
We thank all reviewers for their valuable feedback and appreciating our technical contributions. We first address some1

common concerns.2

-More discussion on experimental results:3

• First, we discuss more about the relation between GNTKs and GNNs. In Section 5.2, through ablation studies, we4

aimed to verify 1) whether performance of GNNs is similar to GNTKs and 2) whether various techniques used for5

improving performance of GNNs are transferable to GNTKs. For example, in Figure 2, while the observation that6

GNNs with more layers perform better on bioinformatics data is not new, we observed the same trend for GNTKs. In7

Figure 3, we also show that jumping knowledge, which has been shown to be effective in GNNs, is also effective in8

GNTKs. We will elaborate more on these connections in the final version.9

• Second, Reviewer #2 raised a great point about computational complexity. Indeed, running GNTK is much faster10

than running GNN. On IMDB-B dataset, running GIN with the default setup (official implementation of [26]) takes 1911

minutes on a TITAN X GPU and running GNTK only takes 2 minutes. We will add more details.12

-Reproducibility: We will open-source our code and datasets. We mistakenly chose “not applicable” for this question in13

Reproducibility Response.14

To Reviewer #1:15

-Graph convolutional layer: Our paper does contain a graph (spatial) convolutional layer which we call the aggregation16

step (
∑

v∈N (u)∪{u} h
(`−1)
v). See line 89, 96 for GNNs and line 148 for GNTKs. We will clarify this more explicitly.17

-Lemma 4.2/4.3, conditions on line 193: The aim of our theoretical analysis is to characterize the function class which18

can be efficiently learned by GNTK. This is a standard type of results in learning theory. The sample complexity19

depends on α, the coefficient of polynomials, and the norm of β. This kind of dependency is standard in learning20

polynomials and functions that can be expressed as summation of polynomials with fast decaying coefficients. If α21

or the norm of β is large, we do need more samples. See [1] and references therein. The tightness of the bound is an22

open problem. In general, it is impossible to verify these conditions on real datasets, as this is a quantity related to the23

underlying function which we cannot observe. Nevertheless, empirically we use simulations to show the applicability24

of these theoretical results, as given in Fig. 1. We will include these simulation results in the paper.

100 300 500 700 900
Number of samples

10 3

10 2

10 1

Te
st

in
g

lo
ss

(a) ` = 1.

100 300 500 700 900
Number of samples

10 3

10 2

Te
st

in
g

lo
ss

(b) ` = 2.

100 300 500 700 900
Number of samples

10 6

10 5

10 4

Te
st

in
g

lo
ss

(c) ` = 4.
Figure 1: We perform simulations using 1000 graphs in the IMDB-B dataset. For each graph, we generate the label according
to y =

∑
u∈V (h̄>

u β)` for ` ∈ {1, 2, 4}, where we sample β from the uniform distribution over the unit ball (cf. Eq. (4) in our
submission). By construction, these functions satisfy the condition in line 193. We use 100 samples for testing and use 100, 300,
500, 700 or 900 remaining samples for training. We repeat each simulation for 100 times and report the testing loss.25

-Theorem 4.1: This is a classical result for kernel regression. The high-level idea is to use Rademacher complexity to26

bound the difference between empirical loss and population loss, and use y>Θ−1y · tr(Θ) to bound the Rademacher27

complexity. The whole proof is given in [3] and we will provide a short outline in the final version.28

To Reviewer #2:29

-Statistical test: We will add a statistical test in the final version. Thanks for the suggestion.30

-Line 118 / typos / missing conclusions: We will fix them accordingly. Thanks for pointing out.31

To Reviewer #3:32

-Eq. (2): For the BLOCK operation with R = 2, we first apply the aggregation operation to gather local information,33

and then apply a two-layer MLP to create non-linearity. We will clarify this in the final version.34

-Experimental details: For experiments, we use the same setup as in [26]. We have provided some descriptions of the35

experimental setup in Section B. We will add more detailed description in the final version.36

-Too many parameters: GNTK do have some hyper-parameters. However, note that GNTK has strictly smaller number37

of hyper-parameters than GNN since we do not need to tune the learning rate, momentum, weight decay, batch size and38

the width of the MLP layers for GNTK. Furthermore, we found on bioinformatics datasets, we got consistently good39

results by setting the number of BLOCK operations to be 10, the number of MLP layers to be 1 and cu to be 1/|N (u)|.40

We get 75.3% accuracy on PROTEINS, 67.9% on PTC, 83.6% on NCI1. For social network datasets, by setting the41

number of BLOCK operations to be 2, the number of MLP layers to be 2 and cu to be 1, we get 76.7% accuracy on42

IMDB-B, 52.8% on IMDB-M, and 83.3% on COLLAB. We will discuss this point in the final version.43

