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Abstract

Recurrent Neural Networks (RNNs) are among the most popular models in se-
quential data analysis. Yet, in the foundational PAC learning language, what con-
cept class can it learn? Moreover, how can the same recurrent unit simultaneously
learn functions from different input tokens to different output tokens, without af-
fecting each other? Existing generalization bounds for RNN scale exponentially
with the input length, significantly limiting their practical implications.

In this paper, we show using the vanilla stochastic gradient descent (SGD), RNN
can actually learn some notable concept class efficiently, meaning that both time
and sample complexity scale polynomially in the input length (or almost polyno-
mially, depending on the concept). This concept class at least includes functions
where each output token is generated from inputs of earlier tokens using a smooth
two-layer neural network.

1 Introduction

Recurrent neural networks (RNNs) is one of the most popular models in sequential data analy-
sis [25]. When processing an input sequence, RNNs repeatedly and sequentially apply the same
operation to each input token. The recurrent structure of RNNs allows it to capture the dependen-
cies among different tokens inside each sequence, which is empirically shown to be effective in
many applications such as natural language processing [28], speech recognition [12] and so on.

The recurrent structure in RNNs shows great power in practice, however, it also imposes great
challenge in theory. Until now, RNNs remains to be one of the least theoretical understood models
in deep learning. Many fundamental open questions are still largely unsolved in RNNs, including

1. (Optimization). When can RNNs be trained efficiently?
2. (Generalization). When do the results learned by RNNs generalize to test data?

Question 1 is technically challenging due to the notorious question of vanishing/exploding gradients,
and the non-convexity of the training objective induced by non-linear activation functions.

Question 2 requires even deeper understanding of RNNs. For example, in natural language process-
ing, “Juventus beats Bacerlona” and “Bacerlona beats Juventus” have completely different mean-
ings. How can the same operation in RNN encode a different rule for “Juventus” at token 1 vs.
“Juventus” at token 3, instead of merely memorizing each training example?

There have been some recent progress towards obtaining more principled understandings of these
questions. On the optimization side, Hardt, Ma, and Recht [13] show that over-parameterization
can help in the training process of a linear dynamic system, which is a special case of RNNs with
linear activation functions. Allen-Zhu, Li, and Song [2] show that over-parameterization also helps
in training RNNs with ReLU activations. This latter result gives no generalization guarantee.

*Full version and future updates can be found on https://arxiv.org/abs/1902.01028.
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On the generalization side, our understanding to RNN is even more limited. The VC-dimension
bounds [10] and [17] polynomially depend on the size of the network, and either only apply to
linear (or threshold) networks or to networks with one dimension input. However, a bound scaling
with the total number of parameters usually cannot be applied to modern neural networks, which are
heavily over-parameterized. Others [9, 31] (or the earlier work [14]) establish sample complexity
bounds that exponentially grow in the input length. In particular, they depend on the operator norm
of the recurrent unit, that we denote by 5. If 5 > 1, their bounds scale exponentially with input
length. Since most applications do not regularize 3 and allow 3 > 1 for a richer expressibility,
their bounds are still insufficient.

Indeed, bridging the gap between optimization (question 1) and generalization (question 2) can be
quite challenging in neural networks. The case of RNN is particularly so due to the (potentially)
exponential blowup in input length.

e Generalization - Optimization. One could imagine adding a strong regularizer to ensure
B < 1 for generalization purpose; however, it is unclear how an optimization algorithm such
as stochastic gradient descent (SGD) finds a network that both minimizes training loss and
maintains # < 1. One could also use a very small network so the number of parameters is
limited; however, it is not clear how SGD finds a small network with small training loss.

e Optimization - Generalization. One could try to train RNNs without any regularization;
however, it is then quite possible that the number of parameters need to be large and 5 > 1
after the training. This is so both in practice (since “memory implies larger spectral radius”
[24]) and in theory [2]. All known generalization bounds fail to apply in this regime.

In this paper, we give arguably the first theoretical analysis of RNNs that captures optimization
and generalization simultaneously. Given any set of input sequences, as long as the outputs are
(approximately) realizable by some smooth function in a certain concept class, then after training
a vanilla RNN with ReL.U activations, SGD provably finds a solution that has both small training
and generalization error. Our result allows /3 to be larger than 1 by a constant, but is still efficient:
meaning that the iteration complexity of the SGD, the sample complexity, and the time complexity
scale only polynomially (or almost polynomially) with the length of the input.

2 Notations

We denote by || -||2 (or sometimes || - ||) the Euclidean norm of vectors, and by || - ||2 the spectral norm
of matrices. We denote by |- ||« the infinite norm of vectors, ||-||o the sparsity of vectors or diagonal
matrices, and || - || » the Frobenius norm of matrices. Given matrix W, we denote by W}, or wy, the k-

1
th row vector of TW. We denote the row £, norm for W € R™*? as [|W ||z, := (Zie[m] [|will5) ”

By definition, ||W||2.2 = ||W||r. We use N'(u, o) to denote Gaussian distribution with mean p and
variance o; or N'(1, 33) to denote Gaussian vector with mean 1 and covariance 3. Weuse z = y + 2z
to denote that © € [y — z,y + z]. We use Lcyent to denote the indicator function of whether event
is true. We denote by ey, the k-th standard basis vector. We use o(-) to denote the ReLU function
o(z) = max{z,0} = 1,>¢ - . Given univariate function f: R — R, we also use f to denote the

same function over vectors: f(z) = (f(z1),..., f(zm)) if € R™.

Given vectors vy,...,v, € R™, we define U = GS(vy,...,v,) as their Gram-Schmidt or-
thonormalization. Namely, U = [v1,...,0,] € R™*™ where 17 = HEH and for every i > 2,
~ I(I-05T] s . . i— PPN .

v; = w Note that in the occasion that ]_[l‘_l1 (I — ;0] v, is the zero vector, we let
R HHJ-=1(I—'U]"UJ. Yvi H N 7: J

v; be an arbitrary unit vector that is orthogonal to vy, ..., v;_1.

We say a function f: RY — R is L-Lipscthiz continuous if | f(z) — f(y)| < L||z — yl|2; and say it
is is L-smooth if its gradient is L-Lipscthiz continuous, that is |V f(z) — V f(y)|l2 < Lz — y|2.

Function complexity. The following notions from [1] measure the complexity of any infinite-
order smooth function ¢: R — R. Suppose ¢(z) = > = ¢;z" is its Taylor expansion. Given

For instance, if W € R™>™ is the recurrent weight matrix, and is followed with an ReL.U activation
o. Under standard random initialization A/(0, 2 ), the combined operator o(Wz): R™ — R™ has operator

norm /2 with high probability. If instead one uses N(0, g), then [ becomes 1 but gradients will vanish
exponentially fast in L.



non-negative R,
(') * i log(1 % i
€6, ) = 3720 ((C7R) + (20 R) e
Cs(¢p, R) :=C* Y2 (i + 1)V P Rl
where C* is a sufficiently large constant (e.g., 10%). Itholds €,(¢, R) < €.(¢, R) < €4(¢, O(R)) x
poly(1/¢), and for sin z, e* or low degree polynomials, they only differ by o(1/¢). [1]

Example 2.1. If ¢(z) = 2 for constant d then €;(¢, R) < O(R?), €.(¢, R) < O(R%polylog(1)).
For functions such as ¢(z) = e* — 1,sinz, sigmoid(z) or tanh(z), it suffices to consider e-
approximations of them so we can truncate their Taylor expansions to degree O(log(1/¢)). This
gives €4(¢, ), € (9, R) < (1/2)00 1),

3 Problem Formulation

The data are generated from an unknown distribution D over (z*,y*) € (R%)(E=2) x y(L=2),
Each input sequence z* consists of @3,...,25 _; € R% with ||z}| = 1 and [2}]4, = § without
loss of generality.> Each label sequence y* consists of y%, ...,y € V. The training dataset Z =
{((z*)@, (y*)(i))}ie[N] is given as N i.i.d. samples from D. When (z*, y*) is generated from D,
we call x* the frue input sequence and y* the true label.
Definition 3.1. Without loss of generality (see Remark 3.4), for each true input x*, we transform it
into an actual input sequence x1,xa, . ..,z € R%T1 as follows.

z1 = (0%,1) and x¢= (e,25,0) for £=2,3,....,.L—1 and x; = (0% ¢,)
where e, € (0, 1) is a parameter to be chosen later. We then feed this actual sequence x into RNN.
Definition 3.2. We say the sequence x1,...,x, € R%=+1 js normalized if

|z1]| =1 and ||x¢|| =ex forallt=23,..., L.

3.1 Our Learner Network: ElIman RNN

To present the simplest result, we focus on the classical Elman RNN with ReLU activation. Let
W e R™*™, A € Rm*(d=+1) and B € R®™ be the weight matrices.

Definition 3.3. Our Elman RNN can be described as follows. On input x+,...,x € Rée+1
ho=0€R™ g =W -hy_1 + Axy € R™
ye=B-hy € R? he = a(W -he_y + Axy) € R™

We say that W, A, B are at random initialization, if the entries of W and A are i.i.d. generated from
N(0, 2), and the entries of B are i.i.d. generated from N'(0, ).

For simplicity, in this paper we only update W and let A and B be at their random initialization.
Thus, we write Fy(z*; W) = y, = Bhy as the output of the ¢-th layer.

Our goal is to use 3, ...,y € R? to fit the true label 3, . .., y;, € Y using some loss function
G:R? x Y — R. In this paper we assume, for every y* € Y, G(0%,y*) € [~1,1] is bounded,
and G(-,y*) is convex and 1-Lipschitz continuous in its first variable. This includes for instance the
cross-entropy loss and #5-regression loss (for y* being bounded).*

Remark 3.4. Since we only update W, the label sequence v3, ..., y7 is off from the input sequence
x5,...,27_, by one. The last 7, can be made zero, but we keep it normalized for notational
simplicity. The first 1 gives a random seed fed into the RNN (one can equivalently put it into hg).

We have scaled down the input signals by ¢,,, which can be equivalently thought as scaling down A.

3This is without loss of generality, since 1 can always be padded to the last coordinate, and [|z7 ||z = 1

can always be ensured from ||z7||2 < 1 by padding /1 — ||z} ||3 to the second-last coordinate. We make this
assumption to simplify our notations: for instance, (z;)q, = % allows us to focus only on networks in the
concept class without bias.

*We use [—1,1] and 1-Lipschitzness for notation simplicity. In generally, our final time and sample com-
plexity bounds only scale polynomially with the boundedness and Lipschitzness parameters.



3.2 Concept Class

Let {®;;rs: R = R}, je[r),re[p),selq be infinite-order differentiable functions, and {w; €
R%= }ijelL),relp),sclq) be unit vectors. Then, for every j = 3,4, ..., L, we consider target functions

Fr: R — R where Fr = (F;,p o F;‘d) can be written as

( ) Z Zre[p (I)i—>j»7"7$(<w7>lk—)j,r,s7x?>) eR. (31)
For proof simplicity, we assume ®;_,; , s(0) = 0. We also use
C(?,R) = max{C. (P s, R)} and €4(P,R) = max{C€(P;; s, R)}
%,7,7,8 ,7,78

1—7,7,8

to denote the complexity of F'*.

Agnostic PAC-learning language. Our concept class consists of all functions F'™* in the form of
(3.1) with complexity bounded by threshold C' and parameter p bounded by threshold py. Let OPT
be the population risk achieved by the best target function in this concept class. Then, our goal is to
learn this concept class with population risk OPT + ¢ using sample and time complexity polynomial
in C, po and 1/¢. In the remainder of this paper, to simplify notations, we do not explicitly define
this concept class parameterized by C' and p. Instead, we equivalently state our theorem with respect
to any (unknown) target function F** with specific parameters C' and p.

Example 3.5. Our concept class is general enough and contains functions where the output at each
token is generated from inputs of previous tokens using any two-layer neural network. Indeed, one
can verify that our general form (3.1) includes functions of the following:

Fy(a®) = YI Ap_ o (Wi_at)
Example 3.6. Counting is an example task that falls into our concept class. Specifically, one can
define ¢ such that ¢(a) = 1 and ¢(b) = —1 (this can be achieved by a quadratic function with
constant complexity). The target function can be ), ¢(z;). If the sequence is = a"b™ such that
n =m,then ), ¢(x;) = 0, otherwise it is non-zero.

4 Our Result: RNN Provably Learns the Concept Class

Suppose the distribution D is generated by some (unknown) target function F™* of the form (3.1) in
the concept class with population risk OPT, namely,

E(oe yyen [ S0y G (F} (a%),7)] < OPT
and suppose we are given training dataset Z consisting of N i.i.d. samples from D. We consider the
following stochastic training objective
Obj(W’) 1= E(yv )z [Obj(z*, y*; W)
where  Obj(z*,y*; W') 1= 375 G (AF;(z*; W + W'),y5)
Above, W € R™*™ is random initialization, W' € R™*" is the additional shift, and A € (0,1) is

a constant scaling factor on the network output.> We consider the vanilla stochastic gradient descent
(SGD) algorithm with step size 7. In each iteration ¢t = 1,2, ..., T, it updates

Wi = Wi1 —nVwObj(z*, y*; W; 1) (SGD)
for a random sample (z*, y*) from the training set Z.

~ L ) B
Theorem 1~ For every 0 < ¢ < O(polywd).p‘@s(@’o(ﬁ))), define complexity C = ¢.(®,/L)
and A = @(L%d) if the number of neurons m > poly(C,e~1) and the number of samples is
N = |Z| = poly(C,e~*,log m), then SGD with n = O (=) and
p*C?poly(L,d)
o2

T=6(

SEquivalently, one can scale matrix B by factor \. For notational simplicity, we split the matrix into W+’
but this does not change the algorithm since gradient with respect to W + W' is the same with respect to W'.



. . D p— 2 . .. . .
satisfies that, with probability at least 1 — e=**") over the random initialization

T-1
1 o
o [T ; o B [Obia"y ,W+Wt)” <OPT+c.

Above, E, 4 takes expectation with respect to the randomness of SGD. Since SGD takes only one
example per iteration, the sample complexity N is also bounded by 7.

4.1 Our Contribution, Interpretation, and Discussion

Sample complexity. Our sample complexity only scales with log(m), making the result applicable

to over-parameterized RNNs that have m >> N. Following Example 2.1, if ¢(z) is constant degree

polynomial we have C' = poly(L,loge 1) so Theorem 1 says that RNN learns such concept class

poly(L, d, p)
poly(e)

If ¢(z) is a function with good Taylor truncation, such as e* — 1, sin z, sigmoid(z) or tanh(z), then

C = L20e(1/2)) is almost polynomial.

p*poly(L,d,logm)

with size m =
o2

and sample complexity min{ N, T} =

Non-linear measurements. Our result shows that vanilla RNNs can efficiently learn a weighted
average of non-linear measurements of the input. As we argued in Example 3.5, this at least includes
functions where the output at each token is generated from inputs of previous tokens using any two-
layer neural networks. Average of non-linear measurements can be quite powerful, achieving the
state-of-the-art performance in some sequential applications such as sentence embedding [4] and
many others [23], and acts as the base of attention mechanism in RNNs [5].

Adapt to tokens. In the target function, ®;_,; ,. s can be different at each token, meaning that they
can adapt to the position of the input tokens. We emphasize that the positions of the tokens (namely,
the values 7, j) are not directly fed into the network, rather it is discovered through sequentially
reading the input. As one can see from our proofs, the ability of adapting to the tokens comes from
the inhomogeneity in hidden layers h,: even when z, = x, for different tokens ¢’ # /£, there is still
big difference between h, and hy. Albeit the same operator is applied to z, and x4/, RNNs can still
use this crucial inhomogeneity to learn different functions at different tokens.

In our result, the function ®,_,; ,. ; only adapts with the positions of the input tokens, but in many
applications, we would like the function to adapt with the values of the past tokens z7,...,2}_; as
well. We believe a study on other models (such as LSTM [15]) can potentially settle these questions.

Long term memory. It is commonly believed that vanilla RNNs cannot capture long term depen-
dencies in the input. This does not contradict our result. Our complexity parameter €. (®, /L) of
the learning process in Theorem 1 indeed suffers from L, the length of the input sequence. This is
due to the fact that vanilla RNN, the hidden neurons h, will incorporate more and more noise as the
time horizon /¢ increases, making the new signal Ax, less and less significant.

Comparison to feed-forward networks. Recently there are many interesting results on analyzing
the learning process of feed-forward neural networks [7, 8, 11, 16, 18-20, 26, 27, 29, 30, 32]. Most
of them either assume that the input is structured (e.g. Gaussian or separable) or only consider linear
networks. Allen-Zhu, Li, and Liang [1] show a result in the same flavor as this paper but for two and
three-layer feedforward networks. Since RNNs apply the same unit repeatedly to each input token
in a sequ6ence, our analysis is significantly different from [1] and creates lots of difficulties in the
analysis.

%More specifically, Allen-Zhu, Li, and Liang [1] study two (or three) layer feedforward networks, which
use one (or two) hidden weight matrix to learn one target function. Here in RNN, there is only one weight
matrix shared across the entire time horizon to learn L target functions at different input positions. In other
words, using “one weight” to learn “one target function” is known from prior work, but using “one weight”
to efficiently learn “L different target functions” is substantially more difficult, especially when the position
information is not given as the input to the network. For example, our theorem implies that an RNN can
distinguish the sequences “AAAB” from “AABA”, since the order of A and B are different. This requires the
RNN to keep track, using one weight matrix, of the position information of the symbols in the sequence.



4.2 Conclusion

We show RNN can actually learn some notable concept class efficiently, using simple SGD method
with sample complexity polynomial or almost-polynomial in input length. This concept class at
least includes functions where each output token is generated from inputs of earlier tokens using a
smooth neural network. To the best of our knowledge, this is the first proof that some non-trivial
concept class is efficiently learnable by RNN. Our sample complexity is almost independent of m,
making the result applicable to over-parameterized settings. On a separate note, our proof explains
why the same recurrent unit is capable of learning various functions from different input tokens to
different output tokens.

Section 6 through 9 continue to give sketch proofs. Our final proofs reply on many other technical
properties of RNN that may be of independent interests: such as properties of RNN at random
initialization (which we include in Section B and C), and properties of RNN stability (which we
include in Section D, E, F). Some of these properties are simple modifications from prior work, but
some are completely new and require new proof techniques (namely, Section C, D and E).

PROOF SKETCH

Our proof of Theorem 1 divides into four conceptual steps.

1. We obtain first-order approximation of how much the outputs of the RNN change if we move
from W to W +W'. This change (up to small error) is a linear function in W’. (See Section 6).

(This step can be derived from prior work [2] without much difficulty.)

2. We construct some (unknown) matrix W* & R™*™ go that this “linear function”, when
evaluated on W*, approximately gives the target F™* in the concept class (see Section 5).

(This step is the most interesting part of this paper.)

3. We argue that the SGD method moves in a direction nearly as good as W* and thus efficiently
decreases the training objective (see Section 7).

(This is a routine analysis of SGD in the non-convex setting given Steps 1&2.)

4. We use the first-order linear approximation to derive a Rademacher complexity bound that
does not grow exponentially in L (see Section 8). By feeding the output of SGD into this
Rademacher complexity, we finish the proof of Theorem 1 (see Section 9).

(This is a one-paged proof given the Steps 1&2&3.)

Although our proofs are technical, to help the readers, we write 7 pages of sketch proofs for Steps
1 through 4. This can be found in Section 5 through 9. Due to space limitation, we only include
Section 5 in the main body. We introduce some notations for analysis purpose.

Definition 4.1. For each { € [L], let Dy € R™*™ be the diagonal matrix where

Do)k = LWy 1+ 420520 = L(g)>0 -
As a result, we can write hy = DyWhy_1. Foreach 1 < { < a < L, we define

Backy_.q = BD,W --- Dy W € R&™,
with the understanding that Back,_,, = B € R4*™,

Throughout the proofs, to simplify notations when specifying polynomial factors, we introduce
100Ldp - €.(®,\/L) - logm
0=

€
We assume m > poly(p) for some sufficiently large polynomial factor.

p:=100Ldlogm and

5 Existence of Good Network Through Backward

One of our main contributions is to show the existence of some “good linear network” to approximate
any target function. Let us explain what this means. Suppose W, A, B are at random initialization.
We consider a linear function over W* € R™*™:

fj/ = 25,22 Back,;/_,j/ Di/W*hi/_l . (51)



As we shall see later, in first-order approximation, this linear function captures how much the output
of the RNN changes at token j’, if one we move W to W + W'. The goal in this section is to
construct some W* € R™*™ gatisfying that, for any true input z* in the support of D, if we define
the actual input x according to x* (see Definition 3.1), then with high probability,

* * i’ —1 *
Vs € ld  fiw R F (@) = XI5 Pimgrrs (W @) (5.2)

In our sketched proof below, it shall become clear how this same matrix W* can simultaneously
represent functions ®;_,; that come from different input tokens 4. Since SGD can be shown to
descend in a direction “comparable” to W*, it converges to a matrix W with similar guarantees.

5.1 Indicator to Function
In order to show (5.2), we first show a variant of the “indicator to function” lemma from [1].

Lemma 5.1 (indicator to function). For every smooth function ®: R — R, every unit vector
w* € R% with wy = 0, every constant o > 0.1, every constant v > 1, every constant €. €

(O, m), there exists
C'=¢. (®,0) and a function H: R — [-C', ("],

such that for every fixed unit vectors v* € R% with Ty = %
(a) ‘EaNN(O,I),nNN(O,o‘z) []l<a,z*)+n20H (G,)] - (P(<w*u l’*>)‘ < ee (on target)

(b) ‘EGNN(O,I),HNN(O,G‘Z) []l(a,x*)Jr'ynZOH (a)] - (I)(O)’ <ée+t O(%) (Oﬁtarget)

Above, Lemma 5.1a says that we can use a bounded function 1 ¢, ;+)4n>0H (a) to fit a target func-
tion ®((w*, z*)), and Lemma 5.1b says that if the magnitude of n is large then this function is close
to being constant. For such reason, we can view n as “noise.” While the proof of 5.1a is from
prior work [1], our new property 5.1b is completely new and it requires some technical challenge to
simultaneously guarantee 5.1a and 5.1b. The proof is in Appendix G.1

5.2 Fitting a Single Function

We now try to apply Lemma 5.1 to approximate a single function ®;_, ;. s ((w;_, ; . s, @7)). For this
purpose, let us consider two (normalized) input sequences. The first (null) sequence (%) is given as

x§°> =(0%,1) and xéo) = (0%,¢,)for¢ =2,3,...,L
The second sequence z is generated from an input z* in the support of D (recall Definition 3.1). Let
® hy, Dy, Back;_,; be defined with respect to W, A, B and input sequence x, and
° hEO), D§O), Back(o)j be defined with respect to W, A, B and input sequence z(©

—
We remark that héo) has the good property that it does not depend z* but somehow stays “close
enough” to the true hy (see Appendix D for a full description).

Lemma 5.2 (fit single function). For every2 < i < j < L, r € [p],s € [d] and every constant

€e € (Oa m), there exists C' = €. (D;yj 1 s, \E) so that, for every

1 Ee€yp
EIE(O7W) and .= S5,

7\2 N2
there exists a function H; ;. ¢: R — [ I ﬂ], such that, let

Ee€x ) EeEgy

e x be a fixed input sequence defined by some x* in the support of D (see Definition 3.1),
o W, A be at random initialization,

o hy be generated by W, A,x and héo) be generated by W,A,z0), and
o Wy, ap ~N (0, %) be freshly new random vectors,
with probability at least 1 — e~ ") over W and A,

(a) (on target)

-~ * *
B |:1(1Bk,h§cl)1>< ee Lap b+ @,z >0 Himsjirs (Ak) | = Pisjrs (Wil 60 #7))| < e

NG

WAk




(b) (off target), for every i’ # i
P []llm;hi‘”nls

Lemma 5.2 implies there is a quantity 1

]l(ﬁk,hi/_l>+<Ek790,;/)20Hi—>j,r,s(5k):| ‘ <ee
N

lmk’hﬁ)l)lg%Hi_n-ms(ak) that only depends on the target
function and the random initialization (namely, w, a;) such that,

o when multiplying 1z, 1, )+ (a,,z:)>0 gives the target ®;_,; . ((w; but

i—j,r,80 T >
e when multiplying 1z, n., )4 (ax,z,)>0 gIVES near zero.

The full proof is in Appendix G.2 but we sketch why Lemma 5.2 can be derived from Lemma 5.1.

Sketch proof of Lemma 5.2. Let us focus on indicator 1z, n,, )+ (@, z,/)>0°

o (ay, z;) is distributed like (0,

) because (ax, zi) = {(ak, (e227,0)); but

e (W, hyr—1) is roughly N'(0, 2 ) because ||hy_1|| = 1 by random init. (see Lemma B.1a).
Thus, if we treat (W, hy—1) as the “noise n”” in Lemma 5.1 it can be é times larger than (a, z; ).
To show Lemma 5.2a, we only need to focus on |{wy, h§911>| < j—m because i = i’. Since h(®) can

be shown close to A (see Lemma D.1), this is almost equivalent to |(w, ki —1)| < fﬁ Condition-
ing on this happens, the “noise n”” must be small so we can apply Lemma 5.1a.

To show Lemma 5.2a, we can show when ¢’ # 4, the indicator on |(Wy, h;—1)| < % gives little
information about the true noise (wg, h;s—1). This is so because h;_1 and h;_; are somewhat
uncorrelated (details in Lemma B.1k). As a result, the “noise n” is still large and thus Lemma 5.1b

applies with ®;_,; . s(0) = 0. -

5.3 Fitting the Target Function
We are now ready to design W* € R™*™ using Lemma 5.2.

Definition 5.3. Suppose €. € (0, m), C'=¢. (,VL), e, € (0 ’p4c') we choose
Eely 4(C")? 1

c = ) C = ) CZ js — — ’
c 4c € e m

1—)]

el Back?) H A

We construct W* € R™*™ by defining its k-th row vector as follows:

1
: Z Z Z .7,[‘3 BaCkQJ} L o h@,y <

mC
i=2 j=i+1re[p],s€[d] b8

ce Hi%j,r,s(awhgof)l
v

where C;_j s :——He Back!" H =k

Z*}j

Above, functions H;_,; , s: R — [ - C, C] come from Lemma 5.2.

The following lemma that says f;: , is close to the target function F7, ,

Lemma 5.4 (existence through backward). The construction of W* in Definition 5.3 satisfies the
Jfollowing. For every normalized input sequence x generated from x* in the support of D, we have

with probability at least 1 — e=X°") over W, A, B, it holds for every 3 < j' < L and s' € [d]
j' =1

f] st = Z Z (I)Z—U 7,8’ z%j’,r,s’vx;» + (ppll ’ O(Ee + Q:ﬁ(q)z 1)591/3 + Cm70'05)>

=2 '[‘E[p



Proof sketch of Lemma 5.4. Using definition of f;: s in (5.1) and W*, one can write down
0
o= ¥ ¥ (g [o5 Backiy], [e] Back(?, ]
i',5',j r€[p],s€[d] k€[m] Civsir,s

x 1
[(wi,h )<

ee Lig, >0 i gms(an) (hir—1, h§0)1>) e
Vv m
Now,

e The summands in (5.3) with ¢ # ¢ are negligible owing to Lemma 5.2b.

e The summands in (5.3) with ¢ = 4/ but j # j’ are negligible, after proving that Back;_,; and
Back;_, ;- are very uncorrelated (details in Lemma C.1).

e The summands in (5.3) with s # s’ are negligible using the randomness of B.

e One can also prove Back; _, ;» =~ Backgoi)], and hy_1 = hg, ; (details in Lemma D.I).

Together,

j' =1

f] s Z Z Z (mclﬁj s,(|:e BaCkZ(OLJ}k)2

=2 re[p] ke[m

]l[q ez Hir s (ak)th/ 1||2>
Applying Lemma 5.2a and using our choice of Cy_, s o, thls gives (in expectation)

‘-1 * *
f] s’ NZ] Zre[p q)i—>j’,r7s’(<wz_)_7 r,s’ 7,>) F ( ) .

Proving concentration (with respect to k € [m]) is a lot more challengmg due to the sophisticated
correlations across different indices k. To achieve this, we replace some of the pairs wy, ap, with
fresh new samples wy,, ay, for all & € N and apply concentration only with respect to k € A. Here,
N is a random subset of [m] with cardinality m®1. We show that the network stabilizes (details in

Section E) against such re-randomization. Full proof is in Section G.3. U]

[(wie,h{Y )<

Finally, one can show ||[W* | p < O(%) (see Claim G.1). Crucially, this Frobenius norm scales

in m~1/2 so standard SGD analysis shall ensure that our sample complexity does not depend on m

(up to log factors).

References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and Generalization in Overpa-
rameterized Neural Networks, Going Beyond Two Layers. In NeurIPS, 2019. Full version
available at http://arxiv.org/abs/1811.04918.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent
neural networks. In NeurIPS, 2019. Full version available at http://arxiv.org/abs/1810.
12065.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In /ICML, 2019. Full version available at http://arxiv.org/abs/
1811.03962.

[4] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sen-
tence embeddings. In ICLR, 2017.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[6] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463—482, 2002.

[7] Digvijay Boob and Guanghui Lan. Theoretical properties of the global optimizer of two layer
neural network. arXiv preprint arXiv:1710.11241,2017.


http://arxiv.org/abs/1811.04918
http://arxiv.org/abs/1810.12065
http://arxiv.org/abs/1810.12065
http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/1811.03962

[8] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with
gaussian inputs. arXiv preprint arXiv:1702.07966, 2017.

[9] Minshuo Chen, Xingguo Li, and Tuo Zhao. On generalization bounds of a family of recurrent
neural networks, 2019. URL https://openreview.net/forum?id=Skf-000qt7.

[10] Bhaskar Dasgupta and Eduardo D Sontag. Sample complexity for learning recurrent perceptron
mappings. In Advances in Neural Information Processing Systems, pages 204-210, 1996.

[11] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. arXiv preprint arXiv:1711.00501, 2017.

[12] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on, pages 6645-6649. IEEE, 2013.

[13] Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical
systems. The Journal of Machine Learning Research, 19(1):1025-1068, 2018.

[14] David Haussler. Decision theoretic generalizations of the pac model for neural net and other
learning applications. Information and Computation, 100(1):78—150, 1992.

[15] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735-1780, 1997.

[16] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Informa-
tion Processing Systems, pages 586-594, 2016.

[17] Pascal Koiran and Eduardo D Sontag. Vapnik-chervonenkis dimension of recurrent neural
networks. Discrete Applied Mathematics, 86(1):63-79, 1998.

[18] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic
gradient descent on structured data. In Advances in Neural Information Processing Systems
(NIPS), 2018.

[19] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu
activation. In Advances in Neural Information Processing Systems, pages 597-607, 2017.

[20] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-
parameterized matrix sensing and neural networks with quadratic activations. In COLT, 2018.

[21] Percy Liang. CS229T/STAT231: Statistical Learning Theory (Winter 2016). https://web.
stanford.edu/class/cs229t/notes.pdf, April 2016. accessed January 2019.

[22] Andreas Maurer. A vector-contraction inequality for rademacher complexities. In International
Conference on Algorithmic Learning Theory, pages 3—17. Springer, 2016.

[23] Jared Ostmeyer and Lindsay Cowell. Machine learning on sequential data using a recurrent
weighted average. Neurocomputing, 2018.

[24] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning, pages 1310-1318, 2013.

[25] Hojjat Salehinejad, Julianne Baarbe, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh
Valaee. Recent advances in recurrent neural networks. arXiv preprint arXiv:1801.01078,2017.

[26] Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the

optimization landscape of over-parameterized shallow neural networks. arXiv preprint
arXiv:1707.04926, 2017.

[27] Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guar-
antees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

[28] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104-3112, 2014.

10


https://openreview.net/forum?id=Skf-oo0qt7
https://web.stanford.edu/class/cs229t/notes.pdf
https://web.stanford.edu/class/cs229t/notes.pdf

[29] Yuandong Tian. An analytical formula of population gradient for two-layered relu network and
its applications in convergence and critical point analysis. arXiv preprint arXiv:1703.00560,
2017.

[30] Bo Xie, Yingyu Liang, and Le Song. Diversity leads to generalization in neural networks.
arXiv preprint Arxiv:1611.03131, 2016.

[31] Jiong Zhang, Qi Lei, and Inderjit S Dhillon. Stabilizing gradients for deep neural networks via
efficient svd parameterization. arXiv preprint arXiv:1803.09327, 2018.

[32] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guar-
antees for one-hidden-layer neural networks. arXiv preprint arXiv:1706.03175, 2017.

11



