
As R#1 and R#2 suggested, we agree to rename the method to “Riemannian batch centering” (RBC), or “Riemannian1

variance-free batchnorm”.2

Q : Also, the computational complexity of this method for forward and backward pass are not obvious. Can you include3

them? (R#1) / Ths authors should [...] make the computational overhead very clear. (R#2)4

→ In the paper we report overhead in the SPDNet from using our proposed RBC for the deepest net on the most5

computationally time-demanding experiment, the AFEW dataset (lines 277-279): the overhead for one epoch is of6

+8.6% relative time increase, which seems acceptable (all other experiments show a comparable, mostly smaller7

overhead). As for the complexity: 1) Riemannian barycenter: we use only one step in the Karcher flow, which involves8

one log mapping and one exp mapping: the intuition is that since the batch barycenter is but a noisy estimation of the9

true barycenter, a lax approximation is sufficient, and also allows for much faster inference; in practice, it even works10

better than going through multiple steps, and than using zero steps, i.e. the Euclidean mean; 2) SPD transport: the bulk11

of the complexity comes from computing the inverse square root and square root of the Riemannian barycenter and the12

learnt bias, respectively. Since they are SPD, the complexity, both in inference and backprop (backprop is only required13

for the bias matrix) is equivalent to that of the already existing ReEig and LogEig layers (i.e., applying a non-linear14

function to the diagonal matrix of singular values obtained through SVD); 3) Thus, as in the regular SPDNet, the15

complexity mostly resides in the SVD of batch of matrices: to reduce this burden, namely in the backprop, SVD results16

are stored during the training when they are to be re-used (using the Pytorch save_for_backward function). In summary,17

the RBC requires the SVD of the batch, plus two additional SVDs, one for the barycenter and one for the bias; all other18

operations are scalar operations and matrix multiplications. Complexity will be further discussed in a final version.19

Q : Side question: what’s the relationship between eq (10) and Wishart distribution? (R#1)20

→ Although the similar formulae hint to some link, they are obtained differently and thus don’t represent the same21

distributions: Wishart deals with data dispersion matrices XXT , whereas the proposed definition stems from defining22

the entropy as the Legendre transform of the free energy, which itself is the negative log of the cone’s characteristic23

function, i.e. the Laplace transform between dual coordinates. See the referenced literature, along with [J. Faraut.24

Analysis on symmetric cones] and [F. Barbaresco. Jean-Louis Koszul and the Elementary Structures of Information25

Geometry].26

Q : Report on learning curve (R#1)27

→ See figure 1: the RBC does seem to provide a steeper learning curve. For the same number of epochs, we see the28

RBC takes more time overall, but reaches better accuracy much faster, allowing to reduce the number of epochs. Note29

that tests were re-run with a deeper net on a more challenging configuration than that in the original submission, where30

SPDNet with RBC remains stable but drastically drops without.31
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Figure 1: Validation accuracy on the NATO radar dataset in
function of physical time. The two curves show the same
number of epochs.

Q : Compare with traditional BN with projections to the32

manifold (R#1)33

→ The comparison is definitely of interest: the closest34

point on the tangent bundle to each SPD matrix is its35

matrix log, and it is indeed possible to see matrices as36

standard 2D images and use a standard batchnorm. This37

experiment on the NATO radar data yields a score of38

74.3%± 2.01, compared to the 87.2%± 1.06 reported in39

the paper. Furthermore, not using the matrix log yields40

even worse and less stable performance (58.6%± 2.17).41

We believe both results further justify the use of Rie-42

mannian geometry when handling SPD data (as expected43

given the literature).44

Q : eq.(1) explain what is "log" (R#2)45

→ It is the matrix log, as recalled a few lines below (line 84); we can move the definition a few lines up.46

Q : L39 It is not clear what "each layer processes a point on the SPD manifold" means (R#2)47

→We meant to contrast with “traditional” networks, which deal with points in an Euclidean space.48

We thank R#3 for spotting the typos, and will make sure to fix them, and all reviewers for other general commentaries49

such as the addition of background explanations on Riemannian geometry and the mentioning of alternate work based50

on different metrics ([K. Sun, P. Koniusz, Z. Wang, Fisher-Bures Adversary Graph Convolutional Networks], [A.51

Siahkamari, V. Saligrama, D. Castanon, and B. Kulis. Learning Bregman Divergences], log-det divergence...) .52


