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Abstract

Differential privacy has become a widely accepted notion of privacy, leading to
the introduction and deployment of numerous privatization mechanisms. How-
ever, ensuring the privacy guarantee is an error-prone process, both in designing
mechanisms and in implementing those mechanisms. Both types of errors will be
greatly reduced, if we have a data-driven approach to verify privacy guarantees,
from a black-box access to a mechanism. We pose it as a property estimation prob-
lem, and study the fundamental trade-offs involved in the accuracy in estimated
privacy guarantees and the number of samples required. We introduce a novel
estimator that uses polynomial approximation of a carefully chosen degree to op-
timally trade-off bias and variance. With n samples, we show that this estimator
achieves performance of a straightforward plug-in estimator with n In n samples,
a phenomenon known as sample size amplification. The minimax optimality of
the estimator is proved by comparing it to a matching fundamental lower bound.

1 Introduction

Differential privacy is gaining popularity as an agreed upon measure of privacy leakage, widely
used by the government to publish Census statistics [1], Google to aggregate user’s choices in web-
browser features [2, 3], Apple to aggregate mobile user data [4], and smart meters in telemetry [5].
As increasing number of privatization mechanisms are introduced and deployed in the wild, it is
critical to have countermeasures to check the fidelity of those mechanisms. Such techniques will
allow us to hold accountable the deployment of privatization mechanisms if the claimed privacy
guarantees are not met, and help us find and fix bugs in implementations of those mechanisms.

A user-friendly tool for checking privacy guarantees is necessary for several reasons. Writing a
program for a privatization mechanism is error-prone, as it involves complex probabilistic compu-
tations. Even with customized languages for differential privacy, checking the end-to-end privacy
guarantee of an implementation remains challenging [6, 7]. Furthermore, even when the implemen-
tation is error-free, there have been several cases where the mechanism designers have made errors
in calculating the privacy guarantees, and falsely reported higher level of privacy [8, 9]. This is
evidence of an alarming issue that analytically checking the proof of a privacy guarantee is a chal-
lenging process even for an expert. An automated and data-driven algorithm for checking privacy
guarantees will significantly reduce such errors in the implementation and the design. On other
cases, we are given very limited information about how the mechanism works, like Apple’s white
paper [4]. The users are left to trust the claimed privacy guarantees.

To address these issues, we propose a data-driven approach to estimate how much privacy is guar-
anteed, from a black-box access to a purportedly private mechanism. Our approach is based on
an optimal polynomial approximation that gracefully trades off bias and variance. We study the
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fundamental limit of how many samples are necessary to achieve a desired level of accuracy in the
estimation, and show that the proposed approach achieves this fundamental bound.

Problem formulation. Differential privacy (DP) introduced in [10] is a formal mathematical notion
of privacy that is widespread, due to several key advantages. It gives one of the strongest guarantees,
allows for precise mathematical analyses, and is intuitive to explain even to non-technical end-users.
When accessing a database through a query, we say the query output is private if the output did not
reveal whether a particular person’s entry is in the database or not. Formally, we say two databases
are neighboring if they only differ in one entry (one row in a table, for example). Let Pg p denote
the distribution of the randomized output to a query Q on a database D. We consider discrete valued

mechanisms taking one of S values, i.e. the response to a query is in [S] = {1,...,S} for some
integer S. We say a mechanism guarantees (e, §)-DP, [10], if the following holds
Pop(E) < ePop/(E)+9, @))

for some ¢ > 0, 6 € [0,1], and all subset E C [S] and for all neighboring databases D and D’.
When ¢ = 0, (¢,0)-DP is referred to as (pure) differential privacy, and the general case of § > 0 is
referred to as approximate differential privacy. For pure DP, the above condition can be relaxed as

Pop(z) < e Pgpi(x), ()

for all output symbol z € [S], and for all neighboring databases D and D’. This condition can now
be checked, one symbol z at a time from [S], without having to enumerate all subsets E2 C [S]. This
naturally leads to the following algorithm.

For a query Q and two neighboring databases D and D’ of interest, we need to verify the condition
in Eq. (2). As we only have a black-box access to the mechanism, we collect n responses from
the mechanism on the two databases. We check the condition on the empirical distribution of those
collected samples, for each x € [S]. If it is violated for any x, we assert the mechanism to be
not (¢,0)-DP and present z as an evidence. Focusing only on pure DP, [11] proposed an approach
similar to this, where they also give guidelines for choosing the databases D and D’ to test. However,
their approach is only evaluated empirically, no statistical analysis is provided, and a more general
case of approximate DP is left as an open question, as the condition in Eq. (1) cannot be decoupled
like Eq. (2) when 6 > 0.

We propose an alternative approach from first principles to check the general approximate DP guar-
antees, and prove its minimax optimality. Given two probability measures P = [py,...,pg] and
Q= [q,-..,qs]over [S] ={1,...,S}, we define the following approximate DP divergence with
respect to € as
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where [x]" = max{z,0}. The last representation indicates that this metric falls under a broader
class of metrics known as f-divergences, with a special choice of f(z) = [1 — e°z]". From the
definition of DP, it follows that a mechanism is (e, §)-DP if and only if d.(Pg p||Po,p/) < § for
all neighboring databases D and D’. We propose estimating this divergence d.(Pg p||Pg,p’) from
samples, and comparing it to the target §. This only requires number of operations scaling as S'lnn
where n is the sample size.

In this paper, we suppose there is a specific query Q of interest, and two neighboring databases D and
D’ have been already selected either by a statistician who has some side information on the structure
of the mechanism or by some algorithm, such as those from [11, 12, 13]. Without exploiting the
structure (such as symmetry, exchangeability, or invariance to the entries of the database conditioned
on the true output of the query), one cannot avoid having to check all possible combinations of
neighboring databases. As a remedy, [12] proposes checking randomly selected databases. This
in turn ensures a relaxed notion of privacy known as random differential privacy. Similarly, [13]
proposed checking the typical databases, assuming there we have access to a prior distribution over
the databases. Our framework can be seamlessly incorporated with such higher-level routines to
select databases.

Contributions. We study the problem of estimating the approximate differential privacy guaranteed
by a mechanism, from a black-box access where we can sample from the mechanism output given a



query Q, a database D, and a target (¢, ). We first show that a straightforward plug-in estimator of
d.(P||Q) achieves mean squared error scaling as (e°.5)/n, where S is the size of the alphabet and
n is the number of samples used (Section 2.1.1).

In the regime where we fix S and increase the sample size, this achieves the parametric rate of 1/n,
and cannot be improved upon. However, in many cases of practical interest where S is comparable
to n, we show that this can be improved upon with a more sophisticated estimator. To this end, we
introduce a novel estimator of d. (P||Q). The main idea is to identify the regimes of non-smoothness
in [p; — e°q;]T where the plug-in estimator has a large bias. We replace it by the uniformly best
polynomial approximation of the non-smooth regime of the function, and estimate those polynomial
from samples. By selecting appropriate degree of the polynomial, we can optimally trade off the
bias and variance. We provide an upper bound on the error scaling as (e£S)/(nlnn), when .S and
n are comparable. We prove that this is the best one can hope for, by providing a matching lower
bound.

We first show this for the case when we know P and sample from @ in Section 2.1, to explain
the main technical insights while maintaining simple exposition. Then, we consider the practical
scenario where both P and () are accessed via samples, and provide an minimax optimal estimator
in Section 2.2. This phenomenon is referred to as effective sample size amplification; one can achieve
with n samples a desired error rate, that would require n Inn samples for a plug-in estimator. We
present numerical experiments supporting our theoretical predictions in Section 3.

Related work. A formal investigation into verifying DP guarantees of a given mechanism was
addressed in [13]. DP condition is translated into a certain Lipschitz condition on Pg p over the
databases D, and a Lipschitz tester is proposed to check the conditions. However, this approach
is not data driven, as it requires the knowledge of the distribution Pg p and no sampling of the
mechanism outputs is involved. [12] analyzes tradeoffs involved in testing DP guarantees. It is
shown that one cannot get accurate testing without sacrificing the privacy of the databases used in
the testing. Hence, when testing DP guarantees, one should not use databases that contain sensitive
data. We compare some of the techniques involved in Section 2.1.1.

Our techniques are inspired by a long line of research in property estimation of a distribution from
samples. There has been significant recent advances for high-dimensional estimation problems,
starting from entropy estimation in [14, 15, 16]. The general recipe is to identify the regime where
the property to be estimated is not smooth, and use functional approximation to estimate a smoothed
version of the property. This has been widely successful in support recovery [17], density estimation
with ¢4 loss [18], and estimating Renyi entropy [19]. More recently, this technique has been applied
to estimate certain divergences between two unknown distributions, for Kullback-Leibler divergence
[20], total variation distance [21], and identity testing [22]. With carefully designed estimators, these
approximation-based approaches can achieve improvement over typical parametric rate of 1/n error
rate, sometimes referred to as effective sample size amplification.

Notations. We let the alphabet of a discrete distribution be [S] = {1,...,S} for some positive
integer S denoting the size of the alphabet. We let Mg denote the set of probability distributions
over [S]. We use f(n) 2 g(n) to denote that sup,, f(n)/g(n) > C for some constant C, and
f(n) < g(n) is analogously defined. f(n) < g(n) denotes that f(n) 2 g(n) and f(n) < g(n).

2 Estimating differential privacy guarantees from samples

We want to estimate d.(P]|Q) from a blackbox access to the mechanism outputs accessing two
databases, i.e. P = Pg p and () = Pg pr. We first consider a simpler case, where P = [p1, ..., pg]
is known and we observe samples from an unknown distribution @ = [q¢1, ..., ¢s] in Section 2.1.
We cover this simpler case first to demonstrate the main ideas on the algorithm design and analysis
technique while maintaining the exposition simple. This paves the way for our main algorithmic and
theoretical results in Section 2.2, where we only have access to samples from both P and Q.

2.1 Estimating d.(P| Q) with known P

For a given budget n, representing an upper bound on the expected number of samples we can
collect, we propose sampling a random number /N of samples from Poisson distribution with mean
n,ie. N ~ Poi(n). Then, each sample X; € [S] is drawn from @ for j € {1,..., N}, and we let



Qn = [G1,. .., d4s] denote the resulting histogram divided by n, such that §; £ |{j € [N] : X; =
J}|/m. Note that Q,, is not the standard empirical distribution, as ), §; # 1 with high probability.
However, in this paper we refer to ), as empirical distribution of the samples. The empirical
distribution would have been divided by NV instead of n. Instead, @,, is the maximum likelihood
estimate of the true distribution ). This Poisson sampling, together with the MLE construction of
Qn,, ensures independence among {¢; }5_,, making the analysis simpler.

2.1.1 Performance of the plug-in estimator

The following result shows that it is necessary and sufficient to have n ~ e S samples to achieve an
arbitrary desired error rate, if we use this plug-in estimator d. (P||Q,,), under the worst-case P and
Q. Some assumption on (P, Q) is inevitable as it is trivial to achieve zero error for any sample size,
for example if P and @) have disjoint supports. Both d. (P||Q) and d.(P||Q,,) are 1 with probability
one. We provide a proof in Appendix C.2. The bound in Eq. (4) also holds for d. (P, || Q).

Theorem 1. Forany € > 0 and support size S € 7., if n > €S, then the plug-in estimator satisfies

s
sup o[ |d:(Pl|@n) — d-(PIQ)P] = 2,

P,QeM n
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A similar analysis was done in [12], which gives an upper bound scaling as ¢2¢S/n. We tighten the
analysis by a factor of e, and provide a matching lower bound.

2.1.2 Achieving optimal sample complexity with a polynomial approximation

We construct a minimax optimal estimator using techniques first introduced in [16, 15] and adopted
in several property estimation problems including [18, 20, 19, 21, 22, 17].

Algorithm 1 Differential Privacy (DP) estimator with known P

Input: target privacy ¢ € R, query O, neighboring databases (D, D’), pmf of Pg p
samples from Pg pr, degree K € Z*, constants ¢1, co € R, expected sample size 2n
Output: estimate @?K,CLCQ (P||Qr) of de(Po,p||Po,p’)
P+ PQ7'D
Draw two independent sample sizes: N1 < Poi (n) and Ny < Poi (n)
Sample from Pg pr: {X; 1}, € [S]V' and {X; )02, € [S]N2
ij < MRX“W foralli € [S]and j € {1,2}
Qna < [q11,---,d4s1] and Qp 2 < [G1,2,- -, s,2]
fori =1to S do
0 , ifgi1>U(piscr,c)
0; DK((jm;pi) , ifGi1 € U(pi;cr,c2)  (defined in Appendix A)
[pi —€e“Giol™ , if iy <U(piscr,ca)
end for
de K(l,(z(PHQn) —~ 0V (1 A Z

To simplify the analysis, we split the samples randomly into two partitions, each having an inde-
pendent and identical distribution of Poi (n) samples from the multinomial distribution Q. We let
Qn1 = [G1,1,---,Gs1] denote the count of the first set of N3 ~ Poi (n) samples (normalized by
n), and Qpn2 = [§1.1,...,ds,1] the second set of Ny ~ Poi(n) samples. See Algorithm 1 for a
formal definition. Note that for the analysis we are collecting 2n samples in total on average. In
all the experiments, however, we apply our estimator without partitioning the samples. A major
challenge in achieving the minimax optimality is in handling the non-smoothness of the function
f(di;pi) = [pi — €°q;]" at p; ~ e°g;. We use one set of samples to identify whether an out-
come ¢ € [S] is in the smooth regime (§;1 ¢ U(p;;c1,c2)) or not (G;1 € U(ps; e, c2)), with an
appropriately defined set function:

cl+02)lnn lfp < clesnlnn

) 3
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for ¢y > ¢o > 0and p € [0, 1]. The scaling of the interval is chosen carefully such that (a) it is large
enough for the probability of making a mistake on the which regime (p;, ¢;) falls into to vanishes
(Lemma 13); and (b) it is small enough for the variance of the polynomial approximation in the
non-smooth regime to match that of the other regimes (Lemma 14). In the smooth regime, we use
the plug-in estimator. In the non-smooth regime, we can improve the estimation error by using the
best polynomial approximation of f(x;p) = [p — €° z] T, which has a smaller bias:

Dg(x;p) = argmin  max ! [p—e°z]T — P(2) ’ , (6)
Pepolyk zeU(p;cr,c1)

where polyk is the set of polynomial functions of degree at most K, and we approximate f(x;p)
in an interval U(p;ci1,c1) D U(p;ci,ca) for any ¢q > co. Having this slack of ¢; > c¢o in the
approximation allows us to guarantee the approximation quality, even if the actual q is not exactly
in the non-smooth regime U (p; ¢1, c2). Once we have the polynomial approximation, we estimate
this polynomial function D (x; p) from samples, using the uniformly minimum variance unbiased
estimator (MVUE).

There are several advantages that makes this two-step process attractive. As we use an unbiased
estimate of the polynomial, the bias is exactly the polynomial approximation error of Dy (z;p),
which scales as (1/K)+/(p; Inn)/n. Larger degree K reduces the approximation error, and larger
n reduces the support of the domain we apply the approximation to in U(p;c1,c;) (Lemma 14).
The variance is due to the sample estimation of the polynomial Dy (x;p), which scales as
(BXp;Inn)/n for some universal constant B (Lemma 14). Larger degree K increases the vari-
ance. We prescribe choosing K = c3 Inn for appropriate constant c3 to optimize the bias-variance
tradeoff in Algorithm 1. The methods of constructing the polynomial approximation D (z;p) and
corresponding unbiased estimator D (x; p) are described in details at Appendix A.

Theorem 2. Suppose lnn < C'(In S — €) for some constants C’, then there exist constants c1, ¢z
and c3 that only depends on C' and ¢ such that

Y 2 efS
Eq || de, k1,02 (P||Qn) — de(P S :
P,(S;élj)\/ts QH ,K,c1, 2( ”Q ) ( ”Q)} ] ~ nlon

(7

for K = c3Inn and where £7K7017C2 is defined in Algorithm 1.

We provide a proof in Appendix C.3, and a matching lower bound in Theorem 3. Note that the
plug-in estimator in Theorem 1 achieves the parametric rate of 1/n. In the low-dimensional regime,
where we fix S and grow n, this cannot be improved upon. To go beyond the parametric rate, we
need to consider a high-dimensional regime, where S grows with n. Hence, a condition similar to
Inn < C’1In S is necessary, although it might be possible to further relax it.

2.1.3 Matching minimax lower bound

In the high-dimensional regime, where S grows with n sufficiently fast, we can get a tighter lower
bound then Theorem 1, that matches the upper bound in Theorem 2. Again, supremum over () is
necessary as there exists (P, Q) where it is trivial to achieve zero error, for any sample size (see
Section 2.1.1 for an example). For any given P we provide a minimax lower bound in the following.
A proof is provided in Appendix C.4.

Theorem 3. Suppose S > 2 and there exists constants c,C1,Co > 0 such that C11In S < Inn <
Cyln S andn > c(efS)/In S, then

ecS

nlnn

. ~ 2
sup _ inf sup IEQHCZE(PHQH)—dE(PHQ)’ ] >
PEMS ds(PHQn) QEMS

(®)
where the infimum is taken over all possible estimators.

2.2 Estimating d.(P||Q) from samples

We now consider the general case where P = Pg p and () = Pg p/ are both unknown, and we
access them through samples. We propose sampling a random number of samples N7 ~ Poi (n)
and Ny ~ Poi(n) from each distribution, respectively. Define the empirical distributions P,, =



[p1,...,ps] and Q,, =[G, - - ., s] as in the previous section. From the proof of Theorem 1, we get
the same sample complexity for the plug-in estimator: If n > €S and S > 2, we have

€S
sup EQ[Id (P)|Qu) — do(PIQ)P] = &2
P,QeM n

€))

Using the same two-step process, we construct an estimator that improves upon this parametric rate
of plug-in estimator.

2.2.1 Estimator for d.(P||Q)

We present an estimator using similar techniques as in Algorithm 1, but there are several challenges
in moving to a multivariate case. The multivariate function f(x,y) = [z — e°y]™ is non-smooth in
aregion x = ey. We first define a two-dimensional non-smooth set U(c1, c2) C [0, 1] x [0, €°] as

(c1 + 02) Inn

Uer,e0) = {(p,eEQ):Ipequ < (vVp++Vesq), pe0,1], qG[O,l]} , (10

where 0 < c3 < c3. As before, the plug-in estimator is good enough in the smooth regime,
ie. (p,ecq) ¢ U(cy,ca).

We construct a polynomial approximation of this function with order K, in this non-smooth regime.
We will set K = c3Inn again to achieve the optimal tradeoff. We split the samples randomly into
four partitions, each having an independent and identical distribution of Poi (n) samples, two from
the multinomial distributions P and other two from (). See Algorithm 2 for a formal definition. We
use one set of samples to identify the regime, and the other for estimation. We give a full description
and justification of the algorithm in the longer version of this paper [23].

Algorithm 2 Differential Privacy (DP) estimator

Input: target privacy ¢ € R, query Q, neighboring databases (D, D’),
samples from Pg p and Pg p-, degree K € 77T, constants c;, cp € R, expected sample size 2n

Output: estimate d. k., o, (Pn||@n) of de(Po.p||Po)
P+ PQ"D, Q — PQ’D/
Draw four independent sample sizes: Ny 1, N1 2, Na 1, Na 2 ~ Poi(n)

Sample from Pg p: {X;, 1}{“; € [$]V and {Xlg}fvlf €[Sz

Sample from Pg pr: {Y;, 1}l i€ [S]N2 and {Y; 2}, € [S] V22

i [{¢€[Ny, Jj/LXf] =i}| and G; ; [{£€€[N2,;]:Ye,i= 1}\ forall i € [S] and j € {1,2}

Poa [Py Psals Pra < Lo - bs2ls Qua + [G11,.--,ds1) and Qo +

[G1,2,--5Gs,2]
fori=1to S do
PN N 1 = =
0 , ifps1—eGi1 < —y/ W( Di1++/€Gi1)
8; + Di2 — € iz , ifpi1—e“Gin >/ M( Dig +/€5Gi1)

A
D&()(pi,%%ﬂ) 5 lfpl 1 —+ e qz 1 < cilnn Inn

oy, K P2 d A A

Dy (Pi2s Gi.23 By dsa) - if (B edin) € U(chcz), Pin +e°Giq >

cilnn
n

end for
de Kcl,CQ(P ||Qn) «~0v (1 A Zz 1 0;)

case 1: For (z,e%y) € [0,(2¢; Inn)/n]>. A straightforward polynomial approximation of [z —
ey]* on [0, (2¢1 Inn)/n]? cannot achieve approximation error smaller than (1/K)((2c; Inn)/n).
As K = c3lnn, this gives a bias of 1/n for each symbol in [S], resulting in total bias of S/n. This
requires n > S to achieve arbitrary small error, as opposed to n. > S/1In S which is what we are
targeting. This is due to the fact that we are requiring multivariate approximation, and the bias is
dominated by the worst case y for each x. If y is fixed, as in the case of univariate approximation in
Lemma 14, the bias would have been (1/K)+/(efy2c; Inn)/n, with y = ¢;, where total bias scales

as 4/.5/n1nn when summed over all symbols i.



Our strategy is to use the decomposition [z — e*y]* = (v/Z + v/€=y) [/Z — /e¥y] . Each function
can be approximated up to a bias of (1/K)+/(Inn)/n, and the dominant term in the bias becomes
(1/K)+/(e%g;Inn)/n. This gives the desired bias. Concretely, we use two bivariate polynomials
ug (x,y) and v (z, y) to approximate /z + /y and [\/z — /g] " in [0, 1]2, respectively. Namely,

sup ‘uK(x,y) - Wz + )| = inf _ sup P’ y)— (Vz' +/y)| , and (11)
(=,y)€[0,1]2 Pepolyy (2/,y')€[0,1]2

sup ok (w,y) - [Vo—ylt| = inf  sup |P(aly) - [V - \/?]Jr’ - (12)
(z,y)€[0,1]2 Pepolyy (27,y)€[0,1]2

Denote hox (z,y) = uk (2, y)vi (x,y) — uk(0,0)vk(0,0). Define

2c1Inn L xn e‘yn
2 2¢ci1lnn’ 2¢i1lnn

DW(z,y) =

13)

for (x,e%y) € [0, (2¢1 1lnn)/ n]2. In practice, one can use the best Chebyshev polynomial expansion
to achieve the same uniform error rate, efficiently [24].

case 2: For (z,ey) € Ulcy,c1) and z + €y > (cp1lnn)/2n. We utilize the best polynomial
approximation of |¢| on [—1, 1] with order K. Denote it as Rk (t) = Z;io r;t7. Define

T — ey
2 )

K
- 1 L
DY (z,y:pin,din) = §ZTjW T efy —a)! + (14)
=0

where W = \/ (8¢iInn)/n (\/ Dijg + eatji,l). Finally, we use second part of samples to construct
unbiased estimator for Dg) (x,y) and Dg) (x,y;Pi1,Gi,1) by Lemma 11 and 12 . Namely,

E[Dg)(ﬁi,zyqz',z)} = Dﬁ?(p,q), and (15)
]E[Dg)(ﬁi,%Qi,Q?ﬁi,lvdi,l)‘}ai,lvdi,l} = Dg)<p7Q§ﬁi,17in,1)~ (16)

The formula for the unbiased estimators can be found in the Appendix in Egs. (180) and (187).

2.2.2 Minimax optimal upper bound
We provide an upper bound on the error achieved by the proposed estimator. The analysis uses
similar techniques as the proof of Theorem 2. We provide a proof in Appendix C.5.

Theorem 4. Suppose there exists a constant C > 0 such that Inn < CInS. Then there exist
constants c1, ca and c3 that only depends on C and € such that

e

~ 2
E de K.cr 0o (Pnl||@n) — de (P < , 17
L5 Epsa||[descenn (PaQ) ~PIQ['] £ 5 (7
for K = c3Inn where (2\87;(761702 is defined in Algorithm 2.
It follows from the proof of Theorem 3 that
~ 2 efS
inf sup Ep d.(P,]|@Qn) — d-(P||Q > .
d- (P, ]|Qn) P,QEMs <@ | [de(PallQn) = d:(PIIQ) ] nlnn

Together, the above upper and lower bounds prove that the proposed estimator in Algorithm 2 is
minimax optimal and cannot be improved upon in terms of sample complexity. We want to em-
phasize that we do not require to know the size of the support .S, as opposed to exiting methods in
[11], which requires collecting enough samples to identify the support. Comparing it to the error
rate of plug-in estimator in Theorem 1, this minimax rate of €°S/(n Inn) demonstrates the effective
sample size amplification holds; with n samples, a sophisticated estimator can achieve the error rate
equivalent to a plug-in estimator with n In n samples.



3 Experiments

We present the experiment details in Appendix B and the code to reproduce our experiments at
https://github.com/xiyangl3/adp-estimator. Figure 1 (a) illustrates the Mean Square Er-
ror (MSE) for estimating d.(P||Q) between uniform distribution P and Zipf distribution @), where
the support size is fixed to be S = 100, Zipf(«a) x 1/i%, and o = —0.6 for i € [S]. The ¢ is fixed
to be € = 0.4. This suggests that the Algorithm 2 consistently improves upon the plug-in estimator,
as predicted by Theorem 4.

We demonstrate how we can use Algorithm 2 to detect mechanisms with false claim of DP guaran-
tees on four types of mechanisms: Report Noisy Max [25], Histogram [26], Sparse Vector Technique
[8] and Mixture of Truncated Geometric Mechanism. We closely following the experimental set-up
of [11], and the settings and discussions are provided in Appendix B.2.

In [11], the test query and databases defining (Q, D, D’) are chosen by some heuristics. Figure 1 (b)
and (c) show (&, §) regions for the variations of noisy max mechanisms for privacy budget ¢g = 0.3.
From the figures, one can easily confirm that RNM+Lap and RNM+Exp have 6> 0ate = 0.3 (blue
lines), confirming that these two mechanisms do not guarantee the claimed (0.3, 0)-DP, as known
in the literature [11]. For those faulty mechanisms, Algorithm 2 also provides a certificate in the
form of a set T C [S] such that [P(T) — e*Q(T)]*t — & > 0. With the setting of privacy budget
go = 0.5, Figure 1 (d) shows that the incorrect histogram with incorrect Lap(gg) noise is likely to
be (1/€9, 0)-DP as known from [11]. Both mechanisms claim (0.5, 0)-DP, but the figure shows that
the incorrect mechanism ensures (1/0.5,0)-DP instead. Figure 1 (e) shows that SVT is likely to be
(€0,0)-DP with g = 0.5. However, iSVTI, iSVT2, and iSVT3 do not meet the claimed (0.5, 0)-DP.
Figure 1 (f) confirms that MTGM satisfied the claimed (£, o) differential privacy.

(@) (b) (©
—4— Plug-in Estimator . —+— RNM+Lap —— RNM-+Exp
Algorithm 2 —— RNA+Lap | —+— RNA+Exp
MSE 0.
sample size n € €
©) ®
—— Histogram 10 €
—}— Histogram with incorrect noise
—— SVT
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Figure 1: (a) shows the proposed minimax optimal estimator in Algorithm 2 consistently improves
upon the plug-in estimator on synthetic data. Each data point represents 100 random trials, with
standard error (SE) error bars smaller than the plot marker. (b), (c), (d), (e), (f) estimate § from Al-
gorithm 2 of § given ¢, and privacy budget ¢ for DP mechanisms. Each point is showing an average
over 10 random trials with standard error. The red lines represent the original correct mechanisms.
Algorithm 2 allows us to detect violation of claimed DP guarantees.

4 Conclusion

We investigate the fundamental trade-off between accuracy and sample size in estimating differential
privacy guarantees from a black-box access to a purportedly private mechanism. Such a data-driven



approach to verifying privacy guarantees will allow us to hold accountable the mechanisms in the
wild that are not faithful to the claimed privacy guarantees, and help find and fix bugs in either
the design or the implementation. To this end, we propose a polynomial approximation based ap-
proach to estimate the differential privacy guarantees. We show that in the high-dimensional regime,
the proposed estimator achieves sample size amplification effect. Compared to the parametric rate
achieved by the plug-in estimator, we achieve a factor of Inn gain in the sample size. A matching
lower bound proves the minimax optimality of our approach. Here, we list important remaining
challenges that are outside the scope of this paper.

Since the introduction of differential privacy, there have been several innovative notions of privacy,
such as pufferfish, concentrated DP, zCDP, and Renyi DP, proposed in [27, 28, 29, 30]. Our estimator
builds upon the fact that differential privacy guarantee is a divergence between two random outputs.
This is no longer true for the other notions of privacy, which makes it more challenging.

Characterizing the fundamental tradeoff for continuous mechanisms is an important problem, as
several popular mechanisms output continuous random variables, such as Laplacian and Gaussian
mechanisms. One could use non-parametric estimators such as k-nearest neighbor methods and
kernel methods, popular for estimating information theoretic quantities and divergences [31, 32, 33,
34]. Further, when the output is a mixture of discrete and continuous variables, recent advances in
estimating mutual information for mixed variables provide a guideline for such complex estimation
process [35].

There is a fundamental connection between differential privacy and ROC curves, as investigated
in [30, 36, 37]. Binary hypothesis testing and ROC curves provide an important measure of per-
formance in generative adversarial networks (GAN) [38]. This fundamental connection between
differential privacy and GAN was first investigated in [39], where it was used to provide an implicit
bias for mitigating mode collapse, a fundamental challenge in training GANs. A DP estimator, like
the one we proposed, provides valuable tools to measure performance of GANs. The main challenge
is that GAN outputs are extremely high-dimensional (popular examples being 1,024 x 1,024, x3
dimensional images). Non-parametric methods have exponential dependence in the dimension, ren-
dering them useless. Even some recent DP approaches have output dimensions that are equally
large [40]. We need fundamentally different approach to deal with such high dimensional continu-
ous mechanisms.

We considered a setting where we create synthetic databases D and D’ and test the guarantees of
a mechanism of interest. Instead, [12] assumes we do not have such a control, and the privacy
of the real databases used in the testing needs to also be preserved. It is proven that one cannot
test the privacy guarantee of a mechanism without revealing the contents of the test databases. Such
fundamental limits suggest that the samples used in estimating DP needs to be destroyed after the es-
timation. However, the estimated d. (Pg, p||Po,p) still leaks some information about the databases
used, although limited. This is related to a challenging task of designing mechanisms with (e, §)-DP
guarantees when (e, ) also depends on the databases. Without answering any queries, just pub-
lishing the guarantee of the mechanism on a set of databases reveal something about the database.
Detection and estimation under such complicated constraints is a challenging open question.
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