an agent must decide what degree of
transfer is appropriate. In some cases, a subset of tasks are more strongly related to each other, and
so non-uniform transfer provides a strategic advantage. On the other hand, transfer in the presence
of dissimilar or outlier tasks worsens generalization performance [44, 12]. Moreover, when the
underlying task distribution is non-stationary, inductive transfer to previously observed tasks should
exhibit graceful degradation to address the catastrophic forgetting problem [28]. In these settings, the
consolidation of all inductive biases into a single set of hyperparameters is not well-posed to deal
with changing or diverse tasks. In contrast, in order to account for this degree of task heterogeneity,
humans detect and adapt to novel contexts by attending to relationships between tasks [10].

In this work, we learn a mixture of hierarchical models that allows a meta-learner to adaptively
select over a set of learned parameter initializations for gradient-based adaptation to a new task. The
method is equivalent to clustering task-specific parameters in the hierarchical model induced by
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recasting gradient-based meta-learning as hierarchical Bayes [21] and generalizes the model-agnostic
meta-learning (MAML) algorithm introduced in [14]. By treating the assignment of task-specific
parameters to clusters as latent variables, we can directly detect similarities between tasks on the
basis of the task-specific likelihood, which may be parameterized by an expressive model such as a
neural network. Our approach, therefore, alleviates the need for explicit geometric or probabilistic
modeling assumptions about the weights of a complex parametric model and provides a scalable
method to regulate information transfer between episodes.

We additionally consider the setting of a non-stationary or evolving task distribution, which neces-
sitates a meta-learning method that possesses adaptive complexity. We translate stochastic point
estimation in an infinite mixture [39] over model parameters into a gradient-based meta-learning
algorithm that is compatible with any differentiable likelihood model and requires no distributional
assumptions. We demonstrate the unexplored ability of non-parametric priors over neural network
parameters to automatically detect and adapt to task distribution shift in a naturalistic image dataset;
addressing the non-trivial setting of task-agnostic continual learning in which the task change is
unobserved [c.f., task-aware settings such as 28].

2 Gradient-based meta-learning as hierarchical Bayes

Since our approach is grounded in the probabilistic formulation of meta-learning as hierarchical
Bayes [4], our approach can be applied to any probabilistic meta-learner. In this work, we focus
on model-agnostic meta-learning (MAML) [14], a gradient-based meta-learning approach that
estimates global parameters to be shared among task-specific models as an initialization for a few
steps of gradient descent. MAML admits a natural interpretation as parameter estimation in a
hierarchical probabilistic model, where the learned initialization acts as data-driven regularization for
the estimation of task-specific parameters �̂j .

In particular, [21] cast MAML as posterior inference for task-specific parameters �j given some
samples of task-specific data xj1:N and a prior over �j that is induced by the early stopping of an iter-
ative optimization procedure; truncation at K steps of gradient descent on the negative log-likelihood
� log p(xj1:N | �j ) starting from �j(0) = ✓ can be then understood as mode estimation of the
posterior p(�j | xj1:N ,✓ ) . The mode estimates �̂j = �j(0) + ↵

PK
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)
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where xjN+1:N+M
is another set of samples from the jth task. A training dataset can then be summa-

rized in an empirical Bayes point estimate of ✓ computed by gradient-based optimization of the joint
marginal likelihood in (1) in across tasks, so that the likelihood of a datapoint sampled from a new
task can be computed using only ✓ and without storing the task-specific parameters.

3 Improving meta-learning by modeling latent task structure

If the task distribution is heterogeneous, assuming a single parameter initialization ✓ for gradient-
based meta-learning is not suitable because it is unlikely that the point estimate computed by a few
steps of gradient descent will sufficiently adapt the task-specific parameters � to a diversity of tasks.
Moreover, explicitly estimating relatedness between tasks has the potential to aid the efficacy of a
meta-learning algorithm by modulating both positive and negative transfer [52, 60, 45, 61], and by
identifying outlier tasks that require a more significant degree of adaptation [56, 23]. Nonetheless,
defining an appropriate notion of task relatedness is a difficult problem in the high-dimensional
parameter or activation space of models such as neural networks.

Using the probabilistic interpretation of Section 2, we deal with the variability in the tasks by
assuming that each set of task-specific parameters �j is drawn from a mixture of base distributions,
each of which is parameterized by a hyperparameter ✓(`). Accordingly, we capture task relatedness
by estimating the likelihood of assigning each task to a mixture component based simply on the
task-specific negative log-likelihood after a few steps of gradient-based adaptation. The result is
a scalable meta-learning algorithm that jointly learns task-specific cluster assignments and model
parameters, and is capable of modulating the transfer of information across tasks by clustering
together related task-specific parameter settings.
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Algorithm 1 Stochastic gradient-based EM for finite and infinite mixtures(
dataset D , meta-learning rate �, adaptation rate ↵, temperature ⌧ , initial cluster count L0, meta-batch

size J , training batch size N , validation batch size M , adaptation iteration count K, global prior G0)

Initialize cluster count L L0 and meta-level parameters ✓(1), . . . ,✓(L) ⇠ G0

while not converged do
Draw tasks T1, . . . , TJ ⇠ pD(T )
for j in 1, . . . , J do

Draw task-specific datapoints, xj1
. . .xjN+M

⇠ pTj
(x)

Draw a parameter initialization for a new cluster from the global prior, ✓(L+1) ⇠ G0

for ` in {1, . . . , L, L+ 1} do
Initialize �̂(`)

j  ✓(`)

Compute task-specific mode estimate, �̂(`)
j  �̂(`)

j + ↵
P

kr� log p(xj1:N
| �̂(`)

j )

Compute assignment of tasks to clusters, �j  E-STEP (xj1:N
, �̂(1:L)

j )

Update each component ` in 1, . . . , L, ✓(`)  ✓(`)+ M-STEP ({xjN+1:N+M
, �̂(`)

j , �j}
J
j=1)

Summarize {✓1, . . . } to update global prior G0

return {✓(1), . . . }

E-STEP( {xji
}Ni=1, {�̂

(`)
j }L`=1)

return ⌧ -softmax`(
P

i log p(xji
|�̂(`)

j ))

M-STEP({xji
}Mi=1, �̂

(`)
j , �j)

return �r✓[
P

j,i �j log p(xji
| �̂(`)

j )]

Top: Algorithm 1: Stochastic gradient-based expectation maximization (EM) for probabilistic clustering of
task-specific parameters in a meta-learning setting. Bottom: Subroutine 2: The E-STEP and M-STEP for a finite
mixture of hierarchical Bayesian models implemented as gradient-based meta-learners.

Formally, let zj be the categorical latent variable indicating the cluster assignment of each task-
specific parameter �j . Direct maximization of the mixture model likelihood is a combinatorial
optimization problem that can grow intractable. This intractability is equally problematic for the
posterior distribution over the cluster assignment variables zj and the task-specific parameters �j ,
which are both treated as latent variables in the probabilistic formulation of meta-learning. A scalable
approximation involves representing the conditional distribution for each latent variable with a
maximum a posteriori (MAP) estimate. In our meta-learning setting of a mixture of hierarchical
Bayes (HB) models, this suggests an augmented expectation maximization (EM) procedure [13]
alternating between an E-STEP that computes an expectation of the task-to-cluster assignments zj ,
which itself involves the computation of a conditional mode estimate for the task-specific parameters
�j , and an M-STEP that updates the hyperparameters ✓(1:L) (see Subroutine 2).

To ensure scalability, we use the minibatch variant of stochastic optimization [43] in both the E-STEP
and the M-STEP; such approaches to EM are motivated by a view of the algorithm as optimizing a
single free energy at both the E-STEP and the M-STEP [37]. In particular, for each task j and cluster
`, we follow the gradients to minimize the negative log-likelihood on the training data points xj1:N ,
using the cluster parameters ✓(`) as initialization. This allows us to obtain a modal point estimate
of the task-specific parameters �̂(`)

j . The E-STEP in Subroutine 2 leverages the connection between
gradient-based meta-learning and HB [21] and the differentiability of our clustering procedure to
employ the task-specific parameters to compute the posterior probability of cluster assignment.
Accordingly, based on the likelihood of the same training data points under the model parameterized
by �̂(`)

j , we compute the cluster assignment probabilities as

�(`)
j := p

�
zj = ` | xj1:N ,✓(1:L)� /

Z
p(xj1:N | �j) p(�j | ✓

(`)) d�j ⇡ p(xj1:N | �̂(`)
j ) . (2)

The cluster means ✓(`) are then updated by gradient descent on the validation loss in the M-STEP in
Subroutine 2; this M-STEP is analogous to the MAML algorithm in [14] with the addition of mixing
weights �(`)

j .

Note that, unlike other recent approaches to probabilistic clustering [e.g., 3] we adhere to the episodic
meta-learning setup for both training and testing since only the task support set xj1:N is used to
compute both the point estimate �̂(`)

j and the cluster responsibilities �(`)
j . See Algorithm 1 for the

full algorithm, whose high-level structure is shared with the non-parametric variant of our method
detailed in Section 5.
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Table 1: Meta-test set accuracy on the miniImageNet 5-way, 1- and 5-shot classification benchmarks from [53]
among methods using a comparable architecture (the 4-layer convolutional network from [53]). For methods on
which we report results in later experiments, we additionally report the total number of parameters optimized
by the meta-learning algorithm. a Results reported by [40]. b We report test accuracy for models matching train and test “shot” and
“way”. c We report test accuracy for a comparable base (task-specific network) architecture.

Model Num. param. 1-shot (%) 5-shot (%)

matching network [53] a 43.56 ± 0.84 55.31 ± 0.73
meta-learner LSTM [40] 43.44 ± 0.77 60.60 ± 0.71
prototypical networks [49] b 46.61 ± 0.78 65.77 ± 0.70
MAML [14] 48.70 ± 1.84 63.11 ± 0.92
MT-net [30] 38, 907 51.70 ± 1.84
PLATIPUS [15] 65, 546 50.13 ± 1.86
VERSA [20] c 807, 938 48.53 ± 1.84

Our method: 2 components 65, 546 49.60 ± 1.50 64.60 ± 0.92
3 components 98, 319 51.20 ± 1.52 65.00 ± 0.96
4 components 131, 092 50.49 ± 1.46 64.78 ± 1.43
5 components 163, 865 51.46 ± 1.68

4 Experiment: miniImageNet few-shot classification

Clustering task-specific parameters provides a way for a meta-learner to deal with task heterogeneity
as each cluster can be associated with a subset of the tasks that would benefit most from mutual
transfer. While we do not expect existing tasks to present a significant degree of heterogeneity given
the uniform sampling assumptions behind their design, we nevertheless conduct an experiment to
validate that our method gives an improvement on a standard benchmark for few-shot learning.

We apply Algorithm 3 with Subroutine 2 and L 2 {2, 3, 4, 5} components to the 1-shot and 5-shot,
5-way, miniImageNet few-shot classification benchmarks [53]; Appendix C.2.1 contains additional
experimental details. We demonstrate in Table 1 that a mixture of meta-learners improves the
performance of gradient-based meta-learning on this task for any number of components. However,
the performance of the parametric mixture does not improve monotonically with the number of
components L. This leads us to the development of non-parametric clustering for continual meta-
learning, where enforcing specialization to subgroups of tasks and increasing model complexity is, in
fact, necessary to preserve performance on prior tasks due to significant heterogeneity.

5 Scalable online mixtures for task-agnostic continual learning

The mixture of meta-learners developed in Section 3 addresses a drawback of meta-learning ap-
proaches such as MAML that consolidate task-general information into a single set of hyperparame-
ters. However, the method adds another dimension to model selection in the form of identifying the
correct number of mixture components. While this may be resolved by cross-validation if the dataset
is static and therefore the number of components can remain fixed, adhering to a fixed number of
components throughout training is not appropriate in the non-stationary regime, where the underlying
task distribution changes as different types of tasks are presented sequentially in a continual learning
setting. In this regime, it is important to incrementally introduce more components that can each
specialize to the distribution of tasks observed at the time of spawning.

To address this, we derive a scalable stochastic estimation procedure to compute the expectation
of task-to-cluster assignments (E-STEP) for a growing number of task clusters in a non-parametric

mixture model [39] called the Dirichlet process mixture model (DPMM). The formulation of the
Dirichlet process mixture model (DPMM) that is most appropriate for incremental learning is the
sequential draws formulation that corresponds to an instantiation of the Chinese restaurant process
(CRP) [39]. A CRP prior over zj allows some probability to be assigned to a new mixture component
while the task identities are inferred in a sequential manner, and has therefore been key to recent
online and stochastic learning of the DPMM [31]. A draw from a CRP proceeds as follows: For a
sequence of tasks, the first task is assigned to the first cluster and the jth subsequent task is then
assigned to the `th cluster with probability

p
�
zj = ` | z1:j�1, ⇣

�
=

(
n(`)/n+ ⇣ for `  L

⇣/n+ ⇣ for ` = L+ 1 ,
(3)
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E-STEP( xj1:N
, �̂(1:L)

j , concentration ⇣, threshold ✏)
DPMM log-likelihood for all ` in 1, . . . , L, ⇢(`)j  

P
i log p(xji

| �̂(`)
j ) + log n(`)

DPMM log-likelihood for new component, ⇢(L+1)
j  

P
i log p(xji
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j ) + log ⇣

DPMM assignments, �j  ⌧ -softmax(⇢(1)j , . . . , ⇢(L+1)
j )

if �(L+1)
j > ✏ then
Expand the model by incrementing L L+ 1

else
Renormalize �j  ⌧ -softmax(⇢(1)j , . . . , ⇢(L)

j )
return �j

M-STEP( {xji
}Mi=1, �̂

(`)
j , �j , concentration ⇣)

return � r✓[
P

j,i �j log p(xji
| �̂(`)

j ) + log n(`)]

Subroutine 3: The E-STEP and M-STEP for an infinite mixture of hierarchical Bayesian models.

where L is the number of non-empty clusters, n(`) is the number of tasks already occupying a cluster
`, and ⇣ is a fixed positive concentration parameter. The prior probability associated with a new
mixture component is therefore p( zj = L+ 1 | z1:j�1, ⇣ ).

In a similar spirit to Section 3, we develop a stochastic EM procedure for the estimation of the latent
task-specific parameters �1:J and the meta-level parameters ✓(1:L) in the DPMM, which allows
the number of observed task clusters to grow in an online manner with the diversity of the task
distribution. While computation of the mode estimate of the task-specific parameters �j is mostly
unchanged from the finite variant, the estimation of the cluster assignment variables z in the E-STEP
requires revisiting the Gibbs conditional distributions due to the potential addition of a new cluster at
each step. For a DPMM, the conditional distributions for zj are

p
�
zj = `| xj1:M , z1:j�1

�
/

8
<

:
n(`)R p(xj1:M |�(`)

j )p(�(`)
j |✓) d�j dG`(✓) for `  L

⇣
R
p(xj1:M |�(0)

j )p(�(0)
j |✓) d�j dG0(✓) for ` = L+ 1

(4)

with G0 as the base measure or global prior over the components of the CRP, G` is the prior over each
cluster’s parameters, initialized with a draw from a Gaussian centered at G0 with a fixed variance and
updated over time using summary statistics from the set of active components {✓(0), . . . ,✓(L)}.

Taking the logarithm of the posterior over task-to-cluster assignments zj in (4) and using a mode
estimate �̂(`)

j for task-specific parameters �j as drawn from the `th cluster gives the E-STEP in
Subroutine 3. We may also omit the prior term log p( �̂(`)

j | ✓(`) ) as it arises as an implicit prior
resulting from truncated gradient descent, as explained in Section 3 of [21].

6 Experiments: Task-agnostic continual few-shot regression & classification

By treating the assignment of tasks to clusters as latent variables, the algorithm of Section 5 can
adapt to a changing distribution of tasks, without any external information to signal distribution shift
(i.e., in a task-agnostic manner). Here, we present our main experimental results on both a novel
synthetic regression benchmark as well as a novel evolving variant of miniImageNet, and confirm the
algorithm’s ability to adapt to distribution shift by spawning a newly specialized cluster.

High-capacity baselines. As an ablation, we compare to the non-uniform parametric mixture
proposed in Section 3 with the number of components fixed at the total number of task distributions
in the dataset (3). We also consider a uniform parametric mixture in which each component receives
equal assignments; this can also be seen as the non-uniform mixture in the infinite temperature
(⌧ ) limit. Note that our meta-learner has a lower capacity than these two baselines for most of the
training procedure, as it may decide to expand its capacity past one component only when the task
distribution changes. Finally, for the large-scale experiment in Section 6.2, we compare with three
recent meta-learning algorithms that report improved performance on the standard miniImageNet
benchmark of Section 3, but are not explicitly posed to address the continual learning setting of
evolving tasks: MT-net [30], PLATIPUS [15], and VERSA [20].
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(a) polynomial (b) sinusoid (c) sawtooth

Figure 4: The diverse set of periodic functions used
for few-shot regression in Section 6.1.

(a) plain (b) blur (c) night (d) pencil

Figure 5: Artistic filters (b-d) applied to miniImageNet
(a) to ensure non-homogeneity of tasks in Section 6.2.

6.1 Continual few-shot regression

We first consider an explanatory experiment in which three regression tasks are presented sequentially
with no overlap. For input x sampled uniformly from [�5, 5], each regression task is generated, in a
similar spirit to the sinusoidal regression setup in [14], from one of a set of simple but distinct one-
dimensional functions (polynomial Figure 4a, sinusoid wave Figure 4b, and sawtooth wave Figure 4c).
For the experiment in Figure 6 and Figure 7, we presented the polynomial tasks for 4000 iterations,
followed by sinusoid tasks for 3000 iterations, and finally sawtooth tasks. Additional details on the
experimental setup can be found in Appendix C.2.2.

Results: Distribution shift detection. The cluster responsibilities in Figure 7 on the meta-test
dataset of tasks, from each of the three regression types in Figure 4, indicate that the non-parametric
algorithm recognizes a change in the task distribution and spawns a new cluster at iteration 4000
and promptly after iteration 7000. Each newly created cluster is specialized to the task distribution
observed at the time of spawning and remains as such throughout training, since the majority of
assignments for each type of regression remains under a given cluster from the time of its introduction.

Results: Improved generalization and slower degradation of performance. We investigate the
progression of the meta-test mean-squared error (MSE) for the three regression task distributions in
Figure 6. We first note the clear advantage of non-uniform assignment both in improved generalization,
when testing on the active task distribution, and in slower degradation, when testing on previous
distributions. This is due to the ability of these methods to modulate the transfer of information in
order to limit negative transfer. In contrast, the uniform method cannot selectively adapt specific
clusters to be responsible for any given task, and thus inevitably suffers from catastrophic forgetting.

The adaptive capacity of our non-parametric method allows it to spawn clusters that specialize to
newly observed tasks. Accordingly, even if the overall capacity is lower than that of the comparable
non-uniform parametric method, our method achieves similar or better generalization, at any given
training iteration. More importantly, specialization allows our method to better modulate information
transfer as the clusters are better differentiated. Consequently, each cluster does not account for many
assignments from more than a single task distribution throughout training. Therefore, we observed a
significantly slower rate of degradation of the MSE on previous task distributions as new tasks are
introduced. This is especially evident from the performance on the first task in Figure 6.

6.2 Continual few-shot classification

Next, we consider an evolving variant of the miniImageNet few-shot classification task. In this
variant, one of a set of artistic filters are applied to the images during the meta-training procedure
to simulate a changing distribution of few-shot classification tasks. For the experiment in Figure 8
and Figure 9 we first train using images with a “blur” filter (Figure 5b) for 7500 iterations, then with
a “night” filter (Figure 5c) for another 7500 iterations, and finally with a “pencil” filter (Figure 5d).
Additional details on the experimental setup can be found in Appendix C.2.3.

Results: Meta-test accuracy. In Figure 9, we report the evolution of the meta-test accuracy for
two variants of our non-parametric meta-learner in comparison to the parametric baselines introduced
in Section 6, high-capacity baselines. The task-agnostic variant is the core algorithm described
in previous sections, as used for the regression tasks. The task-aware variant augments the core
algorithm with a cool-down period that prevents over-spawning for the duration of a training phase.
This requires some knowledge of the duration which is external to the meta-learner, thus the task-

aware nomenclature (note that this does not correspond to a true oracle, as we do not enforce spawning
of a cluster; see Appendix D.1 for further details).
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transfer (i.e., catastrophic forgetting) to the tasks in each meta-test set in the legend; all methods but the
non-parametric method experience a large degree of catastrophic forgetting during an inactive phase.
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Figure 7: Task-specific per-cluster meta-test responsibilities �(`) for both active and unspawned clusters. Higher
responsibility implies greater specialization of a particular cluster (color) to a particular task distribution (row).

It is clear from Figure 8 that neither of our algorithms suffer from catastrophic forgetting to the same
degree as the parametric baselines. In fact, at the end of training, both of our methods outperform all
the parametric baselines on the first and second task.

Results: Specialization. Given the higher capacity of the parametric baselines and the inherent
degree of similarity between the filtered miniImageNet task distributions (unlike the regression tasks
in the previous section), the parametric baselines perform better on each task distribution while during
its active phase. However, they quickly suffer from degradation once the task distribution shifts. Our
approach does not suffer from this phenomenon and can handle non-stationarity owing to the credit
assignment of a single task distribution to a specialized cluster. This specialization is illustrated in
Figure 9, where we track the evolution of the average cluster responsibilities on the meta-test dataset
from each of the three miniImageNet few-shot classification tasks. Each cluster is specialized so as to
acquire the majority of a single task distribution’s test set assignments, despite the degree of similarity
between tasks originating from the same source (miniImageNet). We observed this difficulty with the
non-monotone improvement of parametric clustering as a function of components in Section 4.

7 Related Work
Meta-learning. In this work, we show how changes to the hierarchical Bayesian model assumed in
meta-learning [21, Fig. 1(a)] can be realized as changes to a meta-learning algorithm. In contrast,
follow-up approaches to improving the performance of meta-learning algorithms [e.g., 30, 15, 20] do
not change the underlying probabilistic model; what differs is the inference procedure to infer values
of the global (shared across tasks) and local (task-specific) parameters; for example, [20] consider
feedforward conditioning while [15] employ variational inference. Due to consolidation into one set
of global parameters shared uniformly across tasks, none of these methods inherently accommodate
heterogeneity or non-stationarity.
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Figure 9: Task-specific per-cluster meta-test responsibilities �(`) for both active and unspawned clusters. Higher
responsibility implies greater specialization of a particular cluster (color) to a particular task distribution (row).

Continual learning. Techniques developed to address the catastrophic forgetting problem in con-
tinual learning, such as elastic weight consolidation (EWC) [28], synaptic intelligence (SI) [58],
variational continual learning (VCL) [38], and online Laplace approximation [42] require access to
an explicit delineation between tasks that acts as a catalyst to grow model size, which we refer to as
task-aware. In contrast, our non-parametric algorithm tackles the task-agnostic setting in which the
meta-learner recognizes a latent shift in the task distribution and adapts accordingly.

8 Conclusion

Meta-learning is a source of learned inductive bias. Occasionally, this inductive bias is harmful
because the experience gained from solving a task does not transfer. Here, we present an approach
that allows a probabilistic meta-learner to explicitly modulate the amount of transfer between tasks,
as well as to adapt its parameter dimensionality when the underlying task distribution evolves. We
formulate this as probabilistic inference in a mixture model that defines a clustering of task-specific
parameters. To ensure scalability, we make use of the recent connection between gradient-based
meta-learning and hierarchical Bayes [21] to perform approximate maximum a posteriori (MAP)
inference in both a finite and an infinite mixture model. Our work is a first step towards more realistic
settings of diverse task distributions, and crucially, task-agnostic continual learning. The approach
stands to benefit from orthogonal improvements in posterior inference beyond MAP estimation
(e.g., variational inference [27], Laplace approximation [32], or stochastic gradient Markov chain
Monte Carlo [33]) as well as scaling up the neural network architecture.
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