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Abstract

Many manifold embedding algorithms fail apparently when the data manifold has
a large aspect ratio (such as a long, thin strip). Here, we formulate success and
failure in terms of finding a smooth embedding, showing also that the problem is
pervasive and more complex than previously recognized. Mathematically, success
is possible under very broad conditions, provided that embedding is done by care-
fully selected eigenfunctions of the Laplace-Beltrami operator A ,. Hence, we
propose a bicriterial Independent Eigencoordinate Selection (IES) algorithm that
selects smooth embeddings with few eigenvectors. The algorithm is grounded in
theory, has low computational overhead, and is successful on synthetic and large
real data.

1 Motivation

We study a well-documented deficiency of manifold learning algorithms. Namely, as shown in
[GZKRO08], algorithms such as Laplacian Eigenmaps (LE), Local Tangent Space Alignment (LTSA),
Hessian Eigenmaps (HLLE), and Diffusion Maps (DM) fail spectacularly when the data has a large
aspect ratio, that is, it extends much more in one geodesic direction than in others. This problem,
illustrated by the strip in Figure 1, was studied in [GZKROS8] from a linear algebraic perspective;
[GZKRO08] show that, especially when noise is present, the problem is pervasive.

In the present paper, we revisit the problem from a differential geometric perspective. First, we de-
fine failure not as distortion, but as drop in the rank of the mapping ¢ represented by the embedding
algorithm. In other words, the algorithm fails when the map ¢ is not invertible, or, equivalently,
when the dimension dim ¢(M) < dim M = d, where M represents the idealized data manifold,
and dim denotes the intrinsic dimension. Figure 1 demonstrates that the problem is fixed by choos-
ing the eigenvectors with care. We call this problem the Independent Eigencoordinate Selection
(IES) problem, formulate it and explain its challenges in Section 3.

Our second main contribution (Section 4) is to design a bicriterial method that will select from a set
of coordinate functions ¢1, ... ¢, a subset S of small size that provides a smooth full-dimensional
embedding of the data. The IES problem requires searching over a combinatorial number of sets. We
show (Section 4) how to drastically reduce the computational burden per set for our algorithm. Third,
we analyze the proposed criterion under asymptotic limit (Section 5). Finally (Section 6), we show
examples of successful selection on real and synthetic data. The experiments also demonstrate that
users of manifold learning for other than toy data must be aware of the IES problem and have tools
for handling it. Notations table, proofs, a library of hard examples, extra experiments and analyses
are in Supplements A—H; Figure/Table/Equation references with prefix S are in the Supplement.
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2 Background on manifold learning

Manifold learning (ML) and intrinsic geometry Suppose we observe data X € R"*? with data
points denoted by x; € RP Vi € [n], that are sampled from a smooth' d-dimensional submanifold
M C RP. Manifold Learning algorithms map x;,7 € [n] to y; = ¢(x;) € R, where d < s < D,
thus reducing the dimension of the data X while preserving (some of) its properties. Here we present
the LE/DM algorithm, but our results can be applied to other ML methods with slight modification.
The DM [CL06, NLCKO6] algorithm embeds the data by solving the minimum eigen-problem of the
renormalized graph Laplacian [CLO6] matrix L. The desired m dimensional embedding coordinates
are obtained from the second to m + 1-th principal eigenvectors of graph Laplacian L, with 0 =
Ao <A1 <. < Ay ienys = (01(%4), - - - o (%)) (see also Supplement B).

To analyze ML algorithms, it is useful to consider the limit of the mapping ¢ when the data is the
entire manifold M. We denote this limit also by ¢, and its image by ¢(M) € R™. For standard
algorithms such as LE/DM, it is known that this limit exists [CL06, BNO7, HAvLOS, HAvLO7,
THIJ10]. One of the fundamental requirements of ML is to preserve the neighborhood relations in
the original data. In mathematical terms, we require that ¢ : M — ¢(M) is a smooth embedding,
i.e., that ¢ is a smooth function (i.e. does not break existing neighborhood relations) whose Jacobian
D¢(x) is full rank d at each x € M (i.e. does not create new neighborhood relations).

The pushforward Riemannian metric A smooth ¢ does not typically preserve geometric quanti-
ties such as distances along curves in M. These concepts are captured by Riemannian geometry, and
we additionally assume that (M, g) is a Riemannian manifold, with the metric g induced from R?.
One can always associate with ¢(M) a Riemannian metric g..4, called the pushforward Riemannian
metric [Lee03], which preserves the geometry of (M, g); g is defined by

(W, V)g. ,x) = (Do~ (x)u, Dd)*l(x)v)g(x) for all u, v € Ty(x)p(M) (1)

In the above, TxM, Tyx)9(M) are

- Algorithm 1: RMETRIC
tangent subspaces, D¢~*(x) maps vec- - — -
tors from Tyud(M) to TeM, and Input : Embedding Y € R , Laplacian L,

(,) is the Euclidean scalar product. intrinsic dimension d
For each ¢(x;), the associated push-

forally, € Y,k =1—m,l=1— mdo

1
forward Riemannian metric expressed 2 ‘ H(i)]k = Zj;éi Lij(yji — i) Wik — Yik)
in the coordinates of R™, is a sym- 3 end

metric, semi-positive definite m x m 4 fori=1— ndo )
matrix G(i) of rank d. The scalar s U(4), X(i) + REDUCEDRANKSVD(H(i), d)
product (u,v), . (x,) takes the form ¢ H(i) = U0)X(i)U@E)T

u'G(i)v. Given an embedding Y = 5
¢(X), G(i) can be estimated by Algo- ¢ end
rithm 1 (RMETRIC) of [PM13]. The . . . mxm . mxd
RMETRIC also returns the co-metric Return: S(Z)’Hﬂgxiﬂﬁ L U(i) € R,
H(4), which is the pseudo-inverse of (d) € fori € [n]
the metric G(¢), and its Singular Value
Decomposition 3(i), U(i) € R™*<. The latter represents an orthogonal basis of 7 x) (¢(M)).

G@i)=U@HZ1(H)UGE) T

3 1ES problem, related work, and challenges

An example Consider a continuous two dimensional strip with width W, height H, and as-
pect ratio W/H > 1, parametrized by coordinates w € [0,W],h € [0,H]. The eigenval-
ues and eigenfunctions of the Laplace-Beltrami operator A with von Neumann boundary condi-
tions [StrO7] are Mg, k, = (%)2 + (%)2, respectively ¢, i, (w, h) = cos (T%) cos (E27h).
Eigenfunctions ¢; 9, ¢o,1 are in bijection with the w, h coordinates (and give a full rank em-
bedding), while the mapping by ¢1,0, $2,0 provides no extra information regarding the second
dimension A in the underlying manifold (and is rank 1). Theoretically, one can choose as
coordinates eigenfunctions indexed by (k1,0), (0, k2), but, in practice, k1, and ko are usually

'In this paper, a smooth function or manifold will be assumed to be of class at least C.



unknown, as the eigenvalues are index by their
rank 0 = A\g < Ay < XAy < ---. For a two
dimensional strip, it is known [Str07] that \; o
always corresponds to A; and g 1 corresponds
to )\([W/H‘\)' Therefore, when W/H > 2, the
mapping of the strip to R? by ¢1, ¢ is low
rank, while the mapping by ¢1, ¢rw,m is full
rank. Note that other mappings of rank 2 exist,
e.g., &1, 9w/ H]+2 (k1 = k2 = linFigure 1b). Figure 1: (a) Eigenfunction ¢; o versus ¢z g
These embeddings reflect progressively higher (curve) or ¢g ; (two dimensional manifold). (b)
frequencies, as the corresponding eigenvalues Eigenfunction ¢; o versus ¢;,;. All three mani-
grow larger. folds are colored by the parameterization h.
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Prior work [GZKROS] is the first work to give the IES problem a rigurous analysis. Their paper
focuses on rectangles, and the failure illustrated in Figure 1a is defined as obtaining a mapping Y =
¢(X) that is not affinely equivalent with the original data. They call this the Price of Normalization
and explain it in terms of the variances along w and h. [DTCK18] is the first to frame the failure
in terms of the rank of ¢5 = {¢r : k € S C [m]}, calling it the repeated eigendirection problem.
They propose a heuristic, LLRCOORDSEARCH, based on the observation that if ¢y, is a repeated
eigendirection of ¢y, - - - , @1, one can fit ¢y, with local linear regression on predictors ¢, _q) with
low leave-one-out errors 1. A sequential algorithm [BM17] with an unpredictability constraint in
the eigenproblem has also been proposed. Under their framework, the k-th coordinate ¢, is obtained
from the top eigenvector of the modified kernel matrix Ky, which is constructed by the original
kernel K and ¢4, -+ , 1.

Existence of solution Before trying to find an algorithmic solution to the IES problem, we ask
the question whether this is even possible, in the smooth manifold setting. Positive answers are
given in [Porl16], which proves that isometric embeddings by DM with finite m are possible, and
more recently in [Bat14], which proves that any closed, connected Riemannian manifold M can be
smoothly embedded by its Laplacian eigenfunctions ¢, into R™ for some m, which depends only
on the intrinsic dimension d of M, the volume of M, and lower bounds for injectivity radius and
Ricci curvature. The example in Figure 1a demonstrates that, typically, not all m eigenfunctions
are needed. Le., there exists a set S C [m], so that ¢g is also a smooth embedding. We follow
[DTCK18] in calling such a set S independent. 1t is not known how to find an independent S
analytically for a given M, except in special cases such as the strip. In this paper, we propose a
finite sample and algorithmic solution, and we support it with asymptotic theoretical analysis.

The IES Problem We are given data X, and the output of an embedding algorithm (DM for sim-
plicity) Y = ¢(X) = [¢1, - , ¢m] € R™*™. We assume that X is sampled from a d-dimensional
manifold M, with known d, and that m is sufficiently large so that ¢(M) is a smooth embedding.
Further, we assume that there is a set S C [m], with |[S| = s < m, so that ¢g is also a smooth
embedding of M. We propose to find such set S so that the rank of ¢g is d on M and ¢ varies as
slowly as possible.

Challenges (1) Numerically, and on a finite sample, distiguishing between a full rank mapping and a
rank-defective one is imprecise. Therefore, we substitute for rank the volume of a unit parallelogram
in Ty(x,)#(M). (2) Since ¢ is not an isometry, we must separate the local distortions introduced
by ¢ from the estimated rank of ¢ at x. (3) Finding the optimal balance between the above desired
properties. (4) In [Bat14] it is strongly suggested that s the number of eigenfunctions needed may
exceed the Whitney embedding dimension (< 2d), and that this number may depend on injectivity
radius, aspect ratio, and so on. Supplement G shows an example of a flat 2-manifold, the strip with
cavity, for which s > 2. In this paper, we assume that s and m are given and focus on selecting S
with | S| = s; for completeness, in Supplement G we present a heuristic to select s.

(Global) functional dependencies, knots and crossings Before we proceed, we describe three
different ways a mapping ¢(M) can fail to be invertible. The first, (global) functional dependency
is the case when rank D¢ < d on an open subset of M, or on all of M (yellow curve in Figure
la); this is the case most widely recognized in the literature (e.g., [GZKR08, DTCK18]). The knot
is the case when rank D¢ < d at an isolated point (Figure 1b). Third, the crossing (Figure S8 in



Supplement H) is the case when ¢ : M — ¢(M) is not invertible at x, but M can be covered with
open sets U such that the restriction ¢ : U — ¢(U) has full rank d. Combinations of these three
exemplary cases can occur. The criteria and approach we define are based on the (surrogate) rank
of ¢, therefore they will not rule out all crossings. We leave the problem of crossings in manifold
embeddings to future work, as we believe that it requires an entirely separate approach (based, e.g.,
or the injectivity radius or density in the co-tangent bundle rather than differential structure).

4 Ciriteria and algorithm

A geometric criterion We start with the main idea in evaluating the quality of a subset S of
coordinate functions. At each data point i, we consider the orthogonal basis U(i) € R™*4 of
the d dimensional tangent subspace 7y (x,)¢(M ). The projection of the columns of U(é) onto the
subspace Ty(x,)¢s(M) is U(i)[S,:] = Ug(i). The following Lemma connects Ug(i) and the
co-metric Hg(4) defined by ¢g, with the full H(7).

Lemma 1. Let H(i) = U(i)X(i)U(i) " be the co-metric defined by embedding ¢, S C [m], Hg (i)
and U (i) defined above. Then Hg (i) = Ug(i)2(i)Ug (i) T = H(4)[S, S].

The proof is straightforward and left to the reader. Note that Lemma 1 is responsible for the effi-
ciency of the search over sets S, given that the push-forward co-metric Hg can be readily obtained
as a submatrix of H. Denote by uy (i) the k-th column of Ug(i). We further normalize each u;
Vdet(Us (i) TUs (4))
[Tz g (D)l
ceptually, Vol,orm (5, 7) is the volume spanned by a (non-orthonormal) “basis” of unit vectors in
Tos(x:)Ps(M); Volnorm (S, i) = 1 when Ug(i) is orthogonal, and it is 0 when rank Hg (i) < d.
In Figure la, the Voluorm ({1,2}) With ¢11 9y = {b1,0, 92,0} is close to zero, since the projec-
tion of the two tangent vectors is parallel to the yellow curve; however Volyorm ({1, [w/h]}, %)
is almost 1, because the projections of the tangent vectors U(4) will be (appr0x1mately) orthogo-
nal. Hence, Vol,om (5, %) away from 0 indicates a non-singular ¢g at i, and we use the average
log Volyorm (S, ©), which penalizes values near 0 highly, as the rank quality R(S) of S.

to length 1 and define the normalized projected volume Volyorm (S, 1) = . Con-

Higher frequency ¢ s maps with high 93(.S) may exist, being either smooth, such as the embeddings
of the strip mentioned previously, or containing knots involving only small fraction of points, such
as ¢g¢, 4,4, in Figure 1a. To choose the lowest frequency, slowest varying smooth map, a regular-
ization term consisting of the eigenvalues g, k € S, of the graph Laplacian L is added, obtaining
the criterion

Zlog\/det (Us(i)TUs (i) Zzloglluk Me=¢> N @)

11k1 keS

R1(9)=+

_y R1(S59) Ra(S)=2 D1, Ra(S5i)

Algorithm 2: INDEIGENSEARCH
Search algorithm With this criterion, Input : Data X, bandwith ¢, intrinsic dimension d,
the IES problem turns into a subset selec- embedding dimension s, regularizer ¢
tion problem parametrized by ¢ Y € R™™ L, A € R™ < DIFFMAP(X, )
S.(¢)= argmax £(5;¢) () U(i), -+ ,U(n) «<RMETRIC(Y, L, d)
SElmli|S|=si1es for S € {S"C[m]:|S|=s,1€5}do
fori=1,--- ,ndo
Us(i) < U®&)[S, ]
R () += 55, - logdet (Us (i) "Us(i))
Ra(S) += £ - Shy log [[uff (3)]|2

Note that we force the first coordinate ¢4
to always be chosen, since this coordinate
cannot be functionally dependent on pre-
vious ones, and, in the case of DM, it also
has lowest frequency. Note also that Ry
and R, are both submodular set function
(proof in Supplement C.3). For large s 9 end

and d, algorithms for optimizing over the 10 £(5;¢) = R1(S) —NRa(S) = (D hes Mk
difference of submodular functions can 17 end

be used (e.g., see [IB12]). For the experi-
ments in this paper, we have m = 20 and

NN T R W N -

=)

12 S, = argmaxg £(95;()
Return: Independent eigencoordinates set S,
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d,s = 2 ~ 4, which enables us to use exhaustive search to handle (3). The exact search algorithm
is summarized in Algorithm 2 INDEIGENSEARCH. A greedy variant is also proposed and analyzed
in Supplement D. Note that one might be able to search in the continuous space of all s-projections.
We conjecture the objective function (2) will be a difference of convex function and leave the details
as future work?.

Regularization path and choosing ( According to (2), the optimal subset S, depends on the
parameter ¢. The regularization path /() = maxgcm];|s|=s;1e5 £(S; () is the upper envelope of
multiple lines (each correspond to a set ) with slopes — >, - ¢ Ax and intercepts 2(.S). The larger
( is, the more the lower frequency subset penalty prevails, and for sufficiently large ¢ the algorithm
will output [s]. In the supervised learning framework, the regularization parameters are often chosen
by cross validation. Here we propose a second criterion, that effectively limits how much 93(.S) may
be ignored, or alternatively, bounds ¢ by a data dependent quantity. Define the leave-one-out regret
of point ¢ as follows

(S, ) = R(SE: [\ {i}) — (S5 [0\ ) with S: = argmaxgcpys—aaes(S1) @)

In the above, we denote R(S;T) = ﬁ Y ier Ri(S;i) — Ra(S; 1) for some subset T' C [n]. The
quantity ©(S,4) in (4) measures the gain in R if all the other points [n]\{i} choose the optimal
subset S¢. If the regret D (S, i) is larger than zero, it indicates that the alternative choice might
be better compared to original choice S. Note that the mean value for all 4, i.c., 2 3, D(S,1)
depends also on the variability of the optimal choice of points i, Si. Therefore, it might not fa-
vor an S, if S is optimal for every ¢ € [n]. Instead, we propose to inspect the distribution of
D(S,1), and remove the sets S for which a’s percentile are larger than zero, e.g., a = 75%,
recursively from ¢ = oo in decreasing order. Namely, the chosen set is S, = S.(¢') with
¢’ = max¢>0 PERCENTILE({D (S5, (¢), %)}, @) < 0. The optimal ¢, value is simply chosen to be
the midpoint of all the (’s that outputs set S, i.e., ¢, = 3 (' + ¢”), where ¢"" = min¢>0 5. (¢) =
S.(¢"). The procedure REGUPARAMSEARCH is summarized in Algorithm S5.

5 ‘R as Kullbach-Leibler divergence

In this section we analyze R in its population version, and show that it is reminiscent of a Kullbach-
Leibler divergence between unnormalized measures on ¢g(M). The population version of the reg-
ularization term takes the form of a well-known smoothness penalty on the embedding coordinates
¢s. Proofs of the theorems can be found in Supplement C.

Volume element and the Riemannian metric Consider a Riemannian manifold (M, g) mapped
by a smooth embedding ¢ into (¢pg(M), gues), ¢s : M — R®, where g.q is the push-forward
metric defined in (1). A Riemannian metric g induces a Riemannian measure on M, with volume
element v/det g. Denote now by piaq, respectively fig.(aq) the Riemannian measures corresponding

to the metrics induced on M, ¢5(M) by the ambient spaces R”, R®; let g be the former metric.
Lemma 2. Ler S, ¢, o5, Hg(x), Ug(x), X(x) be defined as in Section 4 and Lemma 1. For sim-

plicity, we denote by Hg(y) = Hg(gbgl(y)), and similarly for Ug(y), 3(y). Assume that ¢g is a
smooth embedding. Then, for any measurable function f : M — R,

/ F)djip(x) = / F(65" ) s @)oo (), )
M ¢s(M)
with

js(y) = 1/Vol(Us(y)=¢>(y)). ©6)

Asymptotic limit of R  We now study the first term of our criterion in the limit of infinite sample
size. We make the following assumptions.

Assumption 1. The manifold M is compact of class C3, and there exists a set S, with |S| = s so
that ¢ is a smooth embedding of M in R®.

2We thank the anonymous reviewer who made this suggestion.



Assumption 2. The data are sampled from a distribution on M continuous with respect to i,
whose density is denoted by p.

Assumption 3. The estimate of Hg in Algorithm 1 computed w.r.t. the embedding ¢s is consistent.
We know from [Bat14] that Assumption 1 is satisfied for the DM/LE embedding. The remaining

assumptions are minimal requirements ensuring that limits of our quantities exist. Now consider the
setting in Sections 3, in which we have a larger set of eigenfunctions, ¢, so that [m] contains the

set S of Assumption 1. Denote by js(y) = szl (|lug (¥)]|ox(y)) /?) ~! a new volume element,
here O = [E]kk-

Theorem 3 (Limit of R). Under Assumptions 1-3,

.1
nhﬁn;o - Zln?ﬁ(S, x;) = R(S, M), @)

and

R(S, M) = — /¢ o ;zg;jS(Y)p(¢sl(Y))dM¢s(M)(Y) Y Dipjslpis)  ®

The expression D(-||-) represents a Kullbach-Leibler divergence. Note that js > jg, which implies
that D is always positive, and that the measures defined by pjgs, pjs normalize to different values.
By definition, local injectivity is related to the volume element j. Intuitively, pjs is the observation
and pjg, where jg is the minimum attainable for jg, is the model; the objective itself is looking for
a view S of the data that agrees with the model.

It is known that )\, the k-th eigenvalue of the Laplacian, converges under certain technical condi-
tions [BNO7] to an eigenvalue of the Laplace-Beltrami operator A 4 and that

A(Are) = (60, Apdr) = /M | grad () [2du(M). ©)

Hence, a smaller value for the regularization term encourages the use of slow varying coordinate
functions, as measured by the squared norm of their gradients, as in equation (9). Hence, under
Assumptions 1, 2, 3, £ converges to

2(8.M) = ~DGislois) - (5557 ) 3 M) (10
kesS

Since eigenvalues scale with the volume of M, the rescaling of ¢ in comparison with equation (2)
makes the ¢ above adimensional.

6 Experiments

We demonstrate the proposed algorithm on three synthetic datasets, one where the minimum em-
bedding dimension s equals d (D; long strip), and two (D7 high torus and D3 three torus) where
s > d. The complete list of synthetic manifolds (transformations of 2 dimensional strips, 3 di-
mensional cubes, two and three tori, etc.) investigated can be found in Supplement H and Table
S2. The examples have (i) aspect ratio of at least 4 (ii) points sampled non-uniformly from the un-
derlying manifold M, and (iii) Gaussian noise added. The sample size of the synthetic datasets is
n = 10,000 unless otherwise stated. Additionally, we analyze several real datasets from chemistry
and astronomy. All embeddings are computed with the DM algorithm, which outputs m = 20 eigen-
vectors. Hence, we examine 171 sets for s = 3 and 969 sets for s = 4. No more than 2 to 5 of these
sets appear on the regularization path. Detailed experimental results are in Table S3. In this section,
we show the original dataset X, the embedding ¢g,, with S, selected by INDEIGENSEARCH and
(« from REGUPARAMSEARCH, and the maximizer sets on the regularization path with box plots of
D(S,14) as discussed in Section 4. The « threshold for REGUPARAMSEARCH is set to 75%. The
kernel bandwidth ¢ for synthetic datasets is chosen manually. For real datasets, ¢ is optimized as
in [JMM17]. All the experiments are replicated for more than 5 times, and the outputs are similar
because of the large sample size n.
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Figure 2: Experimental result for synthetic datasets. Rows correspond to different synthetic datasets
(please refer to Table S2). Optimal subset S, is selected by INDEIGENSEARCH.
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Figure 3: First row: Chloromethane dataset; second row: SDSS dataset in (e), (f) and (g), (h) show
the example when LLR failed. (c) and (d) are embeddings with top two ranked subsets .S; and S5,
colored by the distances between C and two different C1~, respectively. (e) and (f) are embeddings
of ¢(1,2y (suboptimal set) and ¢b(; 3y (maximizer of £), respectively (values shown in caption).

Synthetic manifolds The results of synthetic manifolds are in Figure 2. (i) Manifold with s = d.
The first synthetic dataset we considered, Dy, is a two dimensional strip with aspect ratio W/H =
27. Left panel of the top row shows the scatter plot of such dataset. From the theoretical analysis
in Section 3, the coordinate set that corresponds to slowest varying unique eigendirection is S =
{1, [W/H]} = {1, 7}. Middle panel, with S, = {1, 7} selected by INDEIGENSEARCH with ¢ cho-
sen by REGUPARAMSEARCH, confirms this. The right panel shows the box plot of {D(S, %)} ;.
According to the proposed procedure, we eliminate Sy = {1, 2} since ©(Sp,4) > 0 for almost all
the points. (ii) Manifold with s > d. The second data D7 is displayed in the left panel of the second
row. Due to the mechanism we used to generate the data, the resultant torus is non-uniformly dis-
tributed along the z axis. Middle panel is the embedding of the optimal coordinate set S, = {1,4,5}
selected by INDEIGENSEARCH. Note that the middle region (in red) is indeed a two dimensional
narrow tube when zoomed in. The right panel indicates that both {1,2,3} and {1,2,4} (median




is around zero) should be removed. The optimal regularization parameter is (. ~ 7. The result of
the third dataset D;3, three torus, is in the third row of the figure. We displayed only projections
of the penultimate and the last coordinate of original data X and embedding ¢, (which is {5,10})
colored by oy of (S15) in the left and middle panel to conserve space. A full combinations of coor-
dinates can be found in Figure S5. The right panel implies one should eliminate the set {1, 2, 3,4}
and {1, 2,3, 5} since both of them have more than 75% of the points such that ©(S,7) > 0. The
first remaining subset is {1, 2, 5, 10}, which yields an optimal regularization parameter ¢, = 5.

Molecular dynamics dataset [FTP16] The dataset has size n =~ 30,000 and ambient dimension
D = 40, with the intrinsic dimension estimate be d = 2 (see Supplement H.1 for details). The
embedding with coordinate set S = [3] is shown in Figure 3a. The first three eigenvectors pa-
rameterize the same directions, which yields a one dimensional manifold in the figure. Top view
(S = [2]) of the figure is a u-shaped structure similar to the yellow curve in Figure 1a. The heat map
of £({1,4,j}) for different combinations of coordinates in Figure 3b confirms that £ for S = [3] is
low and that ¢1, ¢2 and ¢3 give a low rank mapping. The heat map also shows high £ values for
S1 ={1,4,6} or Sy = {1, 5, 7}, which correspond to the top two ranked subsets. The embeddings
with Sp, S, are in Figures 3c and 3d, respectively. In this case, we obtain two optimal .S sets due to
the data symmetry.

Galaxy spectra from the Sloan Digital Sky survey (SDSS) * [AAMA™*09], preprocessed as in
[MMVZ16]. We display a sample of n = 50,000 points from the first 0.3 million points which
correspond to closer galaxies. Figures 3e and 3f show that the first two coordinates are almost
dependent; the embedding with S, = {1, 3} is selected by INDEIGENSEARCH with d = 2. Both
plots are colored by the blue spectrum magnitude, which is correlated to the number of young stars
in the galaxy, showing that this galaxy property varies smoothly and non-linearly with ¢1, ¢3, but is
not smooth w.r.t. ¢1, ¢s.

Comparison with [DTCK18] The LLRCOORDSEARCH method outputs similar candidate coor-
dinates as our proposed algorithm most of the time (see Table S3). However, the results differ for
high torus as in Figure 3. Figure 3h is the leave one out (LOO) error 7 versus coordinates. The
coordinates chosen by LLRCOORDSEARCH was S = {1,2, 5}, as in Figure 3g. The embedding is
clearly shown to be suboptimal, for it failed to capture the cavity within the torus. This is because the
algorithm searches in a sequential fashion; the noise eigenvector ¢- in this example appears before
the signal eigenvectors e.g., ¢4 and ¢s.

Additional experiments with real data are shown in Table 1. Not surprisingly, for most real data
sets we examined, the independent coordinates are not the first s. They also show that the algorithm
scales well and is robust to the noise present in real data.

Table 1: Results for other real datasets. Columns from left to right are sample size n, ambient
dimension of data D, average degree of neighbor graph deg,, (s, d) and runtime for IES, and the

chosen set S*, respectively. Last three datasets are from [CTST17].

n D deg,,, (s,d) t(sec) Sk
SDSS (full) 298,511 3750 14491 (2,2) 106.05 (1, 3)
Aspirin 211,762 244 101.03 (4,3) 8511 (1,2,3,7)
Ethanol 555,092 102 107.27 (3,2) 233.16 1,2,4)

Malondialdehyde 993,237 96 106.51 (3,2) 459.53 1,2,3)

The asymptotic runtime of LLRCOORDSEARCH has quadratic dependency on n, while for our
algorithm is linear in n. Details of runtime analysis are Supplement F. LLRCOORDSEARCH was
too slow to be tested on the four larger datasets (see also Figure S1).

3The Sloan Digital Sky Survey data can be downloaded from https: //www.sdss.org



7 Conclusion

Algorithms that use eigenvectors, such as DM, are among the most promising and well studied in
ML. It is known since [GZKRO0S8] that when the aspect ratio of a low dimensional manifold exceeds
a threshold, the choice of eigenvectors becomes non-trivial, and that this threshold can be as low
as 2. Our experimental results confirm the need to augment ML algorithms with IES methods in
order to successfully apply ML to real world problems. Surprisingly, the IES problem has received
little attention in the ML literature, to the extent that the difficulty and complexity of the problem
have not been recognized. Our paper advances the state of the art by (i) introducing for the first
time a differential geometric definition of the problem, (ii) highlighting geometric factors such as
injectivity radius that, in addition to aspect ratio, influence the number of eigenfunctions needed for
a smooth embedding, (iii) constructing selection criteria based on intrinsic manifold quantities, (iv)
which have analyzable asymptotic limits, (v) can be computed efficiently, and (vi) are also robust to
the noise present in real scientific data. The library of hard synthetic examples we constructed will
be made available along with the python software implementation of our algorithms.
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