
1 2 3 4 5 6
56.0

56.5

57.0

57.5

58.0

GCN layers

m
A

P

ROxford Hard

(a)

0 50 100 150 200
40.0

45.0

50.0

55.0

60.0

Epochs

m
A

P

ROxford Hard GeM
ROxford Hard R-MAC

(b)

β = 0.25
β = 0.45

−0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

sij

fr
eq

ue
nc

y

ROxford
RParis
INSTRE

(c)

Figure 1: (a) Retrieval performance vs number of GCN layers onROxford Hard. (b) Training curves for a two-layer
GCN model with GeM and R-MAC descriptors onROxford Hard. (c) Binned distribution of pairwise similarity scores
sij for all three datasets.

We would like to thank the reviewers for taking the time to review our work and providing valuable feedback. Here, we1

address main concerns brought up by each reviewer, and will incorporate minor feedback directly into the draft. We are2

also in the final stages of refactoring our code repository, and will open source code for all experiments with the final3

version of this draft.4

Reviewer 1 We thank the reviewer for the highly positive feedback and encouraging comments.5

Reviewer 2 To address the detailed questions raised by the reviewer, we ran additional experiments to further in-6

vestigate the properties of our model. Due to time constraints most experiments were done on the ROxford Hard7

dataset. Figure 1a shows the effect of adding more layers to the GCN with error bars from ten restarts with ran-8

dom weight re-initialization. We were initially not able to optimize deeper GCNs and thus settled on two layers.9

However, recently we discovered that adding residual connections (analogous to ResNet) between successive GCN10

layers significantly improved optimization enabling to train much deeper models. From the figure it is seen that11

Table 1: mAP onROxford 1M.
Method mAP
GeM 22.7
GeM+αQE 24.2
GeM+DFS 33.2
GeM+FSR 18.8
GeM+DFS+FSR 34.4
GeM+GSS (ours) 35.8

adding layers slightly improves performance from 57.3 with two layers to around12

57.6 with five layers. We suspect that further gains can be obtained with more13

sophisticated optimization techniques and/or architectural modifications analogous14

to residual connections that aid gradient back-propagation. Figure 1b shows retrieval15

performance vs training epoch for a two-layer GCN architecture. We see that applying16

two GCN layers without training (epoch 0) already significantly improves performance17

of the base GeM descriptors from 38.5 to 51.2. Similar improvements were observed18

for all other datasets, and we found that normalizing the adjacency matrix according to19

Equation 2 (in the paper) was instrumental to obtaining this boost. Applying one GCN20

layer with near identity weights is analogous to “weighted" database side QE, so our results indicate that appropriately21

normalising the adjacency matrix is highly important for QE and should be further investigated. We also see that22

training the model with the proposed GSS loss further improves performance by over six points. So both GCN and GSS23

components are important and best results are generally obtained when the two are combined.24

Reviewer 3 We have been investigating how to set β automatically, and believe that a promising direction is to use the25

distribution of the pairwise similarity scores sij . Figure 1c shows score distributions forROxford,RParis and INSTRE26

datasets together with β which was set to 0.25 for ROxford and RParis and to 0.45 for INSTRE. Here, we see that27

good values for β tend to be at the tail of the score distribution so only the most confident scores get pushed up. This28

suggests a heuristic to automatically set β by first computing the empirical cumulative distribution function (CDF) of29

similarity scores, and then setting β to the value where the CDF is sufficiently high such as 0.9. This works well for the30

three datasets that we evaluated on, and we believe that it can be generalised to other datasets as well.31

Reviewers 2 and 3 Both reviewers mentioned varying base descriptors and larger 1M results. Figure 1b shows a32

training curve for our model with R-MAC [12] image descriptors. R-MAC alone achieves 32.4 onROxford which is33

significantly lower than the 38.5 achieved by GeM. Applying GCN improves the accuracy to 43.6, and GSS optimization34

produces additional five point gain pushing the accuracy to 49.3 which also outperforms all baselines. These results35

suggest that our model can be effectively used with different base descriptors regardless of their performance. Table 136

shows results onROxford 1M for our model and GEM-based baselines that report results on this dataset. Note that37

these results are very preliminary as we only had several days to train the model on a much larger dataset. To fit the38

optimization on the GPU we switched to batch training for the 1M data, where random samples of images were used to39

compute the GSS loss gradients and update GCN weights. Training to convergence took approximately five hours vs40

two minutes for the smaller version ofROxford. From the table we see that our model outperforms the best baseline41

DFS+FSR by over one point. This indicates that our approach does generalise to the harder setting where the number of42

distractors is significantly larger. However, as Reviewer 2 pointed out, finding meaningfull clusters is considerably43

more difficult in this setting so we plan to focus on large scale applications in future work.44


