
Levenshtein Transformer

Jiatao Gu†, Changhan Wang†, and Jake Zhao (Junbo)‡�
†Facebook AI Research

‡New York University �Tigerobo Inc.
†{jgu, changhan}@fb.com ‡jakezhao@cs.nyu.edu

Abstract

Modern neural sequence generation models are built to either generate tokens
step-by-step from scratch or (iteratively) modify a sequence of tokens bounded
by a fixed length. In this work, we develop Levenshtein Transformer, a new
partially autoregressive model devised for more flexible and amenable sequence
generation. Unlike previous approaches, the basic operations of our model are
insertion and deletion. The combination of them facilitates not only generation
but also sequence refinement allowing dynamic length changes. We also propose
a set of new training techniques dedicated at them, effectively exploiting one as
the other’s learning signal thanks to their complementary nature. Experiments
applying the proposed model achieve comparable or even better performance
with much-improved efficiency on both generation (e.g. machine translation, text
summarization) and refinement tasks (e.g. automatic post-editing). We further
confirm the flexibility of our model by showing a Levenshtein Transformer trained
by machine translation can straightforwardly be used for automatic post-editing. 1

1 Introduction

Neural sequence generation models are widely developed and deployed in tasks such as machine
translation (Bahdanau et al., 2015; Vaswani et al., 2017). As we examine the current frameworks,
the most popular autoregressive models generate tokens step-by-step. If not better, recent non-
autoregressive approaches (Gu et al., 2018; Kaiser et al., 2018; Lee et al., 2018) have proved it
possible to perform generation within a much smaller number of decoding iterations.

In this paper, we propose Levenshtein Transformer (LevT), aiming to address the lack of flexibility of
the current decoding models. Notably, in the existing frameworks, the length of generated sequences
is either fixed or monotonically increased as the decoding proceeds. This remains incompatible
with human-level intelligence where humans can revise, replace, revoke or delete any part of their
generated text. Hence, LevT is proposed to bridge this gap by breaking the in-so-far standardized
decoding mechanism and replacing it with two basic operations — insertion and deletion.

We train the LevT using imitation learning. The resulted model contains two policies and they are
executed in an alternate manner. Empirically, we show that LevT achieves comparable or better results
than a standard Transformer model on machine translation and summarization, while maintaining
the efficiency advantages benefited from parallel decoding similarly to (Lee et al., 2018). With this
model, we argue that the decoding becomes more flexible. For example, when the decoder is given an
empty token, it falls back to a normal sequence generation model. On the other hand, the decoder acts
as a refinement model when the initial state is a low-quality generated sequence. Indeed, we show
that a LevT trained from machine translation is directly applicable to translation post-editing without

1Codes for reproducing this paper are released in https://github.com/pytorch/fairseq/tree/
master/examples/nonautoregressive_translation

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/pytorch/fairseq/tree/master/examples/nonautoregressive_translation
https://github.com/pytorch/fairseq/tree/master/examples/nonautoregressive_translation

any change. This would not be possible with any framework in the literature because generation and
refinement are treated as two different tasks due to the model’s inductive bias.

One crucial component in LevT framework is the learning algorithm. We leverage the characteristics
of insertion and deletion — they are complementary but also adversarial. The algorithm we propose
is called “dual policy learning”. The idea is that when training one policy (insertion or deletion),
we use the output from its adversary at the previous iteration as input. An expert policy, on the
other hand, is drawn to provide a correction signal. Despite that, in theory, this learning algorithm is
applicable to other imitation learning scenarios where a dual adversarial policy exists, in this work we
primarily focus on a proof-of-concept of this algorithm landing at training the proposed LevT model.

To this end, we summarize the contributions as follows:

• We propose Levenshtein Transformer (LevT), a new sequence generation model composed of the
insertion and deletion operations. This model achieves comparable or even better results than a
strong Transformer baseline in both machine translation and text summarization, but with much
better efficiency (up to ×5 speed-up in terms of actual machine execution time);

• We propose a corresponding learning algorithm under the theoretical framework of imitation
learning, tackling the complementary and adversarial nature of the dual policies;

• We recognize our model as a pioneer attempt to unify sequence generation and refinement, thanks
to its built-in flexibility. With this unification, we empirically validate the feasibility of applying a
LevT model trained by machine translation directly to translation post-editing, without any change.

2 Problem Formulation

2.1 Sequence Generation and Refinement

We unify the general problems of sequence generation and refinement by casting them to a Markov
Decision Process (MDP) defined by a tuple (Y,A, E ,R,y0). We consider the setup consisting an
agent interacting with an environment E which receives the agent’s editing actions and returns the
modified sequence. We define Y = VNmax as a set of discrete sequences up to length Nmax where V
is a vocabulary of symbols. At every decoding iteration, the agent receives an input y drawn from
scratch or uncompleted generation, chooses an action a and gets a reward r. We use A to denote
the set of actions and R for the reward function. Generally the reward function R measures the
distance between the generation and the ground-truth sequence,R(y) = −D(y,y∗) which can be
any distance measurement such as the Levenshtein distance (Levenshtein, 1965). It is crucial to
incorporate y0 ∈ Y into the our formulation. As the initial sequence, the agent receives—when y0 is
an already generated sequence from another system, the agent essentially learns to do refinement
while it falls back to generation if y0 is an empty sequence. The agent is modeled by a policy, π, that
maps the current generation over a probability distribution over A. That is, π : Y → P (A).

2.2 Actions: Deletion & Insertion

Following the above MDP formulation, with a subsequence yk = (y1, y2, ..., yn), the two basic
actions – deletion and insertion – are called to generate yk+1 = E(yk,ak+1). Here we let y1 and yn
be special symbols <s> and </s>, respectively. Since we mainly focus on the policy of a single round
generation, the superscripts are omitted in this section for simplicity. For conditional generation like
MT, our policy also includes an input of source information x which is also omitted here.

Deletion The deletion policy reads the input sequence y, and for every token yi ∈ y, the deletion
policy πdel(d|i,y) makes a binary decision which is 1 (delete this token) or 0 (keep it). We additionally
constrain πdel(0|1,y) = πdel(0|n,y) = 1 to avoid sequence boundary being broken. The deletion
classifier can also be seen as a fine-grained discriminator used in GAN (Goodfellow et al., 2014)
where we predict “fake” or “real” labels for every predicted token.

Insertion In this work, it is slightly more complex to build the insertion atomic because it involves
two phases: placeholder prediction and token prediction so that it is able to insert multiple tokens
at the same slot. First, among all the possible inserted slots (yi, yi+1) in y, πplh(p|i,y) predicts the
possibility of adding one or several placeholders. In what follows, for every placeholder predicted as

2

+ + + + + +

<s>

cat sit mat

Levenshtein Transformer

a sat on

Levenshtein Transformer

Levenshtein Transformer

<s> </s>

✓ ✘ ✓

cat mat<s> </s>

[1] [3] [0]

cat mat </s>[PLH] [PLH] [PLH] [PLH]

cat mat<s> </s>a sat on the

the

Transformer Block_2

Transformer Block_1

Transformer Block_L

…

BOS x2 x3 3/+ x5 EOS

1 2 3 4 5 6

h1 h2 h3 h4 h5 h6

Placeholder
Classifier

Token
Classifier

Deletion
Classifier

Token
Embeddings

Position
Embeddings

Classifiers

Delete Tokens

Insert
Placeholders

Fill-in Tokens

Figure 1: The illustration of the proposed Levenshtein Transformer decoder for one refinement
iteration. The same architecture can be applied for three different tasks with specific classifiers. For
simplicity, the encoder-decoder attention is omitted within each Transformer-Block.

above, a token prediction policy πtok(t|i,y) replaces the placeholders with actual tokens in the vocab-
ulary. The two-stage insertion process can also be viewed as a hybrid of Insertion Transformer (Stern
et al., 2019) and masked language model (MLM, Devlin et al., 2018; Ghazvininejad et al., 2019).

Policy combination Recall that our two operations are complementary. Hence we combine them
in an alternate fashion. For example in sequence generation from the empty, insertion policy is first
called and it is followed by deletion, and then repeat till the certain stopping condition is fulfilled.
Indeed, it is possible to leverage the parallelism in this combination. We essentially decompose
one iteration of our sequence generator into three phases: “delete tokens – insert placeholders –
replace placeholders with new tokens”. Within each stage, all operations are performed in parallel.
More precisely, given the current sequence y = (y0, . . . , yn), and suppose the action to predict is
a = {d0, . . . dn︸ ︷︷ ︸

d

; p0, . . . , pn−1︸ ︷︷ ︸
p

; t10, . . . t
p0
0 , . . . , t

pn−1

n−1︸ ︷︷ ︸
t

}, the policy for one iteration is:

π(a|y) =
∏
di∈d

πdel(di|i,y) ·
∏
pi∈p

πplh(pi|i,y′) ·
∏
ti∈t

πtok(ti|i,y′′), (1)

where y′ = E(y,d) and y′′ = E(y′,p). We parallelize the computation within each sub-tasks.

3 Levenshtein Transformer

In this section, we cover the specs of Levenshtein Transformer and the dual-policy learning algorithm.
Overall our model takes a sequence of tokens (or none) as the input then iteratively modify it by
alternating between insertion and deletion, until the two policies combined converge. We describe
the detailed learning and inference algorithms in the Appendix.

3.1 Model

We use Transformer (Vaswani et al., 2017) as the basic building block. For conditional generation,
the source x is included in each TransformerBlock. The states from the l-th block are:

h
(l+1)
0 ,h

(l+1)
1 , ...,h(l+1)

n =

{
Ey0 + P0, Ey1 + P1, ..., Eyn + Pn, l = 0

TransformerBlockl(h
(l)
0 ,h

(l)
1 , ...,h

(l)
n), l > 0

(2)

where E ∈ R|V|×dmodel and P ∈ RNmax×dmodel are the token and position embeddings, respectively. We
show the illustration of the proposed LevT model for one refinement (delete, insert) as Figure 1.

3

Policy Classifiers The decoder outputs (h0,h2, ...,hn) are passed to three policy classifiers:

1. Deletion Classifier: LevT scans over the input tokens (except for the boundaries) and predict
“deleted” (0) or “kept” (1) for each token position,

πdel
θ (d|i,y) = softmax

(
hi ·A>

)
, i = 1, . . . n− 1, (3)

where A ∈ R2×dmodel , and we always keep the boundary tokens.
2. Placeholder Classifier: LevT predicts the number of tokens to be inserted at every consecutive

position pairs, by casting the representation to a categorical distribution:

πplh
θ (p|i,y) = softmax

(
concat(hi,hi+1) ·B>

)
, i = 0, . . . n− 1, (4)

where B ∈ R(Kmax+1)×(2dmodel). Based on the number (0 ∼ Kmax) of tokens it predicts, we insert
the considered number of placeholders at the current position. In our implementation, placehoder
is represented by a special token <PLH> which was reserved in the vocabulary.

3. Token Classifier: following the placeholder prediction, LevT needs to fill in tokens replacing all
the placeholders. This is achieved by training a token predictor as follow:

πtok
θ (t|i,y) = softmax

(
hi · C>

)
, ∀yi = <PLH>, (5)

where C ∈ R|V|×dmodel with parameters being shared with the embedding matrix.

Weight Sharing Our default implementation always assumes the three operations to share the
same Transformer backbone to benefit features learned from other operations. However, it is also
possible to disable weight sharing and train separate decoders for each operations, which increases
the capacity of the model while does not affect the overall inference time.

Early Exit Although it is parameter-efficient to share the same Transformer architecture across
the above three heads, there is room for improvement as one decoding iteration requires three full
passes of the network. To make trade-off between performance and computational cost, we propose
to perform early exit (attaching the classifier to an intermediate block instead of the last one) for πdel

and πplh to reduce computation while keeping πtok always based on the last block, considering that
token prediction is usually more challenging than the other two tasks.

3.2 Dual-policy Learning

Imitation Learning We use imitation learning to train the Levenshtein Transformer. Essentially
we let the agent imitate the behaviors that we draw from some expert policy π∗. The expert policy
is derived from direct usage of ground-truth targets or less noisy version filtered by sequence
distillation (Kim and Rush, 2016). The objective is to maximize the following expectation:

Eydel∼dπ̃del
d∗∼π∗

∑
d∗i∈d∗

log πdel
θ (d∗i |i,ydel)︸ ︷︷ ︸

Deletion Objective

+Eyins∼dπ̃ins
p∗,t∗∼π∗

 ∑
p∗i∈p∗

log πplh
θ (p∗i |i,yins) +

∑
t∗i∈t∗

log πtok
θ (t∗i |i,y′ins)


︸ ︷︷ ︸

Insertion Objective

,

where y′ins is the output after inserting palceholders p∗ upon yins. π̃del, π̃ins are the roll-in polices and
we repeatedly draw states (sequences) from their induced state distribution dπ̃del , dπ̃ins . These states
are first executed by the expert policy returning the suggested actions by the expert, and then we
maximize the conditional log-likelihood over them. By definition, the roll-in policy determines the
state distribution fed to πθ during training. In this work, we have two strategies to construct the roll-in
policy — adding noise to the ground-truth or using the output from the adversary policy. Figure 2
shows a diagram of this learning paradigm. We formally write down the roll-in policies as follows.

1. Learning to Delete: we design the π̃del as a stochastic mixture between the initial input y0 or the
output by applying insertion from the model with some mixture factor α ∈ [0, 1]:

dπ̃del = {y0 if u < α else E
(
E (y′,p∗) , t̃

)
, p∗ ∼ π∗, t̃ ∼ πθ} (6)

where u ∼ Uniform[0, 1] and y′ is any sequence ready to insert tokens. t̃ is obtained by sampling
instead of doing argmax from Eq. (5).

4

yyy⇤
<latexit sha1_base64="Wtt9s3YXXOeLs27BHa4kJ46A93Y=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRZBPJTdKuix6MVjBfuB7VqyabYNTbJLkhXK0n/hxYMiXv033vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWjpKFKFNEvFIdQKsKWeSNg0znHZiRbEIOG0H45vMbz9RpVkk780kpr7AQ8lCRrCx0kMvFkE6mT6elfrlilt1Z0DLxMtJBXI0+uWv3iAiiaDSEI617npubPwUK8MIp9NSL9E0xmSMh7RrqcSCaj+dXTxFJ1YZoDBStqRBM/X3RIqF1hMR2E6BzUgvepn4n9dNTHjlp0zGiaGSzBeFCUcmQtn7aMAUJYZPLMFEMXsrIiOsMDE2pCwEb/HlZdKqVb3zau3uolK/zuMowhEcwyl4cAl1uIUGNIGAhGd4hTdHOy/Ou/Mxby04+cwh/IHz+QMMf5CA</latexit>

yyy0
<latexit sha1_base64="V8zKO6P7hdH/aXQcpp91kWIoQtQ=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/cA2ls120y7d3YTdjRBC/4UXD4p49d9489+4aXPQ1gcDj/dmmJkXxJxp47rfzsrq2vrGZmmrvL2zu7dfOThs6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbnK/80SVZpG8N2lMfYFHkoWMYGOlh34sgiydPrrlQaXq1twZ0DLxClKFAs1B5as/jEgiqDSEY617nhsbP8PKMMLptNxPNI0xmeAR7VkqsaDaz2YXT9GpVYYojJQtadBM/T2RYaF1KgLbKbAZ60UvF//zeokJr/yMyTgxVJL5ojDhyEQofx8NmaLE8NQSTBSztyIyxgoTY0PKQ/AWX14m7XrNO6/V7y6qjesijhIcwwmcgQeX0IBbaEILCEh4hld4c7Tz4rw7H/PWFaeYOYI/cD5/ABWdkIY=</latexit>

⇡⇤
<latexit sha1_base64="rBOh873YWdsUV2dnSe/9s9KK7l4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBPJTdKuix6MVjBfsB7VqyabaNzSZLkhXK0v/gxYMiXv0/3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Cbz209UaSbFvZnE1I/wULCQEWys1OrF7OGs1C9X3Ko7A1omXk4qkKPRL3/1BpIkERWGcKx113Nj46dYGUY4nZZ6iaYxJmM8pF1LBY6o9tPZtVN0YpUBCqWyJQyaqb8nUhxpPYkC2xlhM9KLXib+53UTE175KRNxYqgg80VhwpGRKHsdDZiixPCJJZgoZm9FZIQVJsYGlIXgLb68TFq1qnderd1dVOrXeRxFOIJjOAUPLqEOt9CAJhB4hGd4hTdHOi/Ou/Mxby04+cwh/IHz+QOhpY6B</latexit>

⇡rnd
<latexit sha1_base64="3ckLkj2tzZPk6phZlg2lTs3XkDs=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5JUQY9FLx4r2A9oYtlsNu3SzSbsTtQS+1O8eFDEq7/Em//GpM1BWx8MPN6bYWaeFwuuwbK+jdLK6tr6RnmzsrW9s7tnVvc7OkoUZW0aiUj1PKKZ4JK1gYNgvVgxEnqCdb3xVe5375nSPJK3MImZG5Kh5AGnBDJpYFadmN85wB5B01RJf1oZmDWrbs2Al4ldkBoq0BqYX44f0SRkEqggWvdtKwY3JQo4FWxacRLNYkLHZMj6GZUkZNpNZ6dP8XGm+DiIVFYS8Ez9PZGSUOtJ6GWdIYGRXvRy8T+vn0Bw4aZcxgkwSeeLgkRgiHCeA/a5YhTEJCOEKp7diumIKEIhSysPwV58eZl0GnX7tN64Oas1L4s4yugQHaETZKNz1ETXqIXaiKIH9Ixe0ZvxZLwY78bHvLVkFDMH6A+Mzx+E7JQp</latexit>

⇡✓
<latexit sha1_base64="j+DOH/xpXeGPsDU2xTbW7a1iH5s=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM120y7d7IbdiVBCf4YXD4p49dd489+4aXPQ1gcDj/dmmJkXpYIbcN1vZ219Y3Nru7JT3d3bPzisHR13jco0ZR2qhNL9iBgmuGQd4CBYP9WMJJFgvWhyV/i9J6YNV/IRpikLEzKSPOaUgJX8IOWDAMYMSHVQq7sNdw68SryS1FGJ9qD2FQwVzRImgQpijO+5KYQ50cCpYLNqkBmWEjohI+ZbKknCTJjPT57hc6sMcay0LQl4rv6eyElizDSJbGdCYGyWvUL8z/MziG/CnMs0AybpYlGcCQwKF//jIdeMgphaQqjm9lZMx0QTCjalIgRv+eVV0m02vMtG8+Gq3rot46igU3SGLpCHrlEL3aM26iCKFHpGr+jNAefFeXc+Fq1rTjlzgv7A+fwB4X+Q/A==</latexit>

yyy0
<latexit sha1_base64="LitoktbSswRyr4WTdhpYZESx9S4=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ6KkkV9Fj04rGC/ZA2lM120y7d3YTdjRBCf4UXD4p49ed489+4aXPQ1gcDj/dmmJkXxJxp47rfzsrq2vrGZmmrvL2zu7dfOThs6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbnO/80SVZpF8MGlMfYFHkoWMYGOlx34sgiydnpUHlapbc2dAy8QrSBUKNAeVr/4wIomg0hCOte55bmz8DCvDCKfTcj/RNMZkgke0Z6nEgmo/mx08RadWGaIwUrakQTP190SGhdapCGynwGasF71c/M/rJSa89jMm48RQSeaLwoQjE6H8ezRkihLDU0swUczeisgYK0yMzSgPwVt8eZm06zXvola/v6w2boo4SnAMJ3AOHlxBA+6gCS0gIOAZXuHNUc6L8+58zFtXnGLmCP7A+fwBUK2QFQ==</latexit>

yyy00
<latexit sha1_base64="9xA/5UBNuCmQCMsElGehQTuSSDU=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRapp7JbBT0WvXisYD+wXUo2zbahSXZJskJZ+i+8eFDEq//Gm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpv5nSeqNIvkg5nG1Bd4JFnICDZWeuzHIkins2q1NChX3Jo7B1olXk4qkKM5KH/1hxFJBJWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LJRZU++n84hk6s8oQhZGyJQ2aq78nUiy0norAdgpsxnrZy8T/vF5iwms/ZTJODJVksShMODIRyt5HQ6YoMXxqCSaK2VsRGWOFibEhZSF4yy+vkna95l3U6veXlcZNHkcRTuAUzsGDK2jAHTShBQQkPMMrvDnaeXHenY9Fa8HJZ47hD5zPH7QXkEY=</latexit>

↵
<latexit sha1_base64="wlES0PlLDlylr5MeneqMfVQVd5w=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Ae0oUy2m3bpZrPsboQS+iO8eFDEq7/Hm//GpM1BWx8MPN6bYWZeoAQ31nW/ndLG5tb2Tnm3srd/cHhUPT7pmDjRlLVpLGLdC9AwwSVrW24F6ynNMAoE6wbTu9zvPjFteCwf7UwxP8Kx5CGnaDOpO0ChJlgZVmtu3V2ArBOvIDUo0BpWvwajmCYRk5YKNKbvucr6KWrLqWDzyiAxTCGd4pj1MyoxYsZPF+fOyUWmjEgY66ykJQv190SKkTGzKMg6I7QTs+rl4n9eP7HhrZ9yqRLLJF0uChNBbEzy38mIa0atmGUEqebZrYROUCO1WUJ5CN7qy+uk06h7V/XGw3Wt2SziKMMZnMMleHADTbiHFrSBwhSe4RXeHOW8OO/Ox7K15BQzp/AHzucPwq2PLg==</latexit>

1 � ↵<latexit sha1_base64="Jd9oPXUZVfRWve3/aEZ4+ityyNk=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4sSRV0GPBi8cK9gPSUCbbTbt0sxt2N0Ip/RlePCji1V/jzX9j0uagrQ8GHu/NMDMvTAQ31nW/nbX1jc2t7dJOeXdv/+CwcnTcNirVlLWoEkp3QzRMcMlallvBuolmGIeCdcLxXe53npg2XMlHO0lYEONQ8ohTtJnke+SS9FAkIyz3K1W35s5BVolXkCoUaPYrX72BomnMpKUCjfE9N7HBFLXlVLBZuZcaliAd45D5GZUYMxNM5yfPyHmmDEikdFbSkrn6e2KKsTGTOMw6Y7Qjs+zl4n+en9roNphymaSWSbpYFKWCWEXy/8mAa0atmGQEqebZrYSOUCO1WUp5CN7yy6ukXa95V7X6w3W10SjiKMEpnMEFeHADDbiHJrSAgoJneIU3xzovzrvzsWhdc4qZE/gD5/MHS2GP9A==</latexit>

1 � �
<latexit sha1_base64="7TYo9lSQqQisUt/IY8YDGeWAk1I=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBiyWpgh4LXjxWsB/YhrLZTtqlm03YnQgl9F948aCIV/+NN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUc2jyWMa6EzADUihookAJnUQDiwIJ7WB8O/PbT6CNiNUDThLwIzZUIhScoZUePXpBewEgK/XLFbfqzkFXiZeTCsnR6Je/eoOYpxEo5JIZ0/XcBP2MaRRcwrTUSw0kjI/ZELqWKhaB8bP5xVN6ZpUBDWNtSyGdq78nMhYZM4kC2xkxHJllbyb+53VTDG/8TKgkRVB8sShMJcWYzt6nA6GBo5xYwrgW9lbKR0wzjjakWQje8surpFWrepfV2v1VpV7P4yiSE3JKzolHrkmd3JEGaRJOFHkmr+TNMc6L8+58LFoLTj5zTP7A+fwBgqSPgA==</latexit>

�
<latexit sha1_base64="FZAYzfr+4hXu2uQ6OzUjuUrR4bE=">AAAB7XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fjw4rGC/YA2lM120q7dbMLuRCih/8GLB0W8+n+8+W/ctDlo64OBx3szzMwLEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk41hxaPZay7ATMghYIWCpTQTTSwKJDQCSa3ud95Am1ErB5wmoAfsZESoeAMrdTuB4CsPKhU3Zo7B10lXkGqpEBzUPnqD2OeRqCQS2ZMz3MT9DOmUXAJs3I/NZAwPmEj6FmqWATGz+bXzui5VYY0jLUthXSu/p7IWGTMNApsZ8RwbJa9XPzP66UY3viZUEmKoPhiUZhKijHNX6dDoYGjnFrCuBb2VsrHTDOONqA8BG/55VXSrte8y1r9/qraaBRxlMgpOSMXxCPXpEHuSJO0CCeP5Jm8kjcndl6cd+dj0brmFDMn5A+czx/6lo66</latexit>

Learn to Insert

Learn to Delete

yyy⇤
<latexit sha1_base64="Wtt9s3YXXOeLs27BHa4kJ46A93Y=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRZBPJTdKuix6MVjBfuB7VqyabYNTbJLkhXK0n/hxYMiXv033vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWjpKFKFNEvFIdQKsKWeSNg0znHZiRbEIOG0H45vMbz9RpVkk780kpr7AQ8lCRrCx0kMvFkE6mT6elfrlilt1Z0DLxMtJBXI0+uWv3iAiiaDSEI617npubPwUK8MIp9NSL9E0xmSMh7RrqcSCaj+dXTxFJ1YZoDBStqRBM/X3RIqF1hMR2E6BzUgvepn4n9dNTHjlp0zGiaGSzBeFCUcmQtn7aMAUJYZPLMFEMXsrIiOsMDE2pCwEb/HlZdKqVb3zau3uolK/zuMowhEcwyl4cAl1uIUGNIGAhGd4hTdHOy/Ou/Mxby04+cwh/IHz+QMMf5CA</latexit>

yyy⇤
<latexit sha1_base64="Wtt9s3YXXOeLs27BHa4kJ46A93Y=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRZBPJTdKuix6MVjBfuB7VqyabYNTbJLkhXK0n/hxYMiXv033vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWjpKFKFNEvFIdQKsKWeSNg0znHZiRbEIOG0H45vMbz9RpVkk780kpr7AQ8lCRrCx0kMvFkE6mT6elfrlilt1Z0DLxMtJBXI0+uWv3iAiiaDSEI617npubPwUK8MIp9NSL9E0xmSMh7RrqcSCaj+dXTxFJ1YZoDBStqRBM/X3RIqF1hMR2E6BzUgvepn4n9dNTHjlp0zGiaGSzBeFCUcmQtn7aMAUJYZPLMFEMXsrIiOsMDE2pCwEb/HlZdKqVb3zau3uolK/zuMowhEcwyl4cAl1uIUGNIGAhGd4hTdHOy/Ou/Mxby04+cwh/IHz+QMMf5CA</latexit>

Apply Deletion
Apply Insertion

Figure 2: The data-flow of learning.

2. Learning to Insert: similar to the deletion step, we apply a mixture of the deletion output and
a random word dropping sequence of the round-truth, inspired by recent advances of training
masked language model (Devlin et al., 2018). We use random dropping as a form of noise injection
to encourage more exploration. Let β ∈ [0, 1] and u ∼ Uniform[0, 1],

dπ̃ins = {E
(
y0,d∗

)
, d∗ ∼ π∗ if u < β else E

(
y∗, d̃

)
, d̃ ∼ πRND} (7)

Expert Policy It is crucial to construct an expert policy in imitation learning which cannot be too
hard or too weak to learn from. Specifically, we considered two types of experts:

1. Oracle: One way is to build an oracle which accesses to the ground-truth sequence. It returns the
optimal actions a∗ (either oracle insertion p∗, t∗ or oracle deletion d∗) by:

a∗ = argmin
a
D(y∗, E(y,a)) (8)

Here, we use the Levenshtein distance (Levenshtein, 1965)2 as D considering it is possible to
obtain the action suggestions efficiently by dynamic programming.

2. Distillation: We also explore to use another teacher model to provide expert policy, which is
known as sequence-level knowledge distillation (Kim and Rush, 2016). This technique has been
widely used in previous approaches for nonauoregressive generation (Gu et al., 2018). More
precisely, we first train an autoregressive teacher model using the same datasets and then replace
the ground-truth sequence y∗ by the beam-search result of this teacher-model, yAR. We use the
same mechanism to find the suggested option as using the ground-truth oracle.

3.3 Inference

Greedy Decoding At inference time, we apply the trained model over the initial sequence y0 for
several iterations. We greedily pick up the actions associated with high probabilities in Eq. (3)(4)(5).
Moreover, we find that using search (instead of greedy decoding) or nosiy parallel decoding (Cho,
2016) does not yield much gain in LevT. This observation is quite opposite to what has been widely
discovered in autoregressive decoding. We hypothesize there may be two reasons leading to this
issue: (i) The local optimal point brought by greedy decoding in autoregressive models is often far
from the optimal point globally. Search techniques resolve this issue with tabularization. In our case,
however, because LevT inserts or deletes tokens dynamically, it could easily revoke the tokens that
are found sub-optimal and re-insert better ones; (ii) the log-probability of LevT is not a good metric
to select the best output. However, we do believe to see more improvements if we include an external
re-ranker, e.g. an autoregressive teacher model. We leave this discussion in the future work.

Termination Condition The decoding stops when one of the following two conditions is fulfilled:

1. Looping: Generation is terminated if two consecutive refinement iterations return the same output
which can be (i) there are no words to delete or insert; (ii) the agent gets stuck in an infinite loop:
i.e. the insertion and deletion counter each other and keep looping.

2. Timeout: We further set a maximum number of iterations (timeout) to guarantee a constant-time
complexity in the worst case (Lee et al., 2018; Ghazvininejad et al., 2019).

Penalty for Empty Placeholders Similar to Stern et al. (2019), we add a penalty to insert “empty”
placeholder in decoding. Overly inserting “empty” placeholders may result in shorter output. A
penalty term γ ∈ [0, 3] is subtracted from the logits of 0 in Eq. (4).

2We only consider the variant which only computes insertion and deletion. No substitution is considered.

5

Table 1: Generation quality (BLEU ↑, ROUGE-1/2/L ↑) and latency (ms ↓) as well as the average
number of decoder iterations (IDEC) on the standard test sets for LevT and the autoregressive baseline
(with both greedy and beam-search outputs). We show the results of LevT trained from both oracle
and the autoregressive teacher model.

Dataset Metric Transformer Levenshtein Transformer
greedy beam4 oracle distillation

Quality ↑

Ro-En BLEU 31.67 32.30 33.02 33.26
En-De BLEU 26.89 27.17 25.20 27.27
En-Ja BLEU 42.86 43.68 42.36 43.17

Gigaword
ROUGE-1 37.31 37.87 36.14 37.40
ROUGE-2 18.10 18.92 17.14 18.33
ROUGE-L 34.65 35.13 34.34 34.51

Speed ↓
Ro-En Latency (ms) /IDEC 326 / 27.1 349 / 27.1 97 / 2.19 90 / 2.03
En-De Latency (ms) /IDEC 343 / 28.1 369 / 28.1 126 / 2.88 92 / 2.05
En-Ja Latency (ms) /IDEC 261 / 22.6 306 / 22.6 112 / 2.61 106 / 1.97
Gigaword Latency (ms) /IDEC 116 / 10.1 149 / 10.1 98 / 2.32 84 / 1.73

̂The ̂latter ̂coil ̂generated ̂2.2 T ̂in ̂liquid ̂helium . ̂஍ᘏ΄παϸ΅ ႖֛ϥϷγϭӾͽҋ҇ҋҭΨͭڊ͵ ̶

nothing to delete >>

>̂@>஍ᘏ@>΄@>႖֛@>႖֛@>ϥϷγϭ@>ϥϷγϭ@>ҋ҇ҋ@>ҋ҇ҋ@>ҭ@>�̶@
(iteration 1)

(iteration 2)
>̂@>஍ᘏ@>΄@>႖֛@>႖֛@>ϥϷγϭ@>ϥϷγϭ@>ҋ҇ҋ@>ҋ҇ҋ@>ҭ@>�̶@

>̂@>஍ᘏ@>΄@>παϸ@>΅@>႖֛@>ϥϷγϭ@>Ӿͽ@>ҋ҇ҋ@>ҭ@>咲ኞͭ͵@>�̶@

insert >>

delete >>

insert >>

nothing to delete, nothing to insert >> [Terminate]

Figure 3: An example of WAT’17 En-Ja translation with two decoder iterations by LevT. We present
the inserted tokens in purple and deleted tokens with red strikethrough

.

4 Experiments

We validate the efficiency, effectiveness, and flexibility of Levenshtein Transformer extensively across
three different tasks — machine translation (MT), text summarization (TS) and automatic post-editing
(APE) for machine translation, from both generation (§4.1) and refinement (§4.2) perspectives.

4.1 Sequence Generation

For the sequence generation perspective, we evaluate LevT model on MT and TS. As a special case,
sequence generation assumes empty y0 = <S></S> as input and no initial deletion is applied.

Data & Evaluation We use three diversified language pairs for MT experiments: WMT’16
Romanian-English (Ro-En)3, WMT’14 English-German (En-De)4 and WAT2017 Small-NMT
English-Japanese (En-Ja, Nakazawa et al., 2017)5. The TS experiments use preprocessed data
from the Annotated English Gigaword (Gigaword, Rush et al., 2015)6. We learn byte-pair encod-
ing (BPE, Sennrich et al., 2016) vocabulary on tokenized data. Detailed dataset statistics can be
found in the Appendix. For evaluation metrics, we use BLEU (Papineni et al., 2002) for MT and
ROUGE-1,2,L (Lin, 2004) for TS. Before computing the BLEU scores for Japanese output, we
always segment Japanese words using KyTea 7.

Models & Training We adopt the model architecture of Transformer base (Vaswani et al., 2017)
for the proposed LevT model and the autoregressive baseline. All the Transformer-based models are

3http://www.statmt.org/wmt16/translation-task.html
4http://www.statmt.org/wmt14/translation-task.html
5http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/snmt/index.html
6https://github.com/harvardnlp/sent-summary
7http://www.phontron.com/kytea/

6

http://www.statmt.org/wmt16/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/snmt/index.html
https://github.com/harvardnlp/sent-summary
http://www.phontron.com/kytea/

Table 2: Ablation study for Levenshtein Transformer on En-De (a) and Ro-En (b) translation tasks.

(a) Test BLEU for variant weight sharing. Baseline scores from Lee et al.
(IT, 2018), Ghazvininejad et al. (MaskT, 2019) are included for reference.

sharing none plh, ins ins, del all IT MaskT

oracle − 25.50 − 25.20 − −
distill 25.11 27.73 24.90 27.27 21.61 26.56

(b) Test BLEU and deletion loss
with variant roll-in polices.

roll-in BLEU NLL(del)

Ours 33.02 ≈ 0.202
DAE 31.78 ≈ 0.037

0 20 40 60 80 100 120
sentence length

0

2

4

6

8

10

12

nu
m

be
r o

f i
te

ra
tio

ns

LevT Translation
Logarithm Time
Linear Time
Constant Time (4)
Constant Time (10)

(a) Average number of refinement iterations v.s. length measured
on monolingual corpus. For most of the time, LevT decodes with
much smaller number (generally, 1∼4) of iterations.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x speed-up

31.6

31.8

32.0

32.2

32.4

32.6

32.8

33.0

x
BL

EU
 sc

or
es

LevT(2-2)

LevT(6-6)

LevT(1-1)
LevT(3-1)

AT (beam4)

AT (greedy)

(b) BLEU v.s. speed-up for LevT across
variant early-exits and the autoregressive
baselines on the test set of Ro-En.

Figure 4: Plots showing the decoding efficiency of the proposed Levenshtein Transformer.

trained on 8 Nvidia Volta GPUs with maximum 300K steps and a total batch-size of around 65, 536
tokens per step (We leave more details to the Appendix).

Overall results We present our main results on the generation quality and decoding speed in
Table 1. We measure the speed by the averaged generation latency of generating one sequence at a
time on single Nvidia V100 GPU. To remove the implementation bias, we also present the number of
decoder iterations as a reference. It can be concluded that for both MT and summarization tasks, our
proposed LevT achieves comparable and sometimes better generation quality compared to the strong
autoregressive baseline, while LevT is much more efficient at decoding. A translation example is
shown in Figure 3 and we leave more in Appendix. We conjecture that this is due to that the output
of the teacher model possesses fewer modes and much less noisy than the real data. Consequently,
LevT needs less number of iterations to converge to this expert policy.

Ablation on Efficiency As shown in Figure 4a, we plot the average number of iterations over
the length of input over a monolingual corpus. LevT learns to properly adjust the decoding time
accordingly. We also explore the variants of “early exit” where we denote LevT(m-n) as a model with
m and n blocks for deletion (Eq. (3)) and placeholder prediction (Eq. (4)) respectively. Figure 4b
shows that although it compromises the quality a bit, our model with early exit achieves up to ×5
speed-up (execution time) comparing against a strong autoregressive Transformer using beam-search.

Ablation on Weight Sharing We also evaluate LevT with different weight sharing as noted in
§3.1. The results of models trained with oracle or distillation are listed in Table 2a. We observe that
weight-sharing is beneficial especially between the two insertion operations (placeholder and token
classifiers). Also, it shows another +0.5 BLEU improvement by not sharing the deletion operation
with insertion compared to the default setting, which may indicate that insertion and deletion capture
complementary information, requiring larger capacity by learning them separately.

Importance of mixture roll-in policy We perform an ablation study on the learning algorithm.
Specifically, we train a model with no mixing of the πθ in Equation (6). We name this experiment
by DAE due to its resemblance to a denoising autoencoder. We follow closely a standard pipeline
established by Lee et al. (2018). Table 2b shows this comparison. As we can see that the deletion loss

7

Table 3: Performance (BLEU ↑ / case-sensitive TER ↓) comparison on APE. “do nothing” represents
the results of the original MT system output; the autoregressive model uses beam-size 4. For the
proposed LevT, we use “scratch” to denote training from scratch on the APE triple data, and use
“zero-shot” to denote applying an MT pre-trained LevT model directly for post-editing tasks. The
same model can be further fine-tuned. All scores with underlines are from the model trained with an
autoregressive teacher model (distillation) as the expert policy.

Dataset MT Do-Nothing Transformer Levenshtein Transformer
system Scratch Zero-shot Fine-tune

Synthetic
Ro-En PBMT 27.5 / 52.6 28.9 / 52.8 29.1 / 50.4 30.1 / 51.7 −

NMT 26.2 / 56.5 26.9 / 55.6 28.3 / 53.6 28.0 / 55.8 −
En-De PBMT 15.4 / 69.4 22.8 / 61.0 25.8 / 56.6 16.5 / 69.6 −
En-Ja NMT 37.7 / 48.0 41.0 / 44.9 42.2 / 44.3 39.4 / 47.5 −

Real En-De PBMT 62.5 / 24.5 67.2 / 22.1 66.9 / 21.9 59.6 / 28.7 70.1 / 19.2

1 2 3 4 5 6
Maximum Iterations

20

25

30

35

40

45

50

BL
EU

 sc
or

es

Non-Autoregressive

LevT
LevT + oracle (D)
LevT + oracle (D, P)
Transformer (beam4)

(a) Test set BLEU scores for WMT Ro-En

0 1 2 3 4 5 6
Maximum Iterations

5

10

15

20

25

30

Tr
an

sla
tio

n
Er

ro
r R

at
e

(T
ER

)

MT Output

LevT
LevT + oracle (D)
LevT + oracle (D, P)
Transformer (beam4)

(b) Test set TER scores for Real APE En-De

Figure 5: MT & PE Performance v.s. Timeout iterations w/o oracle instructions.

from DAE is much smaller while the generation BLEU score is inferior. We conjecture that this is
caused by the mismatch between the states from the model and the roll-in policy in training the DAE.

v.s. Exiting Refinement-based Models Table 2a also includes results from two relevant recent
works which also incorporate iterative refinement in non-autoregressive sequence generation. For fair
comparison, we use the result with length beam 1 from Ghazvininejad et al. (2019). Although both
approaches use similar “denosing” objectives to train the refinement process, our model explicitly
learns “insertion” and “deletion” in a dual-policy learning fashion, and outperforms both models.

4.2 Sequence Refinement

We evaluate LevT’s capability of refining sequence outputs on the APE task. In this setting, inputs
are pairs of the source sequence and a black-box MT system generation. The ground-truth outputs
are from real human edits with expansion using synthetic data.

Dataset We follow a normal protocol in the synthetic APE experiments (Grangier and Auli, 2017):
we first train the input MT system on half of the dataset. Then we will train a refinement model on
the other half based on the output produced by the MT model trained in the previous phase. For the
real APE tasks, we use the data from WMT17 Automatic Post-Editing Shared Task8 on En-De. It
contains both real PE triples and a large-scale synthetic corpus.

Models & Evaluation The baseline model is a standard Transformer encoding the concatenation
of the source and the MT system’s output. For the MT system here, we want some imperfect systems
that need to be refined. We consider a statistical phrase-based MT system (PBMT, Koehn et al., 2003)
and an RNN-based NMT system (Bahdanau et al., 2015). Apart from BLEU scores, we additionally
apply translation error rate (TER, Snover et al., 2006) as it is widely used in the APE literature.

8http://www.statmt.org/wmt17/ape-task.html

8

http://www.statmt.org/wmt17/ape-task.html

Overall results We show the major comparison in Table 3. When training from scratch, LevT
consistently improves the performance of the input MT system (either PBMT or NMT). It also
achieves better performance than the autoregressive Transformer in most of the cases.

Pre-training on MT Thanks to the generality of the LevT model, we show it is feasible to directly
apply the LevT model trained by generation onto refinement tasks — in this case — MT and APE.
We name this a “zero-shot post-editing” setting. According to Table 3, the pre-trained MT models are
always capable of improving the initial MT input in the synthetic tasks.

The real APE task, however, differs quite a bit from the synthetic tasks because human translators
normally only fix a few spotted errors. This ends up with very high BLEU scores even for the
“Do-nothing” column. However, the pre-trained MT model achieves the best results by fine-tuning on
the PE data indicating that LevT is able to leverage the knowledge for generation and refinement.

Collaborate with Oracle Thanks to the saperation of insertion and deletion operations, LevT has
better interpretability and controllability. For example, we test the ability that LevT adapts oracle (e.g.
human translators) instructions. As shown in Figure 5, both MT and PE tasks have huge improvement
if every step the oracle deletion is given. This goes even further if the oracle provides both the correct
deletion and the number of placehoders to insert. It also sheds some light upon computer-assisted
text editing for human translators.

5 Related Work

Non-Autoregressive and Non-Monotonic Decoding Breaking the autoregressive constraints and
monotonic (left-to-right) decoding order in classic neural sequence generation systems has recently
attracted much interest. Stern et al. (2018); Wang et al. (2018) designed partially parallel decoding
schemes to output multiple tokens at each step. Gu et al. (2018) proposed a non-autoregressive
framework using discrete latent variables, which was later adopted in Lee et al. (2018) as iterative
refinement process. Ghazvininejad et al. (2019) introduced the masked language modeling objective
from BERT (Devlin et al., 2018) to non-autoregressively predict and refine translations. Welleck et al.
(2019); Stern et al. (2019); Gu et al. (2019) generate translations non-monotonically by adding words
to the left or right of previous ones or by inserting words in arbitrary order to form a sequence.

Editing-Based Models Several prior works have explored incorporating “editing” operations for
sequence generation tasks. For instance, Novak et al. (2016) predict and apply token substitutions
iteratively on phase-based MT system outputs using convolutional neural network. QuickEdit (Grang-
ier and Auli, 2017) and deliberation network (Xia et al., 2017) both consist of two autoregressive
decoders where the second decoder refines the translation generated by the first decoder. Guu et al.
(2018) propose a neural editor which learned language modeling by first retrieving a prototype and
then editing over that. Freitag et al. (2019) correct patterned errors in MT system outputs using
transformer models trained on monolingual data. Additionally, the use of Levenshtein distance with
dynamic programming as the oracle policy were also proposed in Sabour et al. (2018); Dong et al.
(2019). Different from these work, the proposed model learns a non-autoregressive model which
simultaneously inserts and deletes multiple tokens iteratively.

6 Conclusion

We propose Levenshtein Transformer, a neural sequence generation model based on insertion and
deletion. The resulted model achieves performance and decoding efficiency, and embraces sequence
generation to refinement in one model. The insertion and deletion operations are arguably more
similar to how human writes or edits text. For future work, it is potential to extend this model to
human-in-the-loop generation.

Acknowledgement

We would like to thank Kyunghyun Cho, Marc’Aurelio Ranzato, Douwe Kiela, Qi Liu and our
colleagues at Facebook AI Research for valuable feedback, discussions and technical assistance.

9

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly

learning to align and translate. In 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Kyunghyun Cho. 2016. Noisy parallel approximate decoding for conditional recurrent language
model. arXiv preprint arXiv:1605.03835.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and Jackie Chi Kit Cheung. 2019. Editnts: An neural
programmer-interpreter model for sentence simplification through explicit editing. arXiv preprint
arXiv:1906.08104.

Markus Freitag, Isaac Caswell, and Scott Roy. 2019. Text repair model for neural machine translation.
arXiv preprint arXiv:1904.04790.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. 2019. Constant-time machine
translation with conditional masked language models. CoRR, abs/1904.09324.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680.

David Grangier and Michael Auli. 2017. Quickedit: Editing text & translations by crossing words
out. arXiv preprint arXiv:1711.04805.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. 2018. Non-
autoregressive neural machine translation. In 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, Canada, April 30-May 3, 2018, Conference Track Proceedings.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019. Insertion-based decoding with automatically inferred
generation order. arXiv preprint arXiv:1902.01370.

Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. 2018. Generating sentences by
editing prototypes. Transactions of the Association of Computational Linguistics, 6:437–450.

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob Uszkoreit, and Noam
Shazeer. 2018. Fast decoding in sequence models using discrete latent variables. In International
Conference on Machine Learning, pages 2395–2404.

Yoon Kim and Alexander Rush. 2016. Sequence-level knowledge distillation. In EMNLP.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation.
In Proceedings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology-Volume 1, pages 48–54. Association
for Computational Linguistics.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. 2018. Deterministic non-autoregressive neural
sequence modeling by iterative refinement. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018,
pages 1173–1182.

Vladimir Iosifovich Levenshtein. 1965. Binary codes capable of correcting deletions, insertions, and
reversals. In Doklady Akademii Nauk, volume 163, pages 845–848. Russian Academy of Sciences.

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Text Summa-
rization Branches Out: Proceedings of the ACL-04 Workshop, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Toshiaki Nakazawa, Shohei Higashiyama, Chenchen Ding, Hideya Mino, Isao Goto, Hideto Kazawa,
Yusuke Oda, Graham Neubig, and Sadao Kurohashi. 2017. Overview of the 4th workshop on
Asian translation. In Proceedings of the 4th Workshop on Asian Translation (WAT2017), pages
1–54, Taipei, Taiwan. Asian Federation of Natural Language Processing.

10

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1904.09324
http://arxiv.org/abs/1904.09324
https://aclanthology.info/papers/D18-1149/d18-1149
https://aclanthology.info/papers/D18-1149/d18-1149
https://www.aclweb.org/anthology/W17-5701
https://www.aclweb.org/anthology/W17-5701

Roman Novak, Michael Auli, and David Grangier. 2016. Iterative refinement for machine translation.
arXiv preprint arXiv:1610.06602.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, pages 311–318. Association for Computational Linguistics.

Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstrac-
tive sentence summarization. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 379–389, Lisbon, Portugal. Association for Computational
Linguistics.

Sara Sabour, William Chan, and Mohammad Norouzi. 2018. Optimal completion distillation for
sequence learning. arXiv preprint arXiv:1810.01398.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for
Computational Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. 2006. A
study of translation edit rate with targeted human annotation. In In Proceedings of Association for
Machine Translation in the Americas, pages 223–231.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. 2019. Insertion transformer:
Flexible sequence generation via insertion operations. arXiv preprint arXiv:1902.03249.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. 2018. Blockwise parallel decoding for deep
autoregressive models. In Advances in Neural Information Processing Systems, pages 10107–
10116.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS).

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018. Semi-autoregressive neural machine translation.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 479–488, Brussels, Belgium. Association for Computational Linguistics.

Sean Welleck, Kianté Brantley, Hal Daumé III, and Kyunghyun Cho. 2019. Non-monotonic sequential
text generation. arXiv preprint arXiv:1902.02192.

Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin, Nenghai Yu, and Tie-Yan Liu. 2017. Delibera-
tion networks: Sequence generation beyond one-pass decoding. In Advances in Neural Information
Processing Systems, pages 1784–1794.

11

https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/D18-1044

	Introduction
	Problem Formulation
	Sequence Generation and Refinement
	Actions: Deletion & Insertion

	Levenshtein Transformer
	Model
	Dual-policy Learning
	Inference

	Experiments
	Sequence Generation
	Sequence Refinement

	Related Work
	Conclusion

