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Abstract

The emergence of XNOR networks seek to reduce the model size and compu-
tational cost of neural networks for their deployment on specialized hardware
requiring real-time processes with limited hardware resources. In XNOR networks,
both weights and activations are binary, bringing great benefits to specialized
hardware by replacing expensive multiplications with simple XNOR operations.
Although XNOR convolutional and fully-connected neural networks have been
successfully developed during the past few years, there is no XNOR network
implementing commonly-used variants of recurrent neural networks such as long
short-term memories (LSTMs). The main computational core of LSTMs involves
vector-matrix multiplications followed by a set of non-linear functions and element-
wise multiplications to obtain the gate activations and state vectors, respectively.
Several previous attempts on quantization of LSTMs only focused on quantization
of the vector-matrix multiplications in LSTMs while retaining the element-wise
multiplications in full precision. In this paper, we propose a method that converts
all the multiplications in LSTMs to XNOR operations using stochastic computing.
To this end, we introduce a weighted finite-state machine and its synthesis method
to approximate the non-linear functions used in LSTMs on stochastic bit streams.
Experimental results show that the proposed XNOR LSTMs reduce the compu-
tational complexity of their quantized counterparts by a factor of 86x without
any sacrifice on latency while achieving a better accuracy across various temporal
tasks.

1 Introduction

Recurrent neural networks (RNNs) have exhibited state-of-the-art performance across different
temporal tasks that require processing variable-length sequences such as image captioning [[1], speech
recognition [2]] and natural language processing [3]. Despite the remarkable success of RNNs on a
wide range of complex sequential problems, they suffer from the exploding gradient problem that
occurs when learning long-term dependencies [4} 5]]. Therefore, various RNN architectures such
as long short-term memories (LSTMs) [6] and gated recurrent units (GRUSs) [7]] have emerged to
mitigate the exploding gradient problem. Due to the prevalent use of LSTMs in both academia and
industry, we mainly focus on the LSTM architecture in this work. The recurrent transition in LSTM is
performed in two stages: the first stage performing gate computations and the second one performing
state computations. The gate computations are described as

fi = o (Werhio1 + Weoxe +by), iy = o(Wirhy 1 + Wigxy +by),
0 = U(Wohhtfl + Wo:z:Xt + bo)v gt = taﬂnh(vvghhtfl + Wgzxt + bg)a (l)

where {th, W.n, Won, Wgh} S Rdthh, {Wfr, Wie, Woz, ng} € R xdn and {bf, b;, b,
b,} € R denote the recurrent weights and bias. The input vector x € R% denotes input temporal
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features whereas the hidden state h € R% retains the temporal state of the network. The logistic
sigmoid and hyperbolic tangent functions are denoted as ¢ and tanh, respectively. The updates of
the LSTM parameters are regulated through a set of gates: f;, i;, 0; and g,. The state computations
are then performed as

¢, =f ®c_1 +i; ®g;, hy = 0, ® tanh(cy), 2
where the parameter ¢ € R is the cell state. The operator @ denotes the Hadamard product.

The first computational stage of LSTM is structurally similar to a fully-connected layer as it only
involves several vector-matrix multiplications. Therefore, LSTMs are memory intensive similar to
fully-connected layers [[8]]. LSTMs are also computationally intensive due to their recursive nature
[O]. These limitations make LSTM models difficult to deploy on specialized hardware requiring
real-time processes with inferior hardware resources and power budget. Several techniques have
been introduced in literature to alleviate the computational complexity and memory footprint of
neural networks such as low-rank approximation [[10], weight/activation pruning [[11} 12} [13}[14] and
quantization [15} [16L [17]. Among these solutions, quantization methods specifically binarization
methods bring significant benefits to dedicated hardware since they reduce the required memory
footprint and implementation cost by constrainting both weights and activations to only two values
(i.e., -1 or 1) and replacing multiplications with simple XNOR operations, respectively [[17]. As a
result, several attempts were reported in literature to binarize LSTM models during the past few years
[LL8L [19L 20]. However, all the existing methods only focused on the gate computations of LSTMs
by binarizing either the weights or both the weights and the hidden vector h while retaining the
state computations in full precision (FP). Although the recurrent computations of LSTM models
are dominated by the gate computations, using full-precision multipliers are inevitable for the state
computations when designing dedicated hardware for LSTM models, making the existing binarized
LSTM models unsuitable for embedded systems with limited hardware resources and tight power
budget. It is worth mentioning that a full-precision multiplier requires 200x more Xilinx FPGA slices
than an XNOR gate [[17]. Therefore, an XNOR-LSTM model that can perform the multiplications of
both the gate and the state computations using XNOR operations is missing in literature.

In this paper, we first extend an existing LSTM model with binary weights to binarize the hidden
state vector h. In this way, the multiplications of the gate computations can be performed using
XNOR operations. We then propose a method to binarize the state computations using stochastic
computing (SC) [21]. More precisely, we show that the binarized weights and the hidden state vector
h can be represented as stochastic bit streams, allowing us to perform the gate computations using
stochastic logic and to implement the non-linear activation functions (i.e., the sigmoid and hyperbolic
tangent functions) using finite-state machines (FSMs). We also introduce a new FSM topology and
its synthesis method to accurately approximate the nonlinear functions of LSTM. We show that the
proposed FSM outputs a binary stream that its expected value is an approximation to the nonlinear
activation functions of LSTMs. Ultimately, we use the binary streams generated by the FSMs to
replace the full-precision multipliers required for the state computations with XNOR gates, forming
an XNOR-LSTM model.

2 Related Work

In the binarization process, the full-precision weight matrix W € R% * %7 i estimated using a binary

weight matrix W® € {—1,1}% %% and a scaling factor « € R* such that W ~ aW"’. In [T3],
the sign function was used as the transformation function to obtain the binary weight matrix (i.e.,
W’ = sign(W)) while using a fixed scaling factor for all the weights. Lin ez al. [22]] introduced
a ternarization method to reduce the accuracy loss of the binarization process by clamping values
hesitating to be either 1 or -1 to zero. Some methods [23} 24] were then proposed to improve upon
the ternarization method by learning the scaling factor a.. Zhou et al. [25] proposed a method that
quantizes weights, activations and gradients of neural networks using different bitwidths. Rastegari
et al. [16] and Lin et al. [17] proposed binary neural networks (BNNs) in which both weights and
activations of convolutional neural networks (CNNs) are represented in binary. Despite the great
performance of the aforementioned works in quantization of CNNs, they fail to work well on RNNs
[26]. As a result, recent studies mainly attempted to quantize RNNs in particular LSTMs.

Hou et al. [19] introduced the loss-aware binarization method (LAB) that uses the proximal Newton
algorithm to minimize the loss w.r.t the binarizied weights. The LAB method was further extended
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Figure 1: Stochastic multiplications using bit-wise operations in (a) unipolar and (b) bipolar formats.

in [27] to support different bitwidths for the weights. Both of these methods were tested on LSTM
models performing character-level language modeling experiments. Xu ef al. [18] presented the
alternating multi-bit quantization (AMQ) method that uses a binary search tree to obtain optimal
quantization coefficients for LSTM models. Wang et al. [26] proposed a ternary RNN, called
HitNet, which exploits a hybrid of different quantization methods to quantize the weights and the
hidden state vector based on their statistical characteristics. Both HitNet and alternating multi-
bit quantization method were tested on RNNs performing word-language modeling experiments.
Recently, Ardakani et al. [20] leveraged batch normalization in both the input-to-hidden and the
hidden-to-hidden transformations of LSTMs to binarize/ternarize the recurrent weights. This method
was tested on various sequential tasks, such as sequence classification, language modeling, and
reading comprehension. While all the aforementioned approaches successfully managed to quantize
the weights and the hidden state vector (i.e., the gate computations) of LSTM models, the state
computations were retained in full precision. More precisely, no attempt was reported to binarize
both the gate and state computations of LSTMs. Motivated by this observation, we propose the
first XNOR-LSTM model in literature, performing all the recurrent multiplications with XNOR
operations.

3 Preliminaries

3.1 Stochastic Computing

Stochastic computing is a well-known technique to obtain ultra low-cost hardware implementations
for various applications [28]]. In SC, continuous values are represented as sequences of random bits,
allowing complex computations to be computed by simple bit-wise operations on the bit streams.
More precisely, the statistics of the bits determine the information content of the stream. For example,
areal number a € [0, 1] is represented as the sequence a € {0, 1}! in SC’s unipolar format such that

Efa] = q, 3)

where E[a] and [ denote the expected value of the Bernoulli random vector a and the length of the
sequence, respectively. Another well-known SC’s representation format is the bipolar format where
a € [—1,1] is represented as

Ela] = (a +1)/2. (G))

To represent any real number using these two formats, we need to scale it down to fit within the
appropriate interval (i.e., either [0, 1] or [—1, 1]). It is worth mentioning that the stochastic stream a
is generated using a linear feedback shift register (LFSR) and a comparator in custom hardware [28],
referred to as stochastic number generator (SNG).

3.1.1 Multiplication and Addition in SC
Multiplication of two stochastic streams of a and b in the unipolar format is performed as
y—a-b, 5)

where “-” denotes the bit-wise AND operation, E[y] = E[a] x E[b] if and only if the input stochastic
streams (i.e, a and b) are independent. However, this multiplication in the bipolar format is computed
using an XNOR gate as

y=aob, (6)

where “©” denotes the bit-wise XNOR operation. Similarly, if the input sequences are independent,
we have
2xE[y]-1=(2xE}a]—1) x (2xE[b]—1). (7)
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Figure 2: State transition diagram of the FSM implementing tanh where a; and y; denote the j™ entry
of the input stream a € {0, 1} and the output stream y € 0, 1! for j € {1,2,...,1}, respectively.

Figure [T shows an example of a multiplication in stochastic domain using both the unipolar and
bipolar formats. Since stochastic numbers are represented as probabilities falling into the interval
of [0, 1] in the unipolar format, additions in SC are performed using the scaled adder that fits the
result of the addition into the [0, 1] interval [28]]. Additions of two stochastic streams of a and b is
computed by

y=a-c+b-(1—c), (8)

where the signal ¢ is a stochastic stream with a probability of 0.5 (i.e., E[¢c] = 0.5). The scaled
adder is implemented using a multiplexer in which the stream c is used as its selector signal. The
aforementioned discussion on the stochastic addition also holds true for the bipolar format.

3.1.2 FSM-Based Functions in SC

In SC, non-linear functions such as the hyperbolic tangent, sigmoid and exponentiation functions can
be performed on stochastic bit streams using FSMs [29]. An FSM in SC can be viewed as a saturating
counter that does not increment beyond its maximum value or decrement below its minimum value.
For example, the FSM-based transfer function “Stanh” that approximates the hyperbolic tangent
function is constructed such that

tanh (%) ~ 2 x E[Stanh(n,a)] — 1, )

where n denotes the number of states in the FSM. Figure [] illustrates the state transition of the
FSM-based transfer function approximating the hyperbolic tangent function when using a set of
states Cy — C,,_1. Since the sigmoid function is obtained from the hyperbolic tangent functions, the
transfer function Stanh is also used to approximate the sigmoid function, that is,

na
14 tanh [ —
o(na) = 2(2) ~ E[Stanh(n, a)]. (10)

3.2 Integral Stochastic Computing

In integral stochastic computing (ISC), a real value s € [0, m] in the unipolar format (or s € [—m, m)|
in the bipolar format) is represented as a sequence of integer numbers [30]]. In this way, each element
of the sequence s € {0, 1,...,m} in the unipolar format (or s € {—m, —m + 1,...,m}! in the
bipolar format) is represented using the two’s complement format, where ! denotes the length of the
stochastic stream. The integral stochastic stream s is obtained by the element-wise additions of m
binary stochastic streams as follows

s=> aj, (11)

where the expected value of each binary stochastic stream, denoted as a;, is equal to s/m. With this

definition, we have
m m

Ely =Y Elaj] =) —=s. (12)

Jj=1 Jj=1

For instance, the element-wise addition of two binary stochastic streams, {0,1,1,1,1,0,1,1} and
{0,1,1,1,0,1, 1, 1}, each representing the real value of 0.75, results in the integral stochastic stream



of {0,2,2,2,1,1, 2,2} representing the real value of 1.5 for m = 2 and [ = 8. We hereafter refer to
the integral stochastic number generator function as ISNG.

Additions in ISC are performed using the conventional binary-radix adders, retaining all the input
information as opposed to the scaled adders that decrease the precision of the output streams [30].
Multiplications are also implemented using the binary-radix multiplier in ISC. The main advantage of
ISC lies in its FSM-based functions that take integral stochastic streams and output binary stochastic
streams, allowing the rest of computations to be performed with simple bit-wise operations in binary
SC. The approximate transfer function of hyperbolic tangent and sigmoid, which is referred to as
IStanh, is defined as

tanh (%) ~ 2 x E[IStanh(n x m,s)] — 1, (13)
o(ns) ~ E[IStanh(n x m,s)]. (14)
The IStanh outputs zero when the state counter is less than n x m/2, otherwise it outputs one.
Considering k; as an entry of the state counter vector k € {0,1, ... ,m} and y; as an entry of the
IStanh’s output vector y € {0, 1}, we have
0, kj <(nxm/2)
- 15
/ {1, otherwise ’ (15)

where j € {1,...,1}. As opposed to the FSM-based functions in binary SC in which the state counter
is incremented or decremented only by 1, the state counter of the FSM-based functions in ISC is
increased or decreased according to the integer input value. In fact, the maximum possible transition
at each time slot is equal to m in ISC. Moreover, the FSM-based functions in ISC require m times
more states than the ones in SC. Despite the complexity of the FSM-based functions in ISC, they are
more accurate than their counterparts in SC [30].

4 Synthesis of XNOR RNNs

4.1 Binarization of the Hidden State

In [20], the recurrent weights of LSTMs and GRUs were binarized using batch normalization in
both the input-to-hidden and hidden-to-hidden transformations. More specifically, the recurrent
computations of gate f; is performed as

f,—o (BN(W’;hht,l; 6 11,0) + BN(WS,x,; 67, 0) + bf) : (16)

where Wl} 5 and Wl]’cI are the binarized weights obtained by sampling from the Bernoulli distribution
as follows '

W’ = 2 x Bernoulli(P(W = 1)) — 1. (17
BN also denotes the batch normalization transfer function such that
u—E(u)

BN(u;6,7) =7+ ¢ ® (18)

VV(u)+e€
where u is the unnormalized vector and V(u) denotes its variance. The model parameters v and ¢
determine the mean and variance of the normalized vector. The rest of the gate computations (i.e.,
i, 0; and g,) are binarized in a similar fashion. So far, we have reviewed the method introduced in
[20] to binarize the recurrent weights. We now extend this method to also binarize the hidden state
vector h. To this end, we use the sign function. However, the derivative of the sign function is zero
during backpropagation, making the gradients of the loss w.r.t the parameters before the quantization
function to be zero [[17]]. To address this issue, we estimate the derivative of the sign function as

dsign(h) (1, |h| <1
oh |0, otherwise’

similar to [17]. In this way, the gradient’s information are preserved. Training LSTMs with this
method allows us to perform the matrix-vector multiplications of the gate computations using XNOR
operations. We use the extended LSTM (ELSTM) with binary weights and the state hidden vector as
our baseline for the rest of this paper.

19)



4.2 Stochastic Representation of Gate Computations

Let us only consider the recurrent computations for a single neuron of a baseline’s gate as
y:athZ@hj—l-oszwixmj—kb, (20)

where wy,, w,, h and x are the element entries of the hidden-to-hidden weight vector w;, € {—1, 1}dh s
the input-to-hidden weight vector w,, € {—1,1}%, the hidden vector h € {—1,1}%" and the input
vector x € R% , respectively. The bias is denoted as b € R. The parameters aj, € R and o, € R
denote the scaling factors dictated by the binarization process. Note that the batch normalization
processes are considered in the parameters oy, a and b in Eq. (20). In most of the temporal
tasks, the input vector x is one-hot encoded, replacing the vector-vector multiplication of w,x with a
simple indexing operation implemented by a lookup table. As such, let us merge this vector-vector
multiplication into the bias as follows

dp,
y=oany w, O +b. Q1

j=1

Considering the linear property of the expected value operator, we can rewrite Eq. (ZI)) as follows

dn j i
oy X
y=> jahdhth + b= andyE[wy, © b + b= E[ady(w, ©h) + 8] =E[y].  (22)

Jj=1

So far, we have represented the output y € R as a sequence of real numbers (i.e., y € R%) where
each entry of the vector y is either apdy + b or —aydy, + b. Passing the vector y into the ISNG
function generates the integral stochastic stream y’“¢ such that

y = E[y] = EISNG(y)] = E[y"*“]. (23)

Note that the integer range of the integral stream is equal to [|apdy| + |b]]. For instance,
considering o, = 0.2, dp, = 10, b = 0.5 and wp, ®© h = {1,-1,1,1,1,-1,1,-1,-1,1},
yio¢ = {3,-2,2,3,2,—-1,3,—1,—2,2} is an integral stochastic representation of y =
{2.5,-1.5,2.5,2.5,2.5,—1.5,2.5,—1.5,—1.5, 2.5}, resulting in y = 0.9. To guarantee the stochas-
ticity of the sequence y/*C, we can permute the reading addresses of the memories storing the
weights and the hidden state vector h. Note that Eq. with the input vector z that is not one-hot
encoded can also be represented as a stochastic stream by equalizing vector lengths of d, and dj,.
Assuming that d;, > d, and d,, is a multiple of dp, this can simply obtained by repeating the input
vector (i.e., X) dy,/d, times as the mean of the repeated vector remains unchanged. Of course dj, is a
design parameter and can take any arbitrary value.

4.3 Weighted FSM-Based Function

So far, we have shown that the output of each neuron can be represented as an integral stochastic
stream, allowing us to perform the nonlinear functions using the FSM-based IStanh function. How-
ever, our experiments show that the IStanh function fails to resemble the hyperbolic tangent and
sigmoid functions (see Figures[3(a)]and [3(b)). We attribute this problem to the even distribution of
positive and negative integer elements in the vector y; g~ for both positive and negative values of y.
More precisely, the vector y; g~ contains almost the same number of positive and negative integer
entries since the expected value (i.e, the mean) of the vector w;, ® h is a small number. However,
integral stochastic streams representing positive and negative real values are more likely to have more
positive and negative entries, respectively. To address this issue, we propose a weighted FSM-based
function, referred to as WIStanh, in which each state is associated with a weight. In the weighted
FSM-based function, we use the same FSM that is used in the IStanh function. However, the output
is determined by sampling from the weights associated to the states as follows

L w1
y]F»SM = Bernoulli( 5 ), (24)
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Figure 3: The IStanh function approximating (a) tanh and (b) sigmoid functions. The WIStanh
function approximating (c) tanh and (d) sigmoid functions. The results were obtained by measuring
the output of a single neuron for 12K input samples taken from the test set of the Penn Treebank
dataset when performing character-level language modeling.

where wy,, k; and yJFSM are entries of the weight vector w € R™™, the state counter vector k €

{0,1,...,m x n — 1}9 and the WIStanh’s output vector y*™M € {0,1}% for j € {1,...,d,}. To
obtain the weights approximating the FSM as the tanh function, we use linear regression such that

mxn—1

tanh(y) = > pe, X wg, (25)
q=0

where pc, denotes the probability of the occurrence of the state C, (i.e., the ¢ state in the state
set of Cy — C,xm—1). The sigmoid function can also be obtained in a similar fashion. Note that
we constraint the weight values to lie into the interval of [—1,1]. Figures and show the
tanh and sigmoid functions implemented using the proposed WIStanh function where the FSM was
trained on the Penn Treebank dataset [31] when performing the character-language modeling task.
The early states of the trained FSM mainly contains values near to —1 in the bipolar format (or
zero in the unipolar format) whereas the weight values of the latter states are close 1 (see Figure[d),
complying with the state values of the conventional integral stochastic FSMs. Note that we fine tune
the weights of our baseline model (i.e., ELSTM) with the proposed stochastic functions to comply
with the approximation error.

44 XNORLSTM
Let us rewrite the gate computations of LSTMs using the proposed stochastic representation as
F; = WIStanh(ISNG(W',hy_; + W}, x, + by)),
I} = WIStanh(ISNG(W?, h?_| + W2 x; + b)),
O; = WIStanh(ISNG(W?, h® | + W? x, +b,)),
G; = WIStanh(ISNG(W?,h;_; + W._ x; + b)), (26)

where F; € {0,1}d»>dn 17 € {0,1}4» > OF € {0,1}% >4 and G; € {0, 1} >4 denote the
stochastic representation of the gate vectors (i.e., f;, i, 0; and g,) in which each entry of the vectors
is represented as a binary stochastic stream generated by the WIStanh function. More precisely, the
expected value of the gate matrices F}, I}, Of and G; over their second dimension is equal to the
gate vectors f, i;, 0, and g,, respectively. This stochastic representation of the gates allows us to
perform the Hadamard products of the state computations using XNOR operations. More precisely,
we can formulate the state computations as

C; = F; ©SNG(¢; 1) + I © G$, h, = S2B(0f ® WIStanh(C%)), ¢, = IS2B(C3),  (27)

where C; € {0,1,...,m/}4 > is an integral stochastic representation of the cell state vector
¢;. The SNG function generates a binary stochastic stream in the bipolar format (see Section [3.1)),
allowing us to replace the Hadamard products with XNOR operations. The S2B and IS2B functions
convert binary and integral stochastic streams into a real number. In other words, these two functions
find the expected value (i.e., the mean) of the stochastic streams by accumulating the stream entries
and dividing the accumulated value by the stream length [ = dj,. Of course setting the stream length
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Figure 5: The main computational core of (a) the gate computations and (b) the state computations of
the conventional binarized LSTM. The main computational core of (c) the gate computations and (d)
the state computations in the proposed XNOR LSTM.

dy, to a number of power of two replaces the division with a simple shift operation. With our stochastic
representation, the accumulations of the vector-matrix multiplication at the gate computations are
now shifted to the end of the state computations (see Figure [5). Moreover, both the gate and state
computations now involve several vector-vector products, performed using XNOR operators. As
opposed to stochastic computing systems requiring long latency to generate the stochastic streams,
the stochastic bit streams of the proposed XNOR LSTM are already generated by the binarization of
the gate computations. Therefore, the computational latency of the proposed XNOR LSTM is either
the same or even less than of the conventional quantized LSTMs since using simple operators allows
us to run the XNOR LSTM at higher frequencies.

S Experimental Results

In this section, we evaluate the performance of the proposed XNOR LSTM across different temporal
tasks including character-level/word-level language modeling and quation answering (QA). Note
that the length of all stochastic streams (i.e., the parameter /) in our proposed method is equal to the
size of LSTMs (i.e., the parameter d},). For the character-level and word-level language modeling,
we conduct our experiments on Penn Treebank (PTB) [31]] corpus. For the character-level language
modeling (CLLM) experiment, we use an LSTM layer of size 1,000 on a sequence length of 100 when
performing PTB. We set the training parameters similar to [31]. The performance of CLLM models
are evaluated as bits per character (BPC). For the word-level language modeling (WLLM) task, we
train one layer of LSTM with 300 units on a sequence length of 35 while applying the dropout rate of
0.5. The performance of WLLM models are measured in terms of perplexity per word (PPW). For
the QA task, we perform our experiment on the CNN corpus [32]. We also adopt the LSTM-based
Attentive Reader architecture and its the training parameters, introduced in [32]]. We measure the
performance of the QA task as a error rate (ER). Note that lower BPC, PPW and ER values show
a better performance. For a fair comparison with prior works, our XNOR-LSTM model for each
task contains the same number of parameters as of their previous counterparts. Table[I] summarizes
the performance of our XNOR-LSTM models. We consider a typical semi-parallel architecture of
LSTMs, in which each neuron is implemented using a multiply-and-accumulate (MAC) unit, to
obtain the implementation cost reported in Table |1} Depending on the precision used for the gate and
state computations, we replace the multiplier inside the MAC unit with a simpler logic and report the
implementation cost in terms of XNOR counts. In fact, we approximate the cost of a ternary/2-bit



Table 1: Performance of the proposed XNOR-LSTM models vs their quantized counterparts.

Baseline LAB AMQ HitNet ELSTM XNOR
(ICLR’17 [19])) (JCLR’18[18]) (NeurIPS’18 [26]) (ours) (ours)
Precision of Gate Computations FpP Binary 2 bits Ternary Binary  Binary
Precision of State Computations FpP FP FP FP FP Binary
Accuracy (BPC) 1.39 1.56 NA NA 1.47 1.52
CLLM Size (MByte) 16.8 0.525 NA NA 0.525 0.525
Cost (XNOR count) 1,400,000 604,000 NA NA 604,000 7,000
Cost (No. clock cycles) 1,000 1,000 NA NA 1,000 1,000
Accuracy (PPW) 91.5 NA 95.8 110.3 93.5 95.5
WLLM Size (KByte) 2,880 NA 180 180 90 90
Cost (XNOR count) 420,000 NA 182,400 182,400 181,200 2,100
Cost (No. clock cycles) 300 NA 300 300 300 300
Accuracy (ER) 40.19 NA NA NA 40.4 43.8
QA Size (MByte) 7,471 NA NA NA 233 233
Cost (XNOR count) 1,433,600 NA NA NA 618,496 7,168
Cost (No. clock cycles) 256 NA NA NA 256 256

multiplication as two XNOR gates and the cost of a full-precision multiplication as 200 XNOR
gates [17]. The experimental results show that our XNOR-LSTM models outperform the previous
quantized LSTMs in terms of accuracy performance while requiring 86 x fewer XNOR gates to
perform the recurrent computations. While all the LSTM models in Table | require the same number
of clock cycles to perform the recurrent computations, the inference time of our XNOR LSTMs is
less than of other quantized works when running at higher frequencies due to their simpler operators.
As a final note, the small gap between the XNOR and ELSTM models shows the approximation error
caused by the use of stochastic computing.

6 Discussion

In Section[5] we only considered the implementation cost of our method in terms of XNOR operations
since our main focus was to replace the costly multipliers with simple XNOR gates while the rest of
the computing elements (i.e., the adders and look-up tables) almost remains the same (see Figure
[3). Note that since SNG and ISNG can be easily implemented with magnetic tunnel junction (MTJ)
devices which come almost at no cost compared to CMOS technologies [33]], we excluded them from
the implementation cost in Table E} However, even if we include these units in our cost model, our
stochastic-based implementation is still superior to its conventional binary-radix counterpart. To this
end, we have implemented both the non-stochastic binarized method (e.g., [26]]) and our proposed
method on a Xilinx Virtex-7 FPGA device where each architecture contains 300 neurons. The
implementation of our proposed method requires 66K FPGA slices while yielding the throughput of
3.2 TOPS @ 934 MHz whereas the implementation of the non-stochastic binarized method requires
1.1M FPGA slices while yielding the throughput of 1.8 TOPS @ 515 MHz. Therefore, our proposed
method outperforms its binarized counterpart by factors of 16.7x and 1.8 % in terms of area and
throughput, respectively, while considering all the required logic such as SNG, ISNG and look-up
tables. Note that the number of occupied slices denotes the area size of the implemented design.
Also, the implementation of our proposed method runs at a higher frequency since its critical path is
shorter than the conventional method due to the simpler hardware of XNOR gates versus multipliers.
Therefore, this work is the first successful application of SC to the best of our knowledge where the
SC-based implementation outperforms its conventional binary-radix counterpart in terms of both the
computational latency and the area.

7 Conclusion

In this paper, we presented a method to synthesize XNOR LSTMs. To this end, we first represented
the gate computations of LSTMs with binary weights and binary hidden state vector h in stochastic
computing domain, allowing to replace the non-linear activation functions with stochastic FSM-based
functions. We then proposed a new FSM-based function and its synthesis method to approximate the
hyperbolic tangent and sigmoid functions. In this way, the gate activation values are represented as
stochastic binary streams, allowing to perform the multiplications of the state computations using
simple XNOR gates. To the best of our knowledge, this paper is the first to perform the multiplications
of both the gate and state computations with XNOR operations.
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