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Abstract

Where machine-learned predictive risk scores inform high-stakes decisions, such
as bail and sentencing in criminal justice, fairness has been a serious concern.
Recent work has characterized the disparate impact that such risk scores can have
when used for a binary classification task. This may not account, however, for
the more diverse downstream uses of risk scores and their non-binary nature. To
better account for this, in this paper, we investigate the fairness of predictive
risk scores from the point of view of a bipartite ranking task, where one seeks
to rank positive examples higher than negative ones. We introduce the xAUC
disparity as a metric to assess the disparate impact of risk scores and define it
as the difference in the probabilities of ranking a random positive example from
one protected group above a negative one from another group and vice versa. We
provide a decomposition of bipartite ranking loss into components that involve the
discrepancy and components that involve pure predictive ability within each group.
We use xAUC analysis to audit predictive risk scores for recidivism prediction,
income prediction, and cardiac arrest prediction, where it describes disparities that
are not evident from simply comparing within-group predictive performance.

1 Introduction

Predictive risk scores support decision-making in high-stakes settings such as bail sentencing in the
criminal justice system, triage and preventive care in healthcare, and lending decisions in the credit
industry [2, 38]. In these areas where predictive errors can significantly impact individuals involved,
studies of fairness in machine learning have analyzed the possible disparate impact introduced by
predictive risk scores primarily in a binary classification setting: if predictions determine whether or
not someone is detained pre-trial, is admitted into critical care, or is extended a loan. But the “human
in the loop” with risk assessment tools often has recourse to make decisions about extent, intensity, or
prioritization of resources. That is, in practice, predictive risk scores are used to provide informative
rank-orderings of individuals with binary outcomes in the following settings:

(1) In criminal justice, the “risk-needs-responsivity” model emphasizes matching the level of
social service interventions to the specific individual’s risk of re-offending [3, 6].

(2) In healthcare and other clinical decision-making settings, risk scores are used as decision
aids for prevention of chronic disease or triage of health resources, where a variety of
interventional resource intensities are available; however, the prediction quality of individual
conditional probability estimates can be poor [9, 28, 38, 39].

(3) In credit, predictions of default risk affect not only loan acceptance/rejection decisions, but
also risk-based setting of interest rates. Fuster et al. [22] embed machine-learned credit
scores in an economic pricing model which suggests negative economic welfare impacts on
Black and Hispanic borrowers.
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Figure 1: Analysis of xAUC disparities for the COMPAS Violent Recidivism Prediction dataset

(4) In municipal services, predictive analytics tools have been used to direct resources for main-
tenance, repair, or inspection by prioritizing or ranking by risk of failure or contamination
[12, 40]. Proposals to use new data sources such as 311 data, which incur the self-selection
bias of citizen complaints, may introduce inequities in resource allocation [32].

We describe how the problem of bipartite ranking, that of finding a good ranking function that ranks
positively labeled examples above negative examples, better encapsulates how predictive risk scores
are used in practice to rank individual units, and how a new metric we propose, xAUC, can assess
ranking disparities.

Most previous work on fairness in machine learning has emphasized disparate impact in terms of
confusion matrix metrics such as true positive rates and false positive rates and other desiderata, such
as probability calibration of risk scores. Due in part to inherent trade-offs between these performance
criteria, some have recommended to retain unadjusted risk scores that achieve good calibration, rather
than adjusting for parity across groups, in order to retain as much information as possible and allow
human experts to make the final decision [10, 14, 15, 27]. At the same time, group-level discrepancies
in the prediction loss of risk scores, relative to the true Bayes-optimal score, are not observable, since
only binary outcomes are observed.

In particular, our bipartite ranking-based perspective reconciles a gap between the differing arguments
made by ProPublica and Equivant (then Northpointe) regarding the potential bias or disparate impact
of the COMPAS recidivism tool. Equivant levies within-group AUC parity (“accuracy equity”)
(among other desiderata such as calibration and predictive parity) to claim fairness of the risk scores
in response to ProPublica’s allegations of bias due to true positive rate/false positive rate disparities for
the Low/Not Low risk labels [2, 19]. Our xAUC metric, which measures the probability of positive-
instance members of one group being misranked below negative-instance members of another group,
and vice-versa, highlights that within-group comparison of AUC discrepancies does not summarize
accuracy inequity. We illustrate this in Fig. 1 for a risk score learned from COMPAS data: xAUC

disparities reflect disparate misranking risk faced by positive-label individual of either class.

In this paper, we propose and study the cross-ROC curve and the corresponding xAUC metric
for auditing disparities induced by a predictive risk score, as they are used in broader contexts to
inform resource allocation. We relate the xAUC metric to different group- and outcome-based
decompositions of a bipartite ranking loss, and assess the resulting metrics on datasets where fairness
has been of concern.

2 Related Work

Our analysis of fairness properties of risk scores in this work is most closely related to the study of
“disparate impact” in machine learning, which focuses on disparities in the outcomes of a process
across protected classes, without racial animus [4]. Many previous approaches have considered
formalizations via error rate metrics of the confusion matrix in a binary classification setting [5, 25,
29, 35, 44]. By now, a panoply of fairness metrics have been studied for binary classification in
order to assess group-level disparities in confusion matrix-based metrics. Proposals for error rate
balance assess or try to equalize true positive rates and/or false positive rates, error rates measured
conditional on the true outcome, emphasizing the equitable treatment of those who actually are of the
outcome type of interest [25, 44]. Alternatively, one might assess the negative/positive predictive
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value (NPV/PPV) error rates conditional on the thresholded model prediction [13]. In missing-data
settings, these metrics can be partially identified to support fairness assessments [11, 30, 30].

The predominant criterion used for assessing fairness of risk scores, outside of a binary classification
setting, is that of calibration. Group-wise calibration requires that Pr[Y = 1 | R = r, A = a] =
Pr[Y = 1 | R = r, A = b] = r, as in [13]. The impossibilities of satisfying notions of error rate
balance and calibration simultaneously have been discussed in [13, 31]. Liu et al. [33] show that
group calibration is a byproduct of unconstrained empirical risk minimization, and therefore is not a
restrictive notion of fairness. Hebert-Johnson et al. [26] note the critique that group calibration does
not restrict the variance of a risk score as an unbiased estimator of the Bayes-optimal score.

Other work has considered fairness in ranking settings specifically, with particular attention to
applications in information retrieval, such as questions of fair representation in search engine results.
Yang and Stoyanovich [43] assess statistical parity at discrete cut-points of a ranking, incorporating
position bias inspired by normalized discounted cumulative gain (nDCG) metrics. Celis et al. [8]
consider the question of fairness in rankings, where fairness is considered as constraints on diversity
of group membership in the top k rankings, for any choice of k. Singh and Joachims [41] consider
fairness of exposure in rankings under known relevance scores and propose an algorithmic framework
that produces probabilistic rankings satisfying fairness constraints in expectation on exposure, under a
position bias model. We focus instead on the bipartite ranking setting, where the area under the curve
(AUC) loss emphasizes ranking quality on the entire distribution, whereas other ranking metrics such
as nDCG or top-k metrics emphasize only a portion of the distribution.

The problem of bipartite ranking is related to, but distinct from, binary classification [1, 20, 36]; see
[16, 34] for more information. While the bipartite ranking induced by the Bayes-optimal score is
analogously Bayes-risk optimal for bipartite ranking (e.g., [34]), in general, a probability-calibrated
classifier is not optimizing for the bipartite ranking loss. Cortes and Mohri [16] observe that AUC
may vary widely for the same error rate, and that algorithms designed to globally optimize the AUC
perform better than optimizing surrogates of the AUC or error rate. Narasimhan and Agarwal [37]
study transfer regret bounds between the related problems of binary classification, bipartite ranking,
and outcome-probability estimation.

3 Problem Setup and Notation

We suppose we have data (X,A, Y ) on features X 2 X , sensitive attribute A 2 A, and binary
labeled outcome Y 2 {0, 1}. We are interested in assessing the downstream impacts of a predictive
risk score R : X ⇥A ! R, which may or may not access the sensitive attribute. When these risk
scores represent an estimated conditional probability of positive label, R : X ⇥ A ! [0, 1]. For
brevity, we also let R = R(X,A) be the random variable corresponding to an individual’s risk
score. We generally use the conventions that Y = 1 is associated with opportunity or benefit for the
individual (e.g., freedom from suspicion of recidivism, creditworthiness) and that when discussing
two groups, A = a and A = b, the group A = a might be a historically disadvantaged group.

Let the conditional cumulative distribution function of the learned score R evaluated at a threshold ✓
given label and attribute be denoted by

F a
y (✓) = Pr[R  ✓ | Y = y,A = a].

We let Ga
y = 1� F a

y denote the complement of F a
y . We drop the a subscript to refer to the whole

population: Fy(✓) = Pr[R  ✓ | Y = y]. Thresholding the score yields a binary classifier,
Ŷ✓ = I [R � ✓]. The classifier’s true negative rate (TNR) is F0(✓), its false positive rate (FPR) is
G0(✓), its false negative rate (FNR) is F1(✓), and its true positive rate (TPR) is G1(✓). Given a risk
score, the choice of optimal threshold for a binary classifier depends on the differing costs of false
positive and false negatives. We might expect cost ratios of false positives and false negatives to differ
if we consider the use of risk scores to direct punitive measures or to direct interventional resources.

In the setting of bipartite ranking, the data comprises of a pool of positive labeled examples, S+ =

{Xi}i2[m], drawn i.i.d. according to a distribution X+ ⇠ D+, and negative labeled examples S� =

{X 0
i}i2[n] drawn according to a distribution X� ⇠ D� [36]. The rank order may be determined by a

score function s(X), which achieves empirical bipartite ranking error 1
mn

Pm
i=1

Pn
j=1 I[s(Xi) <

s(X 0
j)]. The area under the receiver operating characteristic (ROC) curve (AUC), a common (reward)

objective for bipartite ranking is often used as a metric describing the quality of a predictive score,
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independently of the final threshold used to implement a classifier, and is invariant to different base
rates of the outcomes. The ROC curve plots G0

(✓) on the x-axis with G1
(✓) on the y-axis as we vary

✓ over the space of various decision thresholds. The AUC is the area under the ROC curve, i.e.,
AUC =

R 1
0 G1(G

�1
0 (v))dv

An AUC of 1
2 corresponds to a completely random classifier; therefore, the difference from 1

2 serves
as a metric for the diagnostic quality of a predictive score. We recall the probabilistic interpretation
of AUC that it is the probability that a randomly drawn example from the positive class is correctly
ranked by the score R above a randomly drawn score from the negative class [24]. Let R1 be drawn
from R | Y = 1 and R0 be drawn from R | Y = 0 independently. Then AUC = Pr[R1 > R0].

4 The Cross-ROC (xROC) and Cross-Area Under the Curve (xAUC)

We introduce the cross-ROC curve and the cross-area under the curve metric xAUC that summarize
group-level disparities in misranking errors induced by a score function R(X,A).
Definition 1 (Cross-Receiver Operating Characteristic curve (xROC)).

xROC(✓;R, a, b) = (Pr[R > ✓ | A = b, Y = 0],Pr[R > ✓ | A = a, Y = 1])

The xROC
a,b curve parametrically plots xROC(✓;R, a, b) over the space of thresholds ✓ 2 R,

generating the curve of TPR of group a on the y-axis vs. the FPR of group b on the x-axis. We
define the xAUC(a, b) metric as the area under the xROC

a,b curve. Analogous to the usual AUC,
we provide a probabilistic interpretation of the xAUC metric as the probability of correctly ranking a
positive instance of group a above a negative instance of group a under the corresponding outcome-
and class-conditional distributions of the score.
Definition 2 (xAUC).

xAUC(a, b) =

Z 1

0
Ga

1((G
b
0)

�1
(v))dv = Pr[Ra

1 > Rb
0]

where Ra
1 is drawn from R | Y = 1, A = a and Rb

0 is drawn from R | Y = 0, A = b independently.
For brevity, henceforth, Ra

y is taken to be drawn from R | Y = y,A = a and independently of any
other such variable. We also drop the superscript to denote omitting the conditioning on sensitive
attribute (e.g., Ry).

The xAUC accuracy metrics for a binary sensitive attribute measure the probability that a randomly
chosen unit from the “positive” group Y = 1 in group a, is ranked higher than a randomly chosen
unit from the “negative" group, Y = 0 in group b, under the corresponding group- and outcome-
conditional distributions of scores Ry

a. We let AUC
a denote the within-group AUC for group A = a,

Pr[Ra
1 > Ra

0 ].

If the difference between these metrics, the xAUC disparity
�xAUC = Pr[Ra

1 > Rb
0]� Pr[Rb

1 > Ra
0 ] = Pr[Rb

1  Ra
0 ]� Pr[Ra

1  Rb
0]

is substantial and positive, then we might consider group b to be systematically “disadvantaged”
and a to be “advantaged” when Y = 0 is a negative or harmful label or is associated with punitive
measures, as in the recidivism predication case. Conversely, we have the opposite interpretation if
Y = 0 is a positive label associated with greater beneficial resources. Similarly, since �xAUC is
anti-symmetric in a, b, negative values are also interpreted in the converse.

When higher scores are associated with opportunity or additional benefits and resources, as in the
recidivism predication case, a positive �xAUC means group a either gains by correctly having
its deserving members correctly ranked above the non-deserving members of group b and/or by
having its non-deserving members incorrectly ranked above the deserving members of group b; and
symmetrically, group b loses in the same way. The magnitude of the disparity �xAUC describes
the misranking disparities incurred under this predictive score, while the magnitude of the xAUC

measures the particular across-subgroup rank-accuracies.

Computing the xAUC is simple: one simply computes the sample statistic,
1

nb
0n

a
1

P
i: Ai=a,

Yi=1

P
j: Ai=b,

Yi=0
I[R(Xi) > R(Xj)]. Algorithmic routines for computing the AUC quickly

by a sorting routine can be directly used to compute the xAUCs. Asymptotically exact confidence
intervals are available, as shown in DeLong et al. [17], using the generalized U-statistic property of
this estimator.
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(a) COMPAS: a = Black, b = White, 0 = Recidivate (b) Adult: a = Black, b = White, 0 = Low income

Figure 2: Balanced xROC curves for COMPAS and Adult datasets

Table 1: Ranking error metrics (AUC, xAUC, Brier scores for calibration) for different datasets.
We include standard errors in Table 2 of the appendix.

COMPAS Framingham German Adult
A = Black White Non-F. Female < 25 � 25 Black White

Lo
gi

st
ic

R
eg

.

AUC 0.737 0.701 0.768 0.768 0.726 0.788 0.923 0.898
Brier 0.208 0.21 0.201 0.166 0.211 0.158 0.075 0.111
XAUC 0.604 0.813 0.795 0.737 0.708 0.802 0.865 0.944
XAUC

1
0.698 0.781 0.785 0.756 0.712 0.791 0.874 0.905

XAUC
0

0.766 0.641 0.755 0.783 0.79 0.775 0.943 0.895

R
an

kB
oo

st
ca

l. AUC 0.745 0.703 0.789 0.797 0.704 0.796 0.924 0.899
Brier 0.206 0.21 0.182 0.15 0.22 0.158 0.074 0.109
XAUC 0.599 0.827 0.822 0.761 0.714 0.788 0.875 0.941
XAUC

1
0.702 0.79 0.809 0.783 0.711 0.793 0.882 0.906

XAUC
0

0.776 0.638 0.777 0.811 0.774 0.783 0.939 0.897

Variants of the xAUC metric We can decompose AUC differently and assess different variants of
the xAUC:
Definition 3 (Balanced xAUC).

xAUC0(a) = Pr[R1 > Ra
0 ], xAUC

0
(b) = Pr[R1 > Rb

0]

xAUC
1
(a) = Pr[Ra

1 > R0], xAUC
1
(b) = Pr[Rb

1 > R0]

These xAUC disparities compare misranking error faced by individuals from either group, conditional
on a specific outcome: xAUC0(a)� xAUC

0
(b) compares the ranking accuracy faced by those of

the negative class Y = 0 across groups, and xAUC
1
(a)� xAUC

1
(b) analogously compares those

of the positive class Y = 1. The following proposition shows how the population AUC decomposes
as weighted combinations of the xAUC and within-class AUCs, or the balanced decompositions
xAUC1 or xAUC0, weighted by the outcome-conditional class probabilities.
Proposition 1 (xAUC metrics as decompositions of AUC).

AUC = Pr[R1 > R0] =

X

b02A
Pr[A = b0 | Y = 0] ·

X

a02A
Pr[A = a0 | Y = 1]Pr[Ra0

1 > Rb0

0 ]

=

X

a02A
Pr[A = a0 | Y = 1]Pr[Ra0

1 > R0] =

X

a02A
Pr[A = a0 | Y = 0]Pr[R1 > Ra0

0 ]

5 Assessing xAUC

5.1 COMPAS Example

In Fig. 1, we revisit the COMPAS data and assess our xROC and xAUC curves to illustrate ranking
disparities that may be induced by risk scores learned from this data. The COMPAS dataset is of size
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n = 6167, p = 402, where sensitive attribute is race, with A = a, b for black and white, respectively.
We define the outcome Y = 1 for non-recidivism within 2 years and Y = 0 for violent recidivism.
Covariates include information on number of prior arrests and age; we follow the pre-processing of
Friedler et al. [21].

We first train a logistic regression model on the original covariate data (we do not use the decile
scores directly in order to do a more fine-grained analysis), using a 70%, 30% train-test split and
evaluating metrics on the out-of-sample test set. In Table 1, we report the group-level AUC and the
Brier [7] scores (summarizing calibration), and our xAUC metrics. The xAUC for column A = a
is xAUC(a, b), for column A = b it is xAUC(b, a), and for column A = a, xAUC

y is xAUC
y
(a).

The Brier score for a probabilistic prediction of a binary outcome is 1
n

Pn
i (R(Xi)� Yi)

2. The score
is overall well-calibrated (as well as calibrated by group), consistent with analyses elsewhere [13, 19].

We also report the metrics from using a bipartite ranking algorithm, Bipartite Rankboost of Freund
et al. [20] and calibrating the resulting ranking score by Platt Scaling, displaying the results as
“RankBoost cal.” We observe essentially similar performance across these metrics, suggesting that the
behavior of xAUC disparities is independent of model specification or complexity; and that methods
which directly optimize the population AUC error may still incur these group-level error disparities.

In Fig. 1a, we plot ROC curves and our xROC curves, displaying the averaged ROC curve (interpo-
lated to a fine grid of FPR values) over 50 sampled train-test splits, with 1 standard error bar shaded
in gray (computed by the method of [17]). We include standard errors for xAUC metrics in Table 2 of
the appendix. While a simple within-group AUC comparison suggests that the score is overall more
accurate for blacks – in fact, the AUC is slightly higher for the black population with AUC

a
= 0.737

and AUC
b
= 0.701 – computing our xROC curve and xAUC metric shows that blacks would be

disadvantaged by misranking errors. The cross-group accuracy xAUC(a, b) = 0.604 is significantly
lower than xAUC(b, a) = 0.813: black innocents are nearly indistinguishable from actually guilty
whites. This � xAUC gap of �0.21 is precisely the cross-group accuracy inequity that simply
comparing within-group AUC does not capture. When we plot kernel density estimates of the score
distributions in Fig. 1b from a representative training-test split, we see that indeed the distribution of
scores for black innocents Pr[R = r | A = a, Y = 0] has significant overlap with the distribution of
scores for white innocents.

Assessing balanced xROC: In Fig. 2, we compare the xROC0(a), xROC0(b) curves with the
xROC1(a), xROC1(b) curves for the COMPAS data. The relative magnitude of � xAUC1 and
� xAUC0 provides insight on whether the burden of the xAUC disparity falls on those who are
innocent or guilty. Here, since the � xAUC0 disparity is larger in absolute terms, it seems that
misranking errors result in inordinate benefit of the doubt in the errors of distinguishing risky whites
(Y = 0) from innocent individuals, rather than disparities arising from distinguishing innocent
members of either group from generally guilty individuals.

5.2 Assessing xAUC on Other Datasets

Additionally in Fig. 3 and Table. 1, we evaluate these metrics on multiple datasets where fairness
may be of concern, including risk scores learnt on the Framingham study, the German credit dataset,
and the Adult income prediction dataset (we use logistic regression as well as calibrated bipartite
RankBoost) [18, 42]. For the Framingham dataset (cardiac arrest risk scores), n = 4658, p = 7 with
sensitive attribute of gender, A = a for non-female and A = b for female. Y = 1 denotes 10-year
coronary heart disease (CHD) incidence. Fairness considerations might arise if predictions of likelier
mortality are associated with greater resources for preventive care or triage. The German credit
dataset is of size n = 1000, p = 57, where the sensitive attribute is age with A = a, b for age < 25,
age > 25. Creditworthiness (non-default) is denoted by Y = 1, and default by Y = 0. The “Adult”
income dataset is of size n = 30162, p = 98, sensitive attribute, A = a, b for black and white. We
use the dichotomized outcome Y = 1 for high income > 50k, Y = 0 for low income < 50k.

Overall, Fig. 3 shows that these xAUC disparities persist, though the disparities are largest for
the COMPAS and the large Adult dataset. For the Adult dataset this disparity could result in the
misranking of poor whites above wealthy blacks; this could be interpreted as possibly inequitable
withholding of economic opportunity from actually-high-income blacks. The additional datasets also
display different phenomena regarding the score distributions and xROC0, xROC1 comparisons,
which we include in Fig. 5 of the Appendix.
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(a) Framingham: a = Non-F.,
b = Female, 1 = CHD

(b) German: a = Age < 25,
b = Age � 25, 0 = Default

(c) Adult: a = Black, b = White,
0 = Low income

Figure 3: ROC and xROC curve comparison for Framingham, German credit, and Adult datasets.

6 Properties of the xAUC metric and Discussion

We proceed to characterize the xAUC metric and its interpretations as a measure of cross-group
ranking accuracy. Notably, the xROC and xAUC implicitly compare performances of thresholds
that are the same for different levels of the sensitive attribute, a restriction which tends to hold in
applications under legal constraints regulating disparate treatment.

Next we point out that for a perfect classifier with AUC = 1, the xAUC metrics are also 1. And, for
a classifier that classifies completely at random achieving AUC = 0.5, the xAUCs are also 0.5.

Impact of Score Distribution. To demonstrate how risk score distributions affects the xAUC, we
consider an example where we assume normally distributed risk scores within each group and outcome
condition; we can then express the AUC in closed form in terms of the cdf of the convolution of the
score distributions. Let Ra

y ⇠ N(µay,�2
ay) be drawn independently. Then the xAUC is closed-form:

xAUC(a, b) = Pr[Ra
1 > Rb

0] = �

✓
µa1�µb0p
�2
a1+�2

b0

◆
. We may expect that µa1 > µb0, in which case

Pr[Ra
1 > Rb

0] > 0.5. For fixed mean difference µa1 � µb0 between the a-guilty and b-innocent (e.g.,
in the COMPAS example), a decrease in either variance increases xAUC(a, b). For fixed variances,
an increase in the separation between a-guilty and b-innocent µa1 � µb0 increases xAUC(a, b). The

xAUC discrepancy is similarly closed form: xAUC(a, b) = �

✓
µa1�µb0p
�2
a1+�2

b0

◆
� �

✓
µb1�µa0p
�2
a0+�2

b1

◆
. If

all variances are equal, then we will have a positive disparity (i.e., in disfavor of b) if µa1 � µb0 >
µb1 � µa0 (and recall we generally expect both of these to be positive). This occurs if the separation
between the advantaged-guilty and disadvantaged-innocent is smaller than the separation between the
disadvantaged-guilty and advantaged-innocent. Alternatively, it occurs if µa1 + µa0 > µb1 + µb0 so
the overall mean scores of the disadvantaged are lower. If they are in fact equal, µa1+µa0 = µb1+µb0

and µa1 � µb0 > 0, then we have a positive disparity whenever �2
a0 � �2

a1 > �2
b0 � �2

b1, that is, when
in the b class the difference in precision for innocents vs guilty is smaller than in group a. That is,
disparate precision leads to xAUC disparities even with equal mean scores. In Appendix A.1 we
include a toy example to illustrate a setting where the within-group AUCs remain the same but the
xAUCs diverge.

Note that the xAUC metric compares probabilities of misranking errors conditional on drawing
instances from either Y = 0 or Y = 1 distribution. When base rates differ, interpreting this disparity
as normatively problematic implicitly assumes equipoise in that we want random individuals drawn
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(a) Prob. of individual
Black non.rec. ranked
below White rec.

(b) Prob. of individual
White non.rec. ranked
below Black rec.

(c) Prob. of individual
White low-inc. ranked
below Black high-inc.

(d) Prob. of individual
Black low-inc. ranked
below White high-inc.

Figure 4: Distribution of conditional xAUCs for COMPAS and Adult datasets

with equal probability from the white innocent/black innocent populations to face similar misranking
risks, not drawn from the population distribution of offending.

Utility Allocation Interpretation. When risk scores direct the expenditure of resources or benefits,
we may interpret xAUC disparities as informative of group-level downstream utility disparities, if we
expect beneficial resource or utility prioritizations which are monotonic in the score R. In particular,
allowing for any monotonic allocation u, the xAUC measures Pr[u(Ra

1) > u(Rb
0)]. Disparities

in this measure suggest greater probability of confusion in terms of less effective utility allocation
between the positive and negative classes of different groups. This property can be summarized
by the integral representation of the xAUC disparities (e.g., as in [34]) as differences between the
average rank of positive examples from one group above negative examples from another group:
�xAUC = ERa

1

⇥
F b
0 (R

a
1)
⇤
� ERb

1

⇥
F a
0 (R

b
1)
⇤
.

Diagnostics: Conditional xAUCs. In addition to xAUC and xROC analysis, we consider the
distribution of conditional xAUC ranking accuracies,

xAUC(a, b;R0
b) := P[R1

a > R0
b | R0

b ].

First note that xAUC(a, b) = E
⇥
xAUC(a, b;R0

b)
⇤
. Hence, this quantity is interpreted as the indi-

vidual discrepancy faced by the b-innocent, the average of which over individuals gives the group
disparity. We illustrate the histogram of xAUC(a, b;R0

b) probabilities over the individuals R0
b of the

A = b, Y = 0 partition (and vice versa for xAUC(b, a)). For example, for COMPAS, we compute:
how many white recidivators is this black non-recidivator correctly ranked above? xAUC is the
average of these conditional accuracies, but the variance of this distribution is also informative of
the range of misranking risk and of effect on individuals. We include these diagnostics in Fig. 4 and
indicate the marginal xAUC with a black dotted line. For example, the first pair of plots for COMPAS
illustrates that while the xAUC(b, a) distribution of misranking errors faced by black recidivators
appears to have light tails, such that the model is more accurate at ranking white non-recidivators
above black recidivators, there is extensive probability mass for the xAUC(a, b) distribution, even at
the tails: there are 15 white recidivators who are misranked above nearly all black non-recidivators.
Assessing the distribution of conditional xAUC can inform strategies for model improvement (such
as those discussed in [10]) by directing attention to extreme error.

The question of adjustment. It is not immediately obvious that adjustment is an appropriate strategy
for fair risk scores for downstream decision support, considering well-studied impossibility results
for fair classification [13, 31]. For the sake of comparison to the literature on adjustment for fair
classification such as [25], we discuss post-processing risk scores in Appendix E.1 and provide
algorithms for equalizing xAUC. Adjustments from the fairness in ranking literature may not be
suitable for risk scores: the method of [41] requires randomization over the space of rankers.

7 Conclusion

We emphasize that xAUC and xROC analysis is intended to diagnose potential issues with a model,
in particular when summarizing model performance without fixed thresholds. The xROC curve
and xAUC metrics provide insight on the disparities that may occur with the implementation of a
predictive risk score in broader, but practically relevant settings, beyond binary classification.

8



Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.
1846210. This research was funded in part by JPMorgan Chase & Co. Any views or opinions
expressed herein are solely those of the authors listed, and may differ from the views and opinions
expressed by JPMorgan Chase & Co. or its affiliates. This material is not a product of the Research
Department of J.P. Morgan Securities LLC. This material should not be construed as an individual
recommendation for any particular client and is not intended as a recommendation of particular
securities, financial instruments or strategies for a particular client. This material does not constitute
a solicitation or offer in any jurisdiction.

References

[1] S. Agarwal and D. Roth. Learnability of bipartite ranking functions. Proceedings of the 18th
Annual Conference on Learning Theory, 2005, 2005.

[2] J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias. Online., May 2016.

[3] C. Barabas, K. Dinakar, J. Ito, M. Virza, and J. Zittrain. Interventions over predictions:
Reframing the ethical debate for actuarial risk assessment. Proceedings of Machine Learning
Research, 2017.

[4] S. Barocas and A. Selbst. Big data’s disparate impact. California Law Review, 2014.

[5] S. Barocas, M. Hardt, and A. Narayanan. Fairness and Machine Learning. fairmlbook.org,
2018. http://www.fairmlbook.org.

[6] J. Bonta and D. Andrews. Risk-need-responsivity model for offender assessment and rehabilita-
tion. 2007.

[7] G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly Weather Review,
1950.

[8] L. E. Celis, D. Straszak, and N. K. Vishnoi. Ranking with fairness constraints. 45th International
Colloquium on Automata, Languages, and Programming (ICALP 2018), 2018.

[9] C. Chan, G. Escobar, and J. Zubizarreta. Use of predictive risk scores for early admission to the
icu. MSOM, 2018.

[10] I. Chen, F. Johansson, and D. Sontag. Why is my classifier discriminatory? In Advances in
Neural Information Processing Systems 31, 2018.

[11] J. Chen, N. Kallus, X. Mao, G. Svacha, and M. Udell. Fairness under unawareness: Assessing
disparity when protected class is unobserved. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, pages 339–348. ACM, 2019.

[12] A. Chojnacki, C. Dai, A. Farahi, G. Shi, J. Webb, D. T. Zhang, J. Abernethy, and E. Schwartz.
A data science approach to understanding residential water contamination in flint. Proceedings
of KDD 2017, 2017.

[13] A. Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction
instruments. In Proceedings of FATML, 2016.

[14] A. Chouldechova, E. Putnam-Hornstein, D. Benavides-Prado, O. Fialko, and R. Vaithianathan.
A case study of algorithm-assisted decision making in child maltreatment hotline screening
decisions. Conference on Fairness, Accountability, and Transparency, 2018.

[15] S. Corbett-Davies and S. Goel. The measure and mismeasure of fairness: A critical review of
fair machine learning. ArXiv preprint, 2018.

[16] C. Cortes and M. Mohri. Auc optimization vs. error rate minimization. Proceedings of the 16th
International Conference on Neural Information Processing Systems, 2003.

9

http://www.fairmlbook.org


[17] E. DeLong, D. DeLong, and D. L. Clarke-Pearson. Comparing the areas under two or more
correlated receiver operating characteristic curves: A nonparametric approach. Biometrics,
1988.

[18] D. Dheeru and E. K. Taniskidou. Uci machine learning repository. http://archive.ics.uci.edu/ml,
2017.

[19] W. Dieterich, C. Mendoza, and T. Brennan. Compas risk scales: Demonstrating accuracy equity
and predictive parity. Technical Report, 2016.

[20] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research 4 (2003), 2003.

[21] S. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary, E. P. Hamilton, and D. Roth.
A comparative study of fairness-enhancing interventions in machine learning. ACM Conference
on Fairness, Accountability and Transparency (FAT*), 2019.

[22] A. Fuster, P. Goldsmith-Pinkham, T. Ramadorai, and A. Walther. Predictably unequal? the
effects of machine learning on credit markets. SSRN:3072038, 2018.

[23] D. Hand. Measuring classifier performance: a coherent alternative to the area under the roc
curve. Machine Learning, 2009.

[24] J. Hanley and B. McNeil. The meaning and use of the area under a receiver operating character-
istic (roc) curve. Radiology, 1982.

[25] M. Hardt, E. Price, N. Srebro, et al. Equality of opportunity in supervised learning. In Advances
in Neural Information Processing Systems, pages 3315–3323, 2016.

[26] U. Hebert-Johnson, M. Kim, O. Reingold, and G. Rothblum. Multicalibration: Calibration for
the (computationally-identifiable) masses. Proceedings of the 35th International Conference on
Machine Learning, PMLR 80:1939-1948, 2018.

[27] K. Holstein, J. W. Vaughan, H. D. III, M. Dudík, and H. Wallach. Improving fairness in machine
learning systems: What do industry practitioners need? 2019 ACM CHI Conference on Human
Factors in Computing Systems (CHI 2019), 2019.

[28] J. Jones, N. Shah, C. Bruce, and W. F. Stewart. Meaningful use in practice: Using patient-
specific risk in an electronic health record for shared decision making. American Journal of
Preventive Medicine, 2011.

[29] N. Kallus and A. Zhou. Residual unfairness in fair machine learning from prejudiced data. In
International Conference on Machine Learning, pages 2444–2453, 2018.

[30] N. Kallus and A. Zhou. Assessing disparate impacts of personalized interventions: Identifiability
and bounds. In Advances in Neural Information Processing Systems, 2019.

[31] J. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent trade-offs in the fair determination of
risk scores. To appear in Proceedings of Innovations in Theoretical Computer Science (ITCS),
2017, 2017.

[32] C. E. Kontokosta and B. Hong. Who calls for help? statistical evidence of disparities in citizen-
government interactions using geo-spatial survey and 311 data from kansas city. Bloomberg
Data for Good Exchange Conference, 2018.

[33] L. Liu, M. Simchowitz, and M. Hardt. Group calibration is a byproduct of unconstrained
learning. ArXiv preprint, 2018.

[34] A. Menon and R. C. Williamson. Bipartite ranking: a risk-theoretic perspective. Journal of
Machine Learning Research, 2016.

[35] J. M. C. S. S. V. Michael Feldman, Sorelle Friedler. Certifying and removing disparate impact.
Proecedings of KDD 2015, 2015.

[36] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. 2012.

10



[37] H. Narasimhan and S. Agarwal. On the relationship between binary classification, bipartite
ranking, and binary class probability estimation. Proceedings of NIPS 2013, 2013.

[38] A. Rajkomar, M. Hardt, M. D. Howell, G. Corrado, and M. H. Chin. Ensuring fairness in
machine learning to advance health equity. Annals of Internal Medicine, 2018.

[39] B. Reilly and A. Evans. Translating clinical research into clinical practice: Impact of using
prediction rules to make decisions. Annals of Internal Medicine, 2006.

[40] C. Rudin, R. J. Passonneau, A. Radeva, H. Dutta, SteveIerome, and D. Isaac. A process for
predicting manhole events in manhattan. Machine Learning, 2010.

[41] A. Singh and T. Joachims. Fairness of exposure in rankings. Proceedings of KDD 2018, 2018.

[42] P. W. Wilson, W. P. Castelli, and W. B. Kannel. Coronary risk prediction in adults (the
framingham heart study). The American journal of cardiology, 59(14):G91–G94, 1987.

[43] K. Yang and J. Stoyanovich. Measuring fairness in ranked outputs. Proceedings of SSDBM 17,
2017.

[44] M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gummadi. Fairness beyond disparate treatment
& disparate impact: Learning classification without disparate mistreatment. Proceedings of
WWW 2017, 2017.

11


