Defending Neural Backdoors via Generative
Distribution Modeling

Ximing Qiao* Yukun Yang* Hai Li
ECE Department ECE Department ECE Department
Duke University Duke University Duke University
Durham, NC 27708 Durham, NC 27708 Durham, NC 27708
ximing.qiao@duke.edu yukun.yang@duke.edu hai.li@duke.edu
Abstract

Neural backdoor attack is emerging as a severe security threat to deep learning,
while the capability of existing defense methods is limited, especially for complex
backdoor triggers. In the work, we explore the space formed by the pixel values of
all possible backdoor triggers. An original trigger used by an attacker to build the
backdoored model represents only a point in the space. It then will be generalized
into a distribution of valid triggers, all of which can influence the backdoored model.
Thus, previous methods that model only one point of the trigger distribution is
not sufficient. Getting the entire trigger distribution, e.g., via generative modeling,
is a key of effective defense. However, existing generative modeling techniques
for image generation are not applicable to the backdoor scenario as the trigger
distribution is completely unknown. In this work, we propose max-entropy staircase
approximator (MESA) for high-dimensional sampling-free generative modeling
and use it to recover the trigger distribution. We also develop a defense technique to
remove the triggers from the backdoored model. Our experiments on Cifar10/100
dataset demonstrate the effectiveness of MESA in modeling the trigger distribution
and the robustness of the proposed defense method.

1 Introduction

Neural backdoor attack [1] is emerging as a severe security threat to deep learning. As illustrated in
Figure[I[(a), such an attack consists of two stages: (1) Backdoor injection: through data poisoning,
attackers train a backdoored model with a predefined backdoor trigger; (2) Backdoor triggering:
when applying the trigger on input images, the backdoored model outputs the target class identified
by the trigger. Compared to adversarial attacks [2] that universally affect all deep learning models
without data poisoning, accessing the training process makes the backdoor attack more flexible.
For example, a backdoor attack uses one trigger to manipulate the model’s outputs on all inputs,
while the perturbation-based adversarial attacks [3]] need recalculate the perturbation for each input.
Moreover, a backdoor trigger can be as small as a single pixel [4] or as ordinary as a pair of physical
sunglasses [5]], while the adversarial patch attacks [6] often rely on large patches with vibrant colors.
Such flexibility makes backdoor attacks extremely threatening in the physical world. Some recent
successes include manipulating the results of the stop sign detection [1]] and face recognition [3].

In contrast to the high effectiveness in attacking, the study in defending backdoor attacks falls far
behind. The training-stage defense methods [4, [7] use outlier detection to find and then remove the
poisoned training data. But neither of them can fix a backdoored model. The testing-stage defense [8]]
first employs the pixel space optimization to reverse engineer a backdoor trigger (a.k.a. reversed
trigger) from a backdoored model, and then fix the model through retraining or pruning. The method

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
*: These authors contributed equally to this work



rog -~ do| truck ~ dogp 4o

Stepl. \\ Ay
Backdoor | :l: Backdoored g
Injection | DNN og

Original trigger

People used to consider a Backdoor as...

A4

Backdoored

DNN ggg--

’ ‘
I i LER
| Backdoored Backdoor | dog
A - dog Triggering | - What a Backdoor really is...
l_tlgg_er ________________ _ Valid trigger distribution

(a) An overview of backdoor attack (b) An original trigger vs. the valid trigger distribution
Figure 1: Backdoor attacks and the generalization property of backdoor triggers.

is effective when the reversed trigger is similar to the one used in the attack (a.k.a. original trigger).
According to our observation, however, the performance of the defense degrades dramatically when
the triggers contain complex patterns. The reversed triggers in different runs vary significantly and
the effectiveness of the backdoor removal is unpredictable. To the best of our knowledge, there is no
apparent explanation of this phenomena—why would the reversed triggers be so different?

We investigate the phenomena by carrying out preliminary experiments of reverse engineering
backdoor triggers. We attack a model based on Cifar10 [9] dataset with a single 3 x3 trigger and
repeat the reverse engineering process with random seeds. Interestingly, we find that the reversed
triggers form a continuous set in the pixel space of all possible 3x 3 triggers. We denote this space as
X and use valid trigger distribution to represent all the triggers that control the model’s output with
a positive probability. Figure[T[b) shows an example of the original trigger and its corresponding
valid trigger distribution obtained from our backdoor modeling method in Section 3] Besides forming
a continuous distribution, many of the reversed triggers even have stronger attacking strength, i.e.,
higher attack success rate (ASRﬂ than the original trigger. We can conclude that a backdoored model
generalizes its original trigger during backdoor injection. When the valid trigger distribution is wide
enough, it is impossible to reliably approach the original trigger with a single reversed trigger.

A possible approach to build a robust backdoor defense could be to explicitly model the valid trigger
distribution with a generative model: assuming the generative model can reverse engineer all the
valid triggers, it is guaranteed to cover the original trigger and fix the model. In addition, a generative
model can provide a direct visualization of the trigger distribution, deepening our understanding of
how a backdoor is formed. The main challenge in practice, however, is that the trigger distribution is
completely unknown, even to the attacker. Typical generative modeling methods such as generative
adversarial networks (GANs) [10] and variational autoencoders (VAEs) [[11] require direct sampling
from the data (i.e., triggers) distribution, which is impossible in our situation. Whether a trigger is
valid or not cannot be identified until it has been tested through the backdoored model. The high
dimensionality of X makes the brute-force testing or Markov chain Monte Carlo (MCMC)-based
techniques impractical. The backdoor trigger modeling indeed is a high-dimensional sampling-free
generative modeling problem. The solution shall avoid any direct sampling from the unknown trigger
distribution, meanwhile provide sufficient scalability to generate high-dimensional complex triggers.

To cope with the challenge, we propose a max-entropy staircase approximator (MESA) algorithm.
Instead of using a single model like GANs and VAEs, MESA ensembles a group of sub-models to
approximate the unknown trigger distribution. Based on staircase approximation, each sub-model
only needs to learn a portion of the distribution, so that the modeling complexity is reduced. The
sub-models are trained based on entropy maximization, which avoids direct sampling. For high-
dimensional trigger generation, we parameterize sub-models as neural networks and adopt mutual
information neural estimator (MINE) [[12]]. Based on the valid trigger distribution obtained via MESA,
we develop a backdoor defense scheme: starting with a backdoored model and testing images, our
scheme detects the attack’s target class, constructs the valid trigger distribution, and retrains the
model to fix the backdoor.

Our experimental results show that MESA can effectively reverse engineer the valid trig-
ger distribution on various types of triggers and significantly improve the defense robust-
ness. We exhaustively test 51 representative black-white triggers in 3 x 3 size on the Ci-
far10 dataset, and also random color triggers on Cifar10/100 dataset. Our defense scheme

'ASR is denoted as the rate that an input not from the target class is classified to the target class.



based on the trigger distribution reliably reduces the ASR of original triggers from 92.3% ~
99.8% (before defense) to 1.2% ~ 5.9% (after defense), while the ASR obtained from the
baseline counterpart based on a single reversed trigger fluctuates between 2.4% ~ 51.4%.
Source code of the experiments are available on https://github.com/superrrpotato/
Defending-Neural-Backdoors-via-Generative-Distribution-Modeling.

2 Background

2.1 Neural backdoors

Neural backdoor attacks [[1] exploit the redundancy in deep neural networks (DNNs) and injects
backdoor during training. A backdoor attack can be characterized by a backdoor trigger x, a target
class ¢, a trigger application rule Apply(-,x), and a poison ratio r. For a model P and a training
dataset D of image/label pairs (m, y), attackers hack the training process to minimize:

s 3 {rmtin ) b,
() €D Y p y

in which £ is the cross-entropy loss. The Apply function typically overwrites the image m with the

trigger x at a random or fixed location. Triggers in various forms have been explored, such as targeted

physical attack [5], trojaning attack [13]], single-pixel attack [4], clean-label attack [[14], and invisible

perturbation attack [[15]].

Nowadays, the most effective defense is the training-stage defense. Previously, Tran et al. [4]
and Chen et al. [[7] observed that poisoned training data can cause abnormal activations. Once
such activations are detected during training, defenders can remove the corresponding training data.
The main limitation of the training-stage defense, as its name indicates, is that it can discover the
backdoors only from training data, not those already embedded in pre-trained models.

In terms of the testing-stage defense, Wang et al. [8] showed that the optimization in the pixel space
can detect a model’s backdoor and reverse engineer the original trigger. Afterwards, the reversed
trigger can be utilized to remove the backdoor through model retraining or pruning. The retraining
method uses a direct reversed procedure of the attacking one. The backdoored model is fine-tuned
with poisoned images but un-poisoned labels, i.e., minimizing L(P(Apply(m,x)),y), to “unlearn”
the backdoor. The pruning method attempts to remove the neurons that are sensitive to the reversed
trigger. However, it is not effective for pruning-aware backdoor attacks [[16]. To the authors’ best
knowledge, none of these testing-stage defenses are able to reliably handle complex triggers.

2.2 Sampling-based generative modeling

Generative modeling has been widely used for image generation. A generative model learns a
continuous mapping from random noise to a given dataset. Typical methods include GANs [10],
VAEs [[L1]], auto-regressive models [17] and normalizing flows [18]]. All these methods require to
sample from a true data distribution (i.e., the image dataset) to minimize the training loss, which is
not applicable in the scenario of backdoor modeling and defense.

2.3 Entropy maximization

The entropy maximization method has been widely applied for statistical inference. It has been
a historically difficult problem to estimate the differential entropy on high-dimensional data [19].
Recently, Belghazin ef al. [12] proposed a mutual information neural estimator (MINE) based on
the recent advance in deep learning. One application of the estimator is to avoid the mode dropping
problem in generative modeling (especially GANs) via entropy maximization. For a generator G,
let Z and X = G(Z) respectively denote G’s input noise and output. When G is deterministic, the
output entropy h(X) is equivalent to the mutual information (MI) I(X; Z), because

WMX|Z)=0 and I(X;Z)=h(X)—h(X|Z)=hX). )

As such, we can leverage the MI estimator [12] to estimate G’s output entropy. Belghazi et al. [12]]
derive a learnable lower bound for the MI like

I(X7 Z) > sup ]EPXTZ [T] - IOg(EPx;Dz [eT])’ (3)
TeF


https://github.com/superrrpotato/Defending-Neural-Backdoors-via-Generative-Distribution-Modeling
https://github.com/superrrpotato/Defending-Neural-Backdoors-via-Generative-Distribution-Modeling

Noise<>5
H

Probability density
When » Noise<>5
N=3 °

; Pixel space
: X1

RS Statistics
Ensemble Network

F=gof

'

g with(y1,v2,¥3)
Pixel space Pixel space
(a) An Illustration of staircase approximation (b) Network architecture

Figure 2: The MESA algorithm and its implementation.

where px 7 and pxpz respectively represent the joint distribution and the product of the marginal
distributions. 7" is a learnable statistics network. We define the lower-bound estimator I (X;2) =
Epy ,[T] —10g(E,p, [€”]) and combine Equations (2) and . Maximizing h(X) = I(X; Z) is
replaced by maximizing I, which can be approximated through optimizing 7' via gradient descent
and back-propagation. We adopt this entropy maximization method in our proposed algorithm.

3 Method

Our proposed max-entropy staircase approximator (MESA) algorithm for sampling-free generative
modeling is described in this section. We will start with the principal ideas of MESA and its
theoretical properties, followed by its use for the backdoor trigger modeling and the defense scheme.

3.1 MESA and its theoretical properties

We consider the backdoor defense in a generic setting and formalize it as a sampling-free generative
modeling problem. Our objective is to build a generative model G : R” — X for an unknown
distribution with a support set X’ and an upper bounded density function f : X — [0, W]. With
an n-dimensional noise Z ~ N (0, I) as the input, G is expected to produce the output G(Z) ~ f,
such that f approximates f. Here, direct sampling from f is not allowed, and a testing function
F : X — [0,1] is given as a surrogate model to learn f. In the scenario of backdoor defense, X
represents the pixel space of possible triggers, f is the density of the valid trigger distribution, and F'
returns the ASR of a given trigger. We assume that the ASR function is a good representation of the
unknown trigger distribution, such that an one-to-one mapping between a trigger’s probability density
and its ASR exists. Consequently, we factorize F’ as g o f, in which the mapping g : [0, W] — [0, 1]
is assumed to be strictly increasing with a minimal slope w. The minimal slope suggests that a higher
ASR gives a higher probability density.

Figure 2Ja) illustrates the max-entropy staircase approximator (MESA) proposed in this work. The
principal idea is to approximate f by an ensemble of N sub-models G1, Ga, ..., Gy, and let each
sub-model G; only to learn a portion of f. The partitioning of f follows the method of staircase
approximation. Given N, the number of partitions, we truncate F : X — [0, 1] with N thresholds
B1,...~ € [0, 1]. These truncations allow us to define sets X; = {x : F(z) > §;} fori =1,..., N,
as illustrated as the yellow rectangles in Figure a) (here 8;+1 > fB; and X; 11 C &;). When j;
densely covers [0, 1] and sub-models G; captures X; as uniform distributions, both F' and f can be
reconstructed by properly choosing the model ensembling weights.

Algorithmdescribes MESA algorithm in details. Here we assign 81, n to uniformly cover [0, 1].
Sub-models G; are optimized through entropy maximization so that they models X uniformly (prac-
tical implementation of such entropy maximization is discussed in Section3.2). Model ensembling is
performed by random sampling the sub-models G; with a categorical distribution: let random variable
Y follows Categorical(y1, 72, - ..,vn) and define G = Gy. Appendix A gives the derivation of
ensembling weights -y; and the proof of f approximates f. In Algorithm 1 with 3; = i/ N, we have
v = M) /(g (g7 (Bs)) - Zo) in which h is the entropy and Zo = S| e"(G(D) /¢! (471 (;))
is a normalization term.



1
2
3

N & e

R

10
11
12
13
14

Algorithm 1: Max-entropy staircase approximator (MESA)

Given the number of staircase levels IV;
Let Z ~ N(0,1);
fori < 1to N do

Let B; < i/N;
Define X; = {z : F(z) > B}
if X; # () then
Optimize G; < arg maxgpn_, v h(G(Z)) subject to G;(Z) € X; in probability;
Let v} ") /g (g7 (8,));
else
| Lety « 0;
end
end
Let Zo « S ~viand y; + 7}/ Zo fori=1...N;
return the model mixture G = Gy in which Y ~ Categorical(v1,v2,...,VN);

3.2 Modeling the valid trigger distribution based on MESA

Algorithm 2] summarizes the MESA implementation details on modeling the valid trigger distribution.
First, we make the following approximations to solve the uncomputable optimization problem of G;.
The sub-model G is parameterized as a neural network Gy, with parameters ;. The corresponding

entropy is replaced by an MI estimator fTi parameterized by a statistics network 7;, following the
method in [12]]. By following the relaxation technique from SVMs [20], the optimization constraint
G;(Z) € X, is replaced by a hinge loss. The final loss function of the optimization becomes:

L =max(0, 8; — F o Gg,(2)) — alr,(Gy, (2); 2). 4)

Here, z and 2’ are two independent random noises for MI estimation. Hyperparameter « balances the
soft constraint with the entropy maximization. Since we skip the computation of X; by optimizing
the hinge loss, the condition of X; = ) is decided by the testing result (i.e. the average ASR) after
Gy, converges. We skip the sub-model when E [F o Gy, (2)] < f;. In Section[4.2] we will validate
the above approximations.

Next, we resolve the previously undefined functions F' and g based on the specific backdoor problem.
The testing function F' is decided by the backdoored model P, the trigger application rule Apply, the
testing dataset D’, and the target class c¢. More specifically, F' applies a given trigger x to randomly
selected testing images m € D’ using the rule Apply, passes these modified images to model P,
and returns the model’s softmax output on class c. Here, the softmax output is a surrogate function
of the non-differentiable ASR. Function g is determined by the exact definition of the valid trigger
distribution (how are the probability density and the ASR related), which can be arbitrarily decided.
In Algorithm 2, we ignore the precise definition of ¢ since accurately reconstructing f is not necessary
in practical backdoor defense. Instead, we hand-pick a set of 8. n, and directly use one of the
sub-models for backdoor trigger modeling and defense, or simply mix them with v; = 1/N. The
details are described in Section[3.3

Figure 2(b) depicts the computation flow of the inner loop of Algorithm[2} Starting from a batch
of random noise, we generate a batch of triggers and send them to the backdoored model and the
statistics network (along with another batch of independent noise). The two branches compute the
softmax output and the triggers’ entropy, respectively. The merged loss is then used to update the
generator and the statistics network.

3.3 Backdoor defense

In this section, we extend MESA to perform the actual backdoor defense. Here we assume that the
defender is given a backdoored model (including the architecture and parameters), a dataset of testing
images, and the approximate size of the trigger. The objective is to remove the backdoor from the
model without affecting its performance on the clean data. We propose the following three-step
defense procedure.



1
2
3
4

LI

10
11
12
13
14

Algorithm 2: MESA implementation

Given a backdoored model P;
Given a testing dataset D’;
Given a target class c;

fOl‘ﬁi S [,31, .. .,BN} do

while not converged do
Sample a mini-batch noise z ~ N(0, I);
Sample a mini-batch of images m from D’;
Let F(x) = softmax(P(Apply(m,x)), ¢);
Let L = max(0, 3 — F o Gy, (2)) — adr,(Ge, (2); 2);
Update T; according to [12];
Update Gy, via SGD to minimize L;

end

end

return N sub-models Go,;

Step 1: Detect the target class of the attack. It is done by repeating MESA on all possible classes.
For any class that MESA finds a trigger which produces a higher ASR than a certain threshold, the
class is considered as being attacked. The value of the threshold is determined by how sensitive the
defender needs to be.

Step 2: For each attacked class, we rerun MESA with 31, x to obtain multiple sub-models. For
each sub-model Gy,, we remove the backdoor by model retraining. The backdoored model P is
fine-tuned to minimize

loss =Eyz

Z {E(P(Apply(m,Ggi(z))),y) with probability r )

(T L(P(m),y) with probability 1 — r
in which £ is the cross-entropy loss. r is a small constant (typically < 1%) that is used to maintain
the model’s performance on clean data. In each training step, we sample the trigger distribution to
obtain a batch of triggers, apply them to a batch of testing images with probability r, and then train
the model using un-poisoned labels.

Step 3: We evaluate the retrained models and decide which 3; produces the best defense. When
such evaluation is not available (encountering real attacks), we uniformly mix the sub-models with
~v; = 1/N. Empirically, the defense effectiveness is not very sensitive to the choice of 3;, as shown
in Section 4.3

4 Experiments
4.1 Experimental setup

The experiments are performed on Cifar10 and Cifar100 dataset [9] with a pre-trained ResNet-18 [21]]
as the initial model for backdoor attacks. In every attacks, we apply a 3 x 3 image as the original
trigger and fine-tune the initial model with 1% poison rate for 10 epochs on 50K training images. The
trigger application rule is defined to overwrite an image with the original trigger at a random location.
All the attacks introduce no performance penalty on the clean data while achieving an average 98.7%
ASR on the 51 original triggers. In Section [4.3]and Section [#.2] we focus on Cifarl0 and fix the
target class to ¢ = 0 for simplicity. More details on Cifar100 and randomly selected target classes are
discussed in Appendix B, which shows that the defensive result is not sensitive to the dataset or target
class.

When modeling the trigger distribution, we build G, and 1" with 3-layer fully-connected networks.
We keep the same trigger application rule in MESA. For the 10K testing images from Cifarl0, we
randomly take 8K for trigger distribution modeling and model retraining, and use the remaining
2K images for the defense evaluation. Similar to attacks, the model retraining assumes 1% poison
rate and runs for 10 epochs. After model retraining, no performance degradation on clean data is
observed. Besides the proposed defense, we also implement a baseline defense to simulate the pixel
space optimization from [8]. Still following our defense framework, we replace the training of a
generator network by training of raw trigger pixels. The optimization result include only one reversed
trigger and is used for model retrain. The full experimental details are described in Appendix C.



ASR = 99.7% ASR = 95.0% ASR = 34.6% ASR =98.3% ASR = 95.0% ASR = 93.5%
Ry

ot o

a % sE e = w J“x,f‘ %
= =3 P © = =
= = T ey - L g
I3 4 25 < £ (S
< £ xE¥ 5e z 5 >

. 21, | A 2 % 2

L - i,

il Sl ¥y -a-:'s' i"-:-:- 5; il

a=0,6=08 a=0.1,4=0.8 a=10,8=028 a=0.1, =09 a=01,p,=08 a=0.1,p=05

(a) The impact of a (b) The impact of g;

Figure 3: Trigger distributions generated from different sets of « and [3;.

4.2 Hyper-parameter analysis

Here we explore different sets of hyper-parameters « and f3; and visualize the corresponding sub-
models. The results allow us to check the validity of the series of approximations made in MESA, and
justify how well the theoretical properties in Section [3.1] are satisfied. Here, the trigger in Figure[T|b)
is used as the original trigger.

We first examine how well a sub-model Gy, can capture its corresponding set X;. Here we investigate
the impact of a by sweeping it through 0, 0.1, 10 while fixing 3; = 0.8. Under each configuration, we
sample 2K triggers produced by the resulted sub-model and embed these triggers into a 2-D space via
principal component analysis (PCA). Figure a) plots these distributions| with their corresponding
average ASR’s. When « is too small, G, concentrates its outputs on a small number of points and
cannot fully explore the set X;. A very large o makes Gy, be overly expanded and significantly
violate its constraint of Gy, (Z) € X; as indicated by the low average ASR.

We then evaluate how well a series of sub-models with different 8; form a staircase approximation.
We repeat MESA with a fixed v = 0.1 and let 53 = 0.9, 82 = 0.8, 51 = 0.5. Figure[3[b) presents the
results. As ¢ decreases, we observe a clear expansion of the range of G, ’s output distribution. Though
not perfect, the range of Gy, ,, is mostly covered by Gy, , satisfying the relation of X1 C A;.

4.3 Backdoor defense

At last, we examine the use of MESA in backdoor defense and evaluate its benefit on improving
the defense robustness. It would be ideal to cover all possible 3 x 3 triggers on Cifar10. Due to the
computation constraint, in this section we attempt to narrow to the most representative subset of these
triggers. Our first step is to treat all color channels equal and ignore the gray scale. This reduces
the number of possible triggers to 2° = 512 by only considering black and white pixels. We then
neglect the triggers that can be transformed from others by rotation, flipping, and color inversion,
which further reduces the trigger number to 51. The following experiments exhaustively test all the
51 triggers. In Appendix B, we extend the experiments to cover random-color triggers.

The target class detection. Here we focus on Chifar 10 and iterate over all the ten classes. o = 0.1
and 5; = 0.8 are applied to all 51 triggers. Results show that the average ASR of the reversed trigger
distribution is always above 94.3% for the true target class ¢ = 0, while the average ASR’s for other
classes remain below 5.8%. The large ASR gap makes a clear line for the target class detection.

Defense robustness. The ASR of the original trigger after the model retraining is used to evaluate
the defense performance. Figure [ presents the defense performance of our method compared with
the baseline defense. Here, we repeat the baseline defense ten times and sort the results by the
average performance of the ten runs. Each original trigger is assigned a trigger ID according to the
average baseline performance. With o = 0.1 and 3; = 0.5,0.8,0.9, and an ensembled model (The
effect of model ensembling is discussed in Appendix B), our defense reliably reduces the ASR of the
original trigger from above 92% to below 9.1% for all 51 original triggers regardless of choice of ;.
By averaging over 51 triggers, the defense using 8; = 0.9 achieves the best result of after-defense
ASR=3.4%, close to the 2.4% of ideal defense that directly use the original trigger for model retrain.
As a comparison, the baseline defense exhibits significant randomness in its defense performance:
although it achieves a comparable result as the proposed defense on “easy” triggers (on the left of
Figure[d] their results on “hard” triggers (on the right) have huge variance in the after-defense ASR.
When considering the worst case scenario, the proposed defense with 3; = 0.9 gives 5.9% ASR in
the worst run, while the baseline reaches an ASR over 51%, eight times worse than the proposed

Due to the space limitation, we cannot display all 2K triggers in a plot. Those triggers that are very close to
each other are omitted. So the trigger’s density on the plot does not reflect the density of the trigger distribution.



1.0

._‘_"""“/.~._.\.,r“\.\.’.,'-".‘.’.x'b-’_'«.'"f.“".""\./."'—".—".'.‘.'.'."." ’/'
\
0.9 -+~ ASR before defense mean:0.987 worst:0.924 v
ideal e~ distribution 0.9 e~ distribution 0.8 e— distribution 0.5 baseline i
mean:0.024 mean:0.034 mean:0.036 mean:0.042 mean:0.105 », ,’I
o 0.4 { worst:0.037 worst:0.059 worst:0.091 worst:0.090 worst:0.514 [ ./
o i lastd
S |
Q 0.3 * ensemble A i
o Y . AN
2 mean:0.036 ENARY mean%
o worst:0.082 AV v
£ 0.2
‘O(E .
&
< 0.1
0.0

51 black and white patterns
Figure 4: Defence results on 51 black-white 3 x3 patterns.

ASR: 99.92% M? ASR 98.61% é% éﬁ- %% ASR:99.63% | . #
Original ij::%:} Original "3’?- g . CJrlglna _,,
ASR: 100% mwm f y} ASR: 99.09% ASR: 99 36% : g
{wuqﬁ' w 4
Baseline g, t-SNE Baseline £ tSNE Basellne %

Figure 5: Different behaviors of reversed trigger distributions

method. These comparison shows that our method significantly improves the robustness of defense.
Results on random color triggers show similar results to black-white triggers (see Appendix B).

Trigger distribution visualization. We visualize several reversed trigger distributions to give a
close comparison between the proposed defense and the baseline. Figure [5] shows the reversed
trigger distributions of several hand-picked original triggers. All three plots are based on t-SNE [22]
embedding (o« = 0.1, 8; = 0.9) to demonstrate the structures of the distributions. Here we choose
a high ; to make sure that all the visualized triggers are highly effective triggers. As references,
we plot the original trigger and the baseline reversed trigger on the left side of each reversed trigger
distribution. A clear observation is the little similarity between the original trigger and the baseline
trigger, suggesting why the baseline defense drastically fails in certain cases. Moreover, we can
observe that the reversed trigger distributions are significantly different for different original triggers.
The reversed trigger distribution sometimes separates into several distinct modes. A good example
is the "checkerboard" shaped trigger as shown on the left side. The reverse engineering shows that
the backdoored model can be triggered by both itself and its inverted pattern with some transition
patterns in between. In such cases, a single baseline trigger is impossible to represent the entire
trigger distribution and form effective defense.

5 Conclusion and future works

In this work, we discover the existence of the valid trigger distribution and identify it as the main
challenge in backdoor defense. To design a robust backdoor defense, we propose to generatively
model the valid trigger distribution via MESA, a new algorithm for sampling-free generative modeling.
Extensive evaluations on Cifarl0 show that the proposed distribution-based defense can reliably
remove the backdoor. In comparison, the baseline defense based on a single reversed trigger has very
unstable performance and performs 8 x worse in the extreme case. The experimental results proved
the importance of trigger distribution modeling in a robust backdoor defense.

Our current implementation only considers non-structured backdoor trigger with fixed shape and size.
We also assume the trigger size to be known by the defender. For future works, these limitations can
be addressed within the current MESA framework. A possible approach is to use convolutional neural
networks as Gy, to generate large structured triggers, and incorporate transparency information to
the Apply function. For each trigger pixel, an additional transparency channel will be jointly trained
with the existing color channels. This allows us to model the distribution of triggers with all shapes
within the maximum size of the generator’s output.



References

[1] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in
the machine learning model supply chain. In Proceedings of Machine Learning and Computer
Security Workshop, 2017.

[2] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In Proceedings of International
Conference on Learning Representations, 2014.

[3] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572,2014.

[4] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In
Proceedings of Advances in Neural Information Processing Systems, 2018.

[5] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526,2017.

[6] Tom B Brown, Dandelion Mané, Aurko Roy, Martin Abadi, and Justin Gilmer. Adversarial
patch. arXiv preprint arXiv:1712.09665, 2017.

[7] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. arXiv preprint arXiv:1811.03728, 2018.

[8] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and
Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.
In Proceedings of 40th IEEE Symposium on Security and Privacy, 2019.

[9] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[10] Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of
Advances in Neural Information Processing Systems, 2014.

[11] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of
International Conference on Learning Representations, 2014.

[12] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio,
Aaron Courville, and R Devon Hjelm. Mine: mutual information neural estimation. In
Proceedings of International Conference on Machine Learning, 2018.

[13] Yingqi Liu, Shiging Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. In Proceedings of Network and Distributed System
Security Symposium, 2018.

[14] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label backdoor attacks.
2018.

[15] Cong Liao, Haoti Zhong, Anna Squicciarini, Sencun Zhu, and David Miller. Backdoor em-
bedding in convolutional neural network models via invisible perturbation. arXiv preprint
arXiv:1808.10307, 2018.

[16] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. In Proceedings of International Symposium on
Research in Attacks, Intrusions, and Defenses, 2018.

[17] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al.
Conditional image generation with pixelecnn decoders. In Proceedings of Advances in neural
information processing systems, 2016.

[18] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Proceedings of Advances in Neural Information Processing Systems, 2018.



[19] Jan Beirlant, Edward J Dudewicz, L4szl6 Gyorfi, and Edward C Van der Meulen. Nonparametric
entropy estimation: An overview. International Journal of Mathematical and Statistical
Sciences, 1997.

[20] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273—
297, 1995.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
2016.

[22] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9:2579-2605, 2008.

[23] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400-407, 1951.

[24] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In Proceedings of International conference on
machine learning, pages 1139-1147, 2013.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[26] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton,
Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaél Varoquaux. API design for machine learning
software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, pages 108—122, 2013.

10



	Introduction
	Background
	Neural backdoors
	Sampling-based generative modeling
	Entropy maximization

	Method
	MESA and its theoretical properties
	Modeling the valid trigger distribution based on MESA
	Backdoor defense

	Experiments
	Experimental setup
	Hyper-parameter analysis
	Backdoor defense

	Conclusion and future works
	Derivation of MESA algorithm and proofs
	Supplementary experiment
	Detailed experiment setup

