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Abstract

Linear dimensionality reduction methods are commonly used to extract low-
dimensional structure from high-dimensional data. However, popular methods
disregard temporal structure, rendering them prone to extracting noise rather than
meaningful dynamics when applied to time series data. At the same time, many
successful unsupervised learning methods for temporal, sequential and spatial data
extract features which are predictive of their surrounding context. Combining these
approaches, we introduce Dynamical Components Analysis (DCA), a linear dimen-
sionality reduction method which discovers a subspace of high-dimensional time
series data with maximal predictive information, defined as the mutual information
between the past and future. We test DCA on synthetic examples and demon-
strate its superior ability to extract dynamical structure compared to commonly
used linear methods. We also apply DCA to several real-world datasets, showing
that the dimensions extracted by DCA are more useful than those extracted by
other methods for predicting future states and decoding auxiliary variables. Over-
all, DCA robustly extracts dynamical structure in noisy, high-dimensional data
while retaining the computational efficiency and geometric interpretability of linear
dimensionality reduction methods.

1 Introduction

Extracting meaningful structure from noisy, high-dimensional data in an unsupervised manner
is a fundamental problem in many domains including neuroscience, physics, econometrics and
climatology. In the case of time series data, e.g., the spiking activity of a network of neurons or
the time-varying prices of many stocks, one often wishes to extract features which capture the
dynamics underlying the system which generated the data. Such dynamics are often expected to
be low-dimensional, reflecting the fact that the system has fewer effective degrees of freedom than
observed variables. For instance, in neuroscience, recordings of 100s of neurons during simple stimuli
or behaviors generally contain only ∼10 relevant dimensions [1]. In such cases, dimensionality
reduction methods may be used to uncover the low-dimensional dynamical structure.

Linear dimensionality reduction methods are popular since they are computationally efficient, often
reducing to generalized eigenvalue or simple optimization problems, and geometrically interpretable,
since the high- and low-dimensional variables are related by a simple change of basis [2]. Analyzing
the new basis can provide insight into the relationship between the high- and low-dimensional
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variables [3]. However, many popular linear methods including Principal Components Analysis,
Factor Analysis and Independent Components Analysis disregard temporal structure, treating data at
different time steps as independent samples from a static distribution. Thus, these methods do not
recover dynamical structure unless it happens to be associated with the static structure targeted by the
chosen method.

On the other hand, several sophisticated unsupervised learning methods for temporal, sequential and
spatial data have recently been proposed, many of them rooted in prediction. These prediction-based
methods extract features which are predictive of the future (or surrounding sequential or spatial
context) [4–9]. Predictive features form useful representations since they are generally linked to the
dynamics, computation or other latent structure of the system which generated the data. Predictive
features are also of interest to organisms, which must make internal estimates of the future of the
world in order to guide behavior and compensate for latencies in sensory processing [10]. These
ideas have been formalized mathematically [11, 12] and tested experimentally [13].

We introduce Dynamical Components Analysis (DCA), a novel method which combines the com-
putational efficiency and ease of interpretation of linear dimensionality reduction methods with
the temporal structure-discovery power of prediction-based methods. Specifically, DCA discov-
ers a subspace of high-dimensional time series data with maximal predictive information, defined
as the mutual information between the past and future [12]. To make the predictive information
differentiable and accurately estimable, we employ a Gaussian approximation of the data, however
we show that maximizing this approximation can yield near-optima of the full information-theoretic
objective. We compare and contrast DCA with several existing methods, including Principal Compo-
nents Analysis and Slow Feature Analysis, and demonstrate the superior ability of DCA to extract
dynamical structure in synthetic data. We apply DCA to several real-world datasets including neural
population activity, multi-city weather data and human kinematics. In all cases, we show that DCA
outperforms commonly used linear dimensionality reduction methods at predicting future states and
decoding auxiliary variables. Altogether, our results establish that DCA is an efficient and robust
linear method for extracting dynamical structure embedded in noisy, high-dimensional time series.

2 Dynamical Components Analysis

2.1 Motivation

Dimensionality reduction methods that do not take time into account will miss dynamical structure
that is not associated with the static structure targeted by the chosen method. We demonstrate this
concretely in the context of Principal Components Analysis (PCA), whose static structure of interest is
variance [14, 15]. Variance arises in time series due to both dynamics and noise, and the dimensions
of greatest variance, found by PCA, contain contributions from both sources in general. Thus, PCA
is prone to extracting spatially structured noise rather than dynamics if the noise variance dominates,
or is comparable to, the dynamics variance (Fig. 1A). We note that for applications in which generic
shared variability due to both dynamics and spatially structured noise is of interest, static methods are
well-suited.

To further illustrate this failure mode of PCA, suppose we embed a low-dimensional dynamical
system, e.g., a Lorenz attractor, in a higher-dimensional space via a random embedding (Fig. 1B,C).
We then add spatially anisotropic Gaussian white noise (Fig. 1D). We define a signal-to-noise ratio
(SNR) given by the ratio of the variances of the first principal components of the dynamics and
noise. When the SNR is small, the noise variance dominates the dynamics variance and PCA
primarily extracts noise, missing the dynamics. Only when the SNR becomes large does PCA extract
dynamical structure (Fig. 1F,G, black). Rather than maximizing variance, DCA finds a projection
which maximizes the mutual information between past and future windows of length T (Fig. 1E).
As we will show, this mutual information is maximized precisely when the projected time series
contains as much dynamical structure, and as little noise, as possible. As a result, DCA extracts
dynamical structure even for small SNR values, and consistently outperforms PCA in terms of
dynamics reconstruction performance as the SNR grows (Fig 1F,G, red).
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Figure 1: DCA finds dynamics rather than variance. (A) Schematic of unit vectors found by PCA
and DCA for three relative levels of dynamics and noise. The dimension of greatest variance, found
by PCA, contains contributions from both sources while the dimension found by DCA is orthogonal
to the noise. (B) Lorenz attractor in the chaotic regime. (C) Random orthogonal embedding of the
Lorenz attractor into 30-dimensional space. (D) Embedded Lorenz attractor with spatially-structured
white noise. (E) Random three-dimensional projection (top) and DCA projection (bottom) of the
embedded Lorenz attractor. (F) Reconstructions of the Lorenz attractor given the three-dimensional
projections found by DCA and PCA. (G) Lorenz reconstruction performance (R2) as a function of
the SNR for both methods. See Appendix B for details of the noisy Lorenz embedding.

2.2 Predictive information as an objective function

The goal of DCA is to extract a subspace with maximal dynamical structure. One fundamental
characteristic of dynamics is predictability: in a system with dynamics, future uncertainty is reduced
by knowledge of the past. This reduction in future uncertainty may be quantified using information
theory. In particular, if we equate uncertainty with entropy, this reduction in future uncertainty is the
mutual information between the past and future. This quantity was termed predictive information
by Bialek et al. [12]. Formally, consider a discrete time series X = {xt}, xt ∈ Rn, with a stationary
(time translation-invariant) probability distribution P (X). Let Xpast and Xfuture denote consecu-
tive length-T windows of X , i.e., Xpast = (x−T+1, . . . , x0) and Xfuture = (x1, . . . , xT ). Then, the
predictive information Ipred

T (X) is defined as

Ipred
T (X) = H (Xfuture)−H (Xfuture|Xpast)

= H (Xpast) +H (Xfuture)−H (Xpast, Xfuture)

= 2HX(T )−HX(2T )

(1)

where HX(T ) is the entropy of any length-T window of X , which is well-defined by virtue of
the stationarity of X . Unlike entropy and related measures such as Kolmogorov complexity [16],
predictive information is minimized, not maximized, by serially independent time series (white noise).
This is because predictive information captures the sub-extensive component of the entropy of X .
Specifically, if the data points that comprise X are mutually independent, then HX(αT ) = αHX(T )
for all α and T , meaning that the entropy is perfectly extensive. On the other hand, if X has temporal
structure, then HX(αT ) < αHX(T ) and the entropy has a sub-extensive component given by
αHX(T ) − HX(αT ) > 0. Upon setting α = 2, this sub-extensive component is the predictive
information.

Beyond simply being able to detect the presence of temporal structure in time series, predic-
tive information discriminates between different types of structure. For example, consider two
discrete-time Gaussian processes with autocovariance functions f1(∆t) = exp (−|∆t/τ |) and
f2(∆t) = exp

(
−∆t2/τ2

)
. For τ � 1, the predictive information in these time series saturates

as T →∞ to c1 log τ
2 and c2τ4, respectively, where c1 and c2 are constants of order unity (see Ap-
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pendix D for derivation). The disparity in the predictive information of these time series corresponds
to differences in their underlying dynamics. In particular, f1(∆t) describes Markovian dynamics,
leading to small predictive information, whereas f2(∆t) describes longer-timescale dependencies,
leading to large predictive information. Finally, as discussed by Bialek et al. [12], the predictive
information of many time series diverges with T . In these cases, different scaling behaviors of the
predictive information correspond to different classes of time series. For one-dimensional time series,
it was demonstrated that the divergent predictive information provides a unique complexity measure
given simple requirements [12].

2.3 The DCA method

DCA takes as input samples xt ∈ Rn of a discrete time series X , as well as a target dimensionality
d ≤ n, and outputs a projection matrix V ∈ Rn×d such that the projected data yt = V Txt maximize
an empirical estimate of Ipred

T (Y ). In certain cases of theoretical interest, P (X) is known and Ipred
T (Y )

may be computed exactly for a given projection V . Systems for which this is possible include linear
dynamical systems with Gaussian noise and Gaussian processes more broadly. In practice, however,
we must estimate of Ipred

T (Y ) from finitely many samples. Directly estimating mutual information
from multidimensional data with continuous support is possible, and popular nonparametric methods
include those based on binning [17, 18], kernel density estimation [19] and k-nearest neighbor
(kNN) statistics [20]. However, many of these nonparametric methods are not differentiable (e.g.,
kNN-based methods involve counting data points), complicating optimization. Moreover, these
methods are typically sensitive to the choice of hyperparameters [21] and suffer from the curse of
dimensionality, requiring prohibitively many samples for accurate results [22].

To circumvent these challenges, we assume that X is a stationary (discrete-time) Gaussian process.
It then follows that Y is stationary and Gaussian since Y is a linear projection of X . Under this
assumption, Ipred

T (Y ) may be computed from the second-order statistics of Y , which may in turn
be computed from the second-order statistics of X given V . Crucially, this estimate of Ipred

T (Y ) is
differentiable in V . Toward expressing Ipred

T (Y ) in terms of V , we define ΣT (X), the spatiotemporal
covariance matrix ofX which encodes all second-order statistics ofX across T time steps. Assuming
that 〈xt〉t = 0, we have

ΣT (X) =


C0 C1 . . . CT−1

CT1 C0 . . . CT−2

...
...

. . .
...

CTT−1 CTT−2 . . . C0

 where C∆t =
〈
xtx

T
t+∆t

〉
t
. (2)

Then, the spatiotemporal covariance matrix of Y , ΣT (Y ), is given by sending C∆t → V TC∆tV in
ΣT (X). Finally, Ipred

T (Y ) is given by

Ipred
T (Y ) = 2HY (T )−HY (2T ) = log |ΣT (Y )| − 1

2
log |Σ2T (Y )|. (3)

To run DCA on data, we first compute the 2T cross-covariance matrices C0, . . . , C2T−1, then
maximize the expression for Ipred

T (Y ) of Eq. 3 with respect to V (see Appendix A for implementation
details). Note that Ipred

T (Y ) is invariant under invertible linear transformations of the columns of V .
Thus, DCA finds a subspace as opposed to an ordered sequence of one-dimensional projections.

Of course, real data violate the assumptions of both stationarity and Gaussianity. Note that stationarity
is a fundamental conceptual assumption of our method in the sense that predictive information is
defined only for stationary processes, for which the entropy as a function of window length is
well-defined. Nonetheless, extensions of DCA which take nonstationarity into account are possible
(see Discussion). On the other hand, the Gaussian assumption makes optimization tractable, but is
not required in theory. Note, however, that the Gaussian assumption is acceptable so long as the
optima of the Gaussian objective are also near-optima of the full information-theoretic objective.
This is a much weaker condition than agreement between the Gaussian and full objectives over
all possible V . To probe whether the weak condition might hold in practice, we compared the
Gaussian estimate of predictive information to a direct estimate obtained using the nonparametric
kNN estimator of Kraskov et al. [20] for projections of non-Gaussian synthetic data. We refer to
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these two estimates of predictive information as the “Gaussian” and “full” estimates, respectively.
For random one-dimensional projections of the three-dimensional Lorenz attractor, the Gaussian and
full predictive information estimates are positively correlated, but show a complex, non-monotonic
relationship (Fig. 2A,B). However, for one-dimensional projections of the 30-dimensional noisy
Lorenz embedding of Fig. 1, we observe tight agreement between the two estimates for random
projections (Fig. 2C, gray histogram). Running DCA, which by definition increases the Gaussian
estimate of predictive information, also increases the full estimate (Fig. 2C, red trajectories). When we
consider three-dimensional projections of the same system, random projections no longer efficiently
sample the full range of predictive information, but running DCA nevertheless increases both the
Gaussian and full estimates (Fig. 2D, trajectories). These results suggest that DCA finds good optima
of the full, information-theoretic loss surface in this synthetic system despite only taking second-order
statistics into account.

For a one-dimensional Gaussian time series Y , it is also possible to compute the predictive informa-
tion using the Fourier transform of Y [23]. In particular, when the asymptotic predictive information
Ipred
T→∞(Y ) is finite, we have Ipred

T→∞(Y ) =
∑∞
k=1 kb

2
k where {bk} are the so-called cepstrum coeffi-

cients of Y , which are related to the Fourier transform of Y (see Appendix C). When the Fourier
transform of Y is estimated for length-2T windows in conjunction with a window function, this
method computes a regularized estimate of Ipred

T (Y ). We call this the “frequency-domain” method
of computing Gaussian predictive information (in contrast the “time-domain” method of Eq. 3).
Like the time-domain method, the frequency-domain method is differentiable in V . Its primary
advantage lies in leveraging the fast Fourier transform (FFT), which allows DCA to be run with
much larger T than would be feasible using the time-domain method which requires computing
the log-determinant of a T -by-T matrix, an O

(
T 3
)

operation. By contrast, the FFT is O (T log T ).
However, the frequency-domain method is limited to finding one-dimensional projections. To find
a multidimensional projection, one can greedily find one-dimensional projections and iteratively
project them out of of the problem, a technique called deflation. However, deflation is not guaranteed
to find local optima of the DCA objective since correlations between the projected variables are
ignored (Fig. 2E). For this reason, we use the time-domain implementation of DCA unless stated
otherwise.
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Figure 2: Comparison of Gaussian vs. full predictive information estimates (A–D) and the
frequency-domain method (E). (A) Predictive information of one-dimensional projections of the
three-dimensional Lorenz attractor as a function of the spherical coordinates (θ, φ) of the projection
using Gaussian and full (kNN) estimates. (A–D) all consider DCA with T = 1. (B) Histogram of the
Gaussian and full estimates of predictive information from (A). (C) Histogram of the Gaussian and
full estimates of predictive information of random one-dimensional projections of the 30-dimensional
noisy Lorenz embedding of Fig. 1. Red trajectories correspond to five different runs of DCA. (D)
Same as (C) but for three-dimensional projections of the same system. (E) Gaussian predictive
information of subspaces found by different implementations of DCA when run on 109-dimensional
motor cortical data (see Section 4). “DCA” directly optimizes Eq. 3, “deflation” optimizes Eq. 3 to
find one-dimensional projections in a deflational fashion and “FFT deflation” uses the frequency-
domain method of computing Gaussian predictive information in a deflational fashion. T = 5 is used
in all three cases.

3 Related work

Though less common than static methods, linear dimensionality reduction methods which take time
into account, like DCA, are sometimes used. One popular method is Slow Feature Analysis (SFA),
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which we examine in some depth due to its resemblance to DCA [24, 25]. Given a discrete time
sereis X , where xt ∈ Rn, SFA finds projected variables yt = V Txt ∈ Rd that have unit variance,
mutually uncorrelated components and minimal mean-squared time derivatives. For a discrete one-
dimensional time series with unit variance, minimizing the mean-squared time derivative is equivalent
to maximizing the one-time step autocorrelation. Thus, SFA may be formulated as

maximize tr
(
V TCsym

1 V
)

subject to V TC0V = I (4)

where V ∈ Rn×d, C0 =
〈
xtx

T
t

〉
t
, C1 =

〈
xtx

T
t+1

〉
t

and Csym
1 = 1

2

(
C1 + CT1

)
. We assume that X

has been temporally oversampled so that the one-time step autocorrelation of any one-dimensional
projection is positive, which is equivalent to assuming that Csym

1 is positive-definite (see Appendix
E for explanation). SFA is naturally compared to the T = 1 case of DCA. For one-dimensional
projections (d = 1), the solutions of SFA and DCA coincide, since mutual information is monoton-
ically related to correlation for Gaussian variables in the positive-correlation regime. For higher-
dimensional projections (d > 1), the comparison becomes more subtle. SFA is solved by making
the whitening transformation Ṽ = C

1/2
0 V and letting Ṽ be the top-d orthonormal eigenvectors of

MSFA = C
−1/2
0 Csym

1 C
−1/2
0 . To understand the solution to DCA, it is helpful to consider the relaxed

problem of maximizing I(UTxt;V
Txt+1) where U need not equal V . The relaxed problem is

solved by performing Canonical Correlation Analysis (CCA) on xt and xt+1, which entails making
the whitening transformations Ũ = C

1/2
0 U , Ṽ = C

1/2
0 V and letting Ũ and Ṽ be the top-d left and

right singular vectors, respectively, of MCCA = C
−1/2
0 C1C

−1/2
0 [26, 27]. If X has time-reversal

symmetry, then Csym
1 = C1, so MSFA = MCCA and the projections found by SFA and DCA agree.

For time-irreversible processes, Csym
1 6= C1, so MSFA 6= MCCA and the projections found by SFA and

DCA disagree. In particular, the SFA objective has no dependence on the off-diagonal elements of
V TC1V , while DCA takes these terms into account to maximize I

(
V Txt;V

Txt+1

)
. Additionally,

for non-Markovian processes, SFA and DCA yield different subspaces for T > 1 for all d ≥ 1 since
DCA captures longer-timescale dependencies than SFA (Fig. 3A). In summary, DCA is superior
to SFA at capturing past-future mutual information for time-irreversible and/or non-Markovian
processes. Note that most real-world systems including biological networks, stock markets and
out-of-equilibrium physical systems are time-irreversible. Moreover, real-world systems are generally
non-Markovian. Thus, when capturing past-future mutual information is of interest, DCA is superior
to SFA for most realistic applications.

With regard to the relaxed problem solved by CCA, Tegmark [28] has suggested that, for time-
irreversible processes X , the maximum of I

(
UTxt;V

Txt+1

)
can be significantly reduced when

U = V is enforced. This is because, in time-irreversible processes, predictive features are not
necessarily predictable, and vice versa. However, because this work did not compare CCA (the
optimal U 6= V method) to DCA (the optimal U = V method), the results are overly pessimistic.
We repeated the analysis of [28] using both the noisy Lorenz embedding of Fig. 1 as well as a
system of coupled oscillators that was used in [28]. For both systems, the single projection found
by DCA captured almost as much past-future mutual information as the pair of projections found
by CCA (Fig. 3B,C). This suggests that while predictive and predictable features are different in
general, shared past and future features might suffice for capturing most of the past-future mutual
information in a certain systems. Identifying and characterizing this class of systems could have
important implications for prediction-based unsupervised learning techniques [28, 9].

In addition to SFA, other time-based linear dimensionality reduction methods have been proposed.
Maximum Autocorrelation Factors [29] is equivalent to the version of SFA described here. Com-
plexity Pursuit [30] and Forecastable Components Analysis [31] each minimize the entropy of a
nonlinear function of the projected variables. They are similar in spirit to the frequency-domain
implementation of DCA, but do not maximize past-future mutual information. Several algorithms
inspired by Independent Components Analysis that incorporate time have been proposed [32–34],
but are designed to separate independent dimensions in time series rather than discover a dynamical
subspace with potentially correlated dimensions. Like DCA, Predictable Feature Analysis [35, 36] is
a linear dimensionality reduction method with a prediction-based objective. However, Predictable
Feature Analysis requires explicitly specifying a prediction model, whereas DCA does not assume a
particular model. Moreover, Predictable Feature Analysis requires alternating optimization updates
of the prediction model and the projection matrix, whereas DCA is end-to-end differentiable. Finally,
DCA is related to the Past-Future Information Bottleneck [37] (see Appendix F).
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Figure 3: Comparison of DCA with other methods. (A) Autocorrelation functions of one-
dimensional DCA projections of motor cortical data (see Section 4) for T = 1, in which case
DCA is equivalent to SFA, and T = 20. While the one-time step autocorrelation is larger for the
T = 1 projection (inset), the T = 20 projection exhibits stronger oscillations apparent at longer
timescales. (B) Performance of DCA, SFA, PCA and CCA at capturing past-future mutual informa-
tion, I

(
UTxt;V

Txt+∆t

)
, where U = V for DCA, SFA and PCA and U 6= V for CCA. Following

Tegmark [28], xt comprises the position and momentum variables of 10 coupled oscillators and
∆t = 10. (C) Same as (B), but using the 30-dimensional noisy Lorenz embedding of Fig. 1 with
∆t = 2.

We have been made aware of two existing methods which share the name Dynamical Component(s)
Analysis [38–40]. Thematically, they share the goal of uncovering low-dimensional dynamics from
time series data. Thirion and Faugeras [38] perform a two-stage, temporal then kernelized spatial
analysis. Seifert et al. [39] and Korn et al. [40] assume the observed dynamics are formed by low-
dimensional latent variables with linear and nonlinear dynamics. To fit a linear approximation of the
latent variables, they derive a generalized eigenvalue problem which is sensitive to same-time and
one-time step correlations, i.e., the data and the approximation of its first derivative.

An alternative to objective function-based components analysis methods are generative models, which
postulate a low-dimensional latent state that has been embedded in high-dimensional observation
space. Generative models featuring latent states imbued with dynamics, such as the Kalman filter,
Gaussian Process Factor Analysis and LFADS, have found widespread use in neuroscience (see
Appendix I for comparisons of DCA with the KF and GPFA) [41–43]. The power of these methods
lies in the fact that rich dynamical structure can be encouraged in the latent state through careful
choice of priors and model structure. However, learning and inference in generative models tend to be
computationally expensive, particularly in models featuring dynamics. In the case of deep learning-
based methods such as LFADS, there are often many model and optimization hyperparameters
that need to be tuned. In terms of computational efficiency and simplicity, DCA occupies an
attractive territory between linear methods like PCA and SFA, which are computationally efficient but
extract relatively simple structure, and dynamical generative models like LFADS, which extract rich
dynamical structure but are computationally demanding. As a components analysis method, DCA
makes the desired properties of the learned features explicit through its objective function. Finally,
the ability of DCA to yield a linear subspace in which dynamics unfold may be exploited for many
analyses. For example, the loadings for DCA can be studied to examine the relationship between the
high- and low-dimensional variables (Appendix J).

Lastly, while DCA does not produce an explicit description of the dynamics, this is a potentially
attractive property. In particular, while dynamical generative models such as the KF provide de-
scriptions of the dynamics, they also assume a particular form of dynamics, biasing the extracted
components toward this form. By contrast, DCA is formulated in terms of spatiotemporal correlations
and, as result, can extract broad forms of (stationary) dynamics, be they linear or nonlinear. For
example, the Lorenz attractor of Fig. 1 is a nonlinear dynamical system.

4 Applications to real data

We used DCA to extract dynamical subspaces in four high-dimensional time series datasets: (i) multi-
neuronal spiking activity of 109 single units recorded in monkey primary motor cortex (M1) while
the monkey performed a continuous grid-based reaching task [44]; (ii) multi-neuronal spiking activity
of 55 single units recorded in rat hippocampal CA1 while the rat performed a reward-chasing
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task [45, 46]; (iii) multi-city temperature data from 30 cities over several years [47]; and (iv) 12
variables from an accelerometer, gyroscope, and gravity sensor recording human kinematics [48].
See Appendix B for details. For all results, three bins of projected data were used to predict one bin
of response data. Data were split into five folds, and reported R2 values are averaged across folds.

To assess the performance of DCA, we noted that subspaces which capture dynamics should be
more predictive of future states than those which capture static structure. Moreover, for the motor
cortical and hippocampal datasets, subspaces which capture dynamics should be more predictive of
behavioral variables (cursor kinematics and rat location, respectively) than subspaces which do not,
since neural dynamics are believed to underlie or encode these variables [49, 50]. Thus, we compared
the abilities of subspaces found by DCA, PCA and SFA to decode behavioral variables for the motor
cortical and hippocampal datasets and to forecast future full-dimensional states for the temperature
and accelerometer datasets.

For the motor cortical and hippocampal datasets, DCA outperformed PCA at predicting both current
and future behavioral variables on held-out data (Fig. 4, top row). This reflects the existence of
dimensions which have substantial variance, but which do not capture as much dynamical structure
as other, smaller-variance dimensions. Unlike PCA, DCA is not drawn to these noisy, high-variance
dimensions. In addition to demonstrating that DCA captures more dynamical structure than PCA, this
analysis demonstrates the utility of DCA in a common task in neuroscience, namely, extracting low-
dimensional representations of neural dynamics for visualization or further analysis (see Appendix
H for forecasting results on the neural data and Appendix J for example latent trajectories and their
relationship to the original measurement variables) [27, 51]. For the temperature dataset, DCA
and PCA performed similarly, and for the accelerometer dataset, DCA outperformed PCA for the
lowest-dimensional projections. The narrower performance gap between DCA and PCA on the
temperature and accelerometer datasets suggests that the alignment between variance and dynamics
is stronger in these datasets than in the neural data.

Assuming Gaussianity, DCA is formally superior to SFA at capturing past-future mutual information
in time series which are time-irreversible and/or non-Markovian (Section 3). All four of our datasets
possess both of these properties, suggesting that subspaces extracted by DCA might offer superior
decoding and forecasting performance to those extracted by SFA. We found this to be the case across
all four datasets (Fig. 4, bottom row). Moreover, the relative performance of DCA often became
stronger as T (the past-future window size of DCA) was increased, highlighting the non-Markovian
nature of the data (see Appendix G for absolute R2 values). This underscores the importance of
leveraging spatiotemporal statistics across long timescales when extracting non-Markovian dynamical
structure from data.

5 Discussion

DCA retains the geometric interpretability of linear dimensionality reduction methods while im-
plementing an information-theoretic objective function that robustly extracts dynamical structure
while minimizing noise. Indeed, the subspace found by DCA may be thought of as the result of a
competition between aligning the subspace with dynamics and making the subspace orthogonal to
noise, as in Fig. 1A. Applied to neural, weather and accelerometer datasets, DCA often outperforms
PCA, indicating that noise variance often dominates or is comparable to dynamics variance in these
datasets. Moreover, DCA often outperforms SFA, particularly when DCA integrates spatiotemporal
statistics over long timescales, highlighting the non-Markovian statistical dependencies present in
these datasets. Overall, our results show that DCA is well-suited for finding dynamical subspaces in
time series with structural attributes characteristic of real-world data.

Many extensions of DCA are possible. Since real-world data generation processes are generally
non-stationary, extending DCA for non-stationary data is a key direction for future work. For example,
non-stationary data may be segmented into windows such that the data are approximately stationary
within each window [52]. In general, the subspace found by DCA includes contributions from all of
the original variables. For increased interpretability, DCA could be optimized with an `1 penalty on
the projection matrix V [53] to identify a small set of relevant features, e.g., individual neurons or
stocks [3]. Both the time- and frequency-domain implementations of DCA may be made differentiable
in the input data, opening the door to extensions of DCA that learn nonlinear transformations of the
input data, including kernel-like dimensionality expansion, or that use a nonlinear mapping from the
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Figure 4: DCA for prediction and forecasting. For all panels, color indicates the projected di-
mensionality. For the top row, marker type indicates the lag for prediction. The top row compares
held-out R2 for DCA vs. PCA as a function of projection dimensionality and prediction lag. The
bottom row shows the difference in held-out R2 for DCA vs. SFA as a function of T , the past-future
window size parameter for DCA. (M1) Predicting cursor location from projected motor cortical data.
(Hippocampus) Predicting animal location from projected hippocampal data. (Temperature) Fore-
casting future full-dimensional temperature states from projected temperature states. (Accelerometer)
Forecasting future full-dimensional accelerometer states from projected states.

high- to low-dimensional space, including deep architectures. Since DCA finds a linear projection,
it can also be kernelized using the kernel trick. The DCA objective could also be used in recurrent
neural networks to encourage rich dynamics. Finally, dimensionality reduction via DCA could serve
as a preprocessing step for time series analysis methods which scale unfavorably in the dimensionality
of the input data, allowing such techniques to be scaled to high-dimensional data.
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