
To Reviewer #11

Q1: “I am not sure if this is significant enough...The improved analysis is useful but not provide a big impact”2

A1: Improving the over-parameterization condition from Ω̃(n24) to Ω̃(n8) without making any additional assumption3

on the training data is by no means trivial. More importantly, our work clearly points out the right direction to improve4

the over-parameterization condition: (1) proving tighter gradient lower bound, and (2) proving shorter trajectory length5

for (stochastic) gradient descent. Our work sheds light on further improving the over-parameterization condition and6

trigger a lot of followup work to make the over-parameterization well-aligned with the neural network width used in7

practice. Moreover, we believe our proof idea can also be generalized to studying a broader class of neural networks8

(e.g., CNN, ResNet). Therefore, we believe our contribution to this line of research is significant and our work has a big9

impact in the field of deep learning theory.10

Q2: “...very different ideas may be needed, I do not see how the new insight can help improve the requirement...”11

A2: We don’t fully agree with your comment on this point. Based on our current ideas, there is still a big room to12

improve the over-parameterization requirement. We explain it as follows: in our paper, the proved over-parameterization13

condition is Ω̃(n8) when the gradient lower bound is roughly in the order of O(m/n2) (Here the other problem-14

dependent parameters are omitted, please refer to Lemma 4.1 for details). If we can improve the gradient lower bound15

to O(m/n) or even O(m) (in the same order as the gradient upper bound), the over-parameterization condition can16

be further improved to be Ω̃(n5) or even Ω̃(n2) respectively. This clearly shows the potential and promise of proving17

tighter gradient lower bound. To give you a more concrete idea, in the current paper, each “gradient region” is designed18

based on the minimum separation distance δ and has the same size. However, for high-dimension training data, the19

separation distance for some data points can be very large, which implies that some “gradient region” can actually has20

much larger size. Therefore, the total size of “gradient regions” can be greatly enlarged if the average-case separation21

distance rather than only the smallest one of all training data is taken into consideration. This can potentially lead to22

larger gradient lower bound. We will point it out in the future work section.23

To Reviewer #224

Q1: If the analysis for the case where the top layer weights are also updates.25

A1: Thanks for your positive and constructive comments on our paper. In our current submission, we did not optimize26

the top layer weights since we aim to make a fair comparison between our results and those in existing work (which27

don’t optimize the top layer). However, we would like to emphasize that our analysis can be easily extended to the28

case when the top layer is optimized, and the resulting theoretical guarantees (over-parameterization condition and29

convergence rate) are at least the same as our results. The proof sketch is as follows: similar to our current proof, we30

can also define a small perturbation region around the initialization, but the new definition involves a constraint on the31

top layer weights. Then, it can be shown that the neural network enjoys good properties inside such region. Based on32

such good properties, we can prove that until convergence the neural network weights, including the top layer weights,33

would not escape from such region. Note that optimizing more parameter can lead to larger gradient, thus we can prove34

a larger gradient lower bound during the training process which can potential speed up the convergence of optimization35

algorithm (e.g., GD, SGD). Combining the above analyses, we can derive the corresponding over-parameterization36

condition and convergence rate, and note that these guarantees would be no worse than existing results presented in our37

paper. We will briefly discuss this extension in the final version.38

To Reviewer #339

Q1: “The complexity increase ... it is not apparent if this treatment was done justly under 4.1.”40

A1: We apologize that we did not make it clear, but this is a misunderstanding on the exploitation of the gradient41

regions. We would like to clarify that exploiting gradient regions for all the data points is in the proof level, and has42

nothing to do with the algorithm. Therefore, it would never cause additional computation complexity for the algorithm43

(e.g., GD and SGD), and it will not affect the complexity calculations in our paper. In other words, the complexity44

calculations in our current paper are correct.45

Q2: “ The remark under 3.11 sounds like it could be better explained for the case of 2 layer ReLU networks.”46

A2: We are sorry for making you confused about Remark 3.11. In Remark 3.11, we would like to say that for 2-layer47

ReLU networks, we can derive its result from Theorem 3.8, because the result of Theorem 3.8 is for any depth L ≥ 2,48

and therefore it is also applicable to 2-layer ReLU networks when choosing L = 2. However, we can prove stronger49

results specifically for 2-layer ReLU networks, by exploiting the special structure of 2-layer ReLU networks. Such50

stronger results are stated in Theorem 3.10. We use Remark 3.11 to compare the results in Theorem 3.8 when choosing51

L = 2, with the results in Theorem 3.11, and show what improvement we can achieve in Theorem 3.11. We hope this52

clarify your confusion.53

Q3: “It would also been great to include practical results for implementation ...”54

A3: Thank you for your suggestion. We will consider adding the experimental results in the appendix in the final55

version.56


