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Abstract

What is the role of unlabeled data in an inference problem, when the presumed
underlying distribution is adversarially perturbed? To provide a concrete answer to
this question, this paper unifies two major learning frameworks: Semi-Supervised
Learning (SSL) and Distributionally Robust Learning (DRL). We develop a general-
ization theory for our framework based on a number of novel complexity measures,
such as an adversarial extension of Rademacher complexity and its semi-supervised
analogue. Moreover, our analysis is able to quantify the role of unlabeled data in the
generalization under a more general condition compared to the existing theoretical
works in SSL. Based on our framework, we also present a hybrid of DRL and
EM algorithms that has a guaranteed convergence rate. When implemented with
deep neural networks, our method shows a comparable performance to those of the
state-of-the-art on a number of real-world benchmark datasets.

1 Introduction

Robustness to adversarial attacks is an essential feature in the design of modern classifiers —in
particular, of deep neural networks [1, 2]. Adversarial Training (AT) [3], Virtual AT [4] and Distil-
lation [5] are examples of promising approaches to defend against a point-wise adversary who can
alter input data-points in a separate manner. However, as shown by [6], a good defense against a
distributional adversary who shifts the input distribution instead of data-points could improve the
robustness of a classifier more effectively. This has led to the development of Distributionally Robust
Learning (DRL) [7], which has recently attracted intensive research interest [8, 9, 10, 11]. Despite
of all the advancements in supervised DRL, the number of studies that tackle this problem from a
semi-supervised angle is slim to none [12]. Motivated by this fact, we propose a distributionally
robust framework that handles Semi-Supervised Learning (SSL) scenarios. Our work is an extension
of self-learning [13, 14, 15], which encompasses methods such as Expectation-Maximization (EM)
algorithm. It can also cope with any existing classifier such as neural networks. Intuitively, we first
infer soft-labels for the unlabeled data, and then search for suitable classification rules that show low
sensitivity to adversarial perturbation around these soft-label distributions.

Parts of this paper can be considered as a semi-supervised extension of [9]. Computational complexity
of our framework is comparable to those of its supervised rivals. Moreover, we design a Stochastic
Gradient Descent (SGD)-based algorithm with a guaranteed convergence rate to optimize our model.
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DRL PL VAT SSDRL

Generalization Bound X × × X

Convergence Guarantee X × × X

Adversarial Robustness X × X X

Semi-Supervised Learning × X X X

Table 1: Comparison between the
proposed framework (SSDRL) and
some existing methods: DRL of
[9], Pseudo Labeling (PL) [19],
and Virtual Adversarial Training
(VAT) [4].

In order to address the generalization, we introduce a set of novel complexity measures such as
Adversarial Rademacher Complexity and Minimum Supervision Ratio (MSR), which are based on
the hypothesis set and input data distribution. We show that if the ratio of the labeled samples in a
dataset (supervision ratio) exceeds MSR, true adversarial risk can be bounded. Also, proper parameter
adjustment can arbitrarily decrease MSR at the cost of increasing the generalization bound; This
means our theoretical guarantees hold for all supervision ratios. The theoretical contribution of our
work is summarized in Table 1. We have also tested our method, denoted by SSDRL, via extensive
computer experiments on datasets such as MNIST [16], SVHN [17], and CIFAR-10 [18]. When
equipped with deep neural networks, SSDRL outperforms rivals such as Pseudo-Labeling (PL) [19]
and the supervised DRL of [9] on all the datasets. Also, SSDRL outperforms VAT [4] on SVHN,
while it demonstrates a comparable performance on MNIST and CIFAR-10.

The rest of the paper is organized as follows: Section 1.1 specifies the notations, and Section 1.2
reviews the related works. The proposed framework is presented in Section 2, where numerical
optimization is explained in Section 2.1 and its generalization is addressed in Section 2.2. Section 3
is devoted to experimental results. Finally, Section 4 concludes the paper.

1.1 Notations

We extend the notations used in [9]. Assume Z to be an input space, Θ to be a parameter set, and
` : Z ×Θ→ R a parametric loss function. Observation space Z can either be the feature space X
in unsupervised scenarios, or the space of feature-label pairs, i.e., Z , X × Y , where Y denotes
the set of labels. For simplicity, we only consider finite label-sets. By M (Z), we mean the set of
all probability measures supported on Z . Let us denote the function c : Z × Z → [0,+∞) as the
transportation cost. Under some conditions on c, Definition B.1 (supplementary) formulates the
Wasserstein distance Wc (P,Q) between two distributions P,Q ∈ M (Z), w.r.t. c [8]. Wc (P,Q)
measures the minimal cost of moving P to Q, where the cost of moving one unit of mass from z to z′
is given by c (z, z′). Also, for ε ≥ 0 and a distribution Q ∈M (Z), we define an ε-ambiguity set as
Bε (Q) , {P ∈M (Z) |Wc (P,Q) ≤ ε}. Training dataset is shown byD , {Z1, . . . ,Zn}, which
includes i.i.d. samples drawn from a fixed (and unknown) distribution P0 ∈M (Z), while n denotes
the dataset size. For a dataset D, let P̂D ∈ M (Z) be P̂D , 1

n

∑n
i=1 δZi , where δz denotes the

Dirac delta function at point z ∈ Z . Accordingly, E and ÊD represent the statistical and empirical
expectation operators, respectively. For a distribution P ∈ M (X × Y), PX denotes the marginal
distribution PX (·) ,

∑
y∈Y P (·, y) over X , and P|X ∈M (Y) is the conditional distributions over

labels given feature vector X ∈ X . To simplify the notations, for z = (X, y) ∈ X × Y and a
function f , the notations f (z) and f (X, y) have been used, interchangeably.

1.2 Background and Related Works

DRL minimizes a worst-case risk against an adversary, who has a limited budget to alter the data
distribution Q ∈M (Z) in order to inflict the maximum possible damage. Here, Q can either be the
true measure P0, or the empirical one P̂D [10]. Mathematically, DRL is formulated as [8, 11]:

inf
θ∈Θ

sup
P∈Bε(Q)

EP {` (Z; θ)} . (1)

Wasserstein metric has been widely used to quantify the strength of adversarial attacks [8, 9, 11, 12],
thanks to (i) its relations to adversarial robustness [20] and (ii) suitable dual-form properties [11]. In
[8], authors have reformulated DRL into a convex program for Logistic Regression. Convergence and
generalization of DRL, in a general context, have been addressed in [9], while adjusting the ambiguity
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set size, i.e. ε, has been tackled in [21]. In [22], the authors have investigated the convergence of
the inner maximization of (1), and its effects on the later stages of adversarial training. An analysis
on DRL methods with f -divergences is given in [10]. Also, sample complexity of DRL has been
reviewed by [23] and [24].

Abundance of unlabeled data has made SSL methods widely popular [4, 25]. See [14] for a review
on classical SSL approaches. Many robust SSL algorithms have been proposed so far [26, 27],
however, their notion of robustness is different from the one considered here. More recent works
include [28, 29, 30, 31]. In [29], [30] and [31], authors have mainly focused on a Gaussian model for
theoretical validation, while [28] empirically shows that robust self-training eliminates the accuracy-
robustness tradeoff by leveraging unlabeled data. In [32], a pessimistic SSL approach is proposed
that provably enhances the performance by incorporating the unlabeled data.We show that a special
case of our method reduces to an adversarial extension of [32]. Guarantees on the generalization of
SSL can only be made under certain assumptions on the choice of hypothesis set and the true data
distribution [14, 15, 33]. For example, a compatibility function is introduced in [15] to restrict the
relation between the model set and input data distribution. Also, in [34], author has theoretically
analyzed SSL under the cluster assumption.The main reason for making such assumptions is that
lack of any knowledge on the relation of a feature vector to its label, simply makes unlabeled data
useless for classification. In Section 2.2, we propose a novel compatibility criterion under a general
setting which enables us to establish a generalization theory for our work.

Finally, the only existing work that also falls in the cross section of DRL and SSL is [12]. However,
this method severely restricts the shifted distributions, so that the adversary can only choose from a
set of delta-spikes over labeled and augmented unlabeled samples.

2 Proposed Framework

From now on, let Z , X × Y . In SSL, a dataset D consists of two non-overlapping parts: Dl

(labeled) andDul (unlabeled). Let us denote Il and Iul as the index sets corresponding to these parts,
respectively. Thus, we haveDl = {(Xi, yi) | i ∈ Il}, andDul = {Xi| i ∈ Iul}. The hidden labels
in Dul can be modeled by random variables supported on Y . Note that DRL in (1) cannot readily
apply to this partially-labeled setting, since (1) needs complete knowledge of all the feature-label
pairs inD. To overcome this problem, first let us make the following definition:

Definition 1. The consistent set of probability distributions P̂ (D) ⊆ M (Z) with respect to a
partially-labeled datasetD = Dl ∪Dul is defined as

P̂ (D) ,
{(nl

n

)
P̂Dl

+
(nul

n

)
P̂Dul

· Ω
∣∣ Ω ∈MX (Y)

}
,

where nl and nul (with n = nl +nul) are the sizes ofDl andDul, respectively, and MX (Y) denotes
the set of all conditional distributions supported on Y , given features in X .

All possible (soft-)labelings of unlabeled samples in Dul are collected in P̂ (D). Note that the
empirical measure corresponding to the true complete dataset is also included in the consistent set.
Our aim is to choose a suitable measure from this set, and then use it for (1).

We take a known family of SSL approaches, called self-learning [13, 35], and then combine it with
DRL. Self-learning methods, e.g. EM algorithm [36], transfer the knowledge from labeled samples to
unlabeled ones through pseudo-labeling. More precisely, a learner is trained on the supervised portion
of a dataset, and then employs its learned rules to assign pseudo-labels to the remaining unlabeled
part. However, such methods are prone to over-fitting if the information flow from Dl to Dul is
not properly controlled. One way to overcome this issue is to use soft-labeling, which maintains a
minimum level of uncertainty over unlabeled samples. By combining the above arguments with the
core idea of DRL in (1), we propose the following learning scheme:

inf
θ∈Θ

inf
S∈P̂(D)

{
sup

P∈Bε(S)

EP {` (X, y; θ)}+

(
1− η
λ

)
ÊDul

{
H
(
S|X

)}}
, (2)

where λ is a user-defined parameter, η , nl/n is the supervision ratio, and H (·) denotes the Shannon
entropy. For now, let us assume λ < 0.
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Minimization over S ∈ P̂ (D) acts as a knowledge transfer module that finds the optimal distribution
in P̂ (D). Again, note that distributions in P̂ (D) vary only in the way they assign (soft-)labels to
unlabeled data. The scheme in (2) is based on optimism in the sense that, for any θ ∈ Θ, learner
is instructed to pick the labels that are more likely to reduce the average loss function ` (·; θ) for
each unlabeled sample. This is the core idea of self-learning. However, a pessimistic learner does
the opposite, i.e. picks the less likely labels with large loss values and hence does not trust the
loss function. The negative regularization term 1−η

λ ÊDul

{
H
(
S|X

)}
prevents hard decisions for

labels and promotes soft-labeling by bounding the Shannon entropy of label-conditionals from
below. A smaller |λ| gives softer labels. In the extreme case, choosing λ = −∞ ends up in an
adversarial version of the self-training in [14]. It should be noted that according to (2), learner is
forced to show less sensitivity near all (labeled and unlabeled) training data, just as one expects from
a semi-supervised DRL.

We show that (2) can be efficiently solved given that some smoothness conditions hold for ` and c.
Before that, Theorem 1 shows that the optimization corresponding to the knowledge transfer module
has an analytic solution, which implies the computational cost of (2) is only slightly higher than those
of its fully-supervised counterparts, such as [9].
Theorem 1 (Lagrangian-Relaxation). For any continuous loss ` : Z×Θ→ R and c : Z×Z → R≥0,
parameters ε ≥ 0, γ ≥ 0 and λ ∈ R ∪ {±∞}, and a partially-labeled datasetD with size n, let us
define the empirical Semi-Supervised Adversarial Risk (SSAR), denoted by R̂SSAR (θ;D), as

R̂SSAR (θ;D) ,
1

n

∑
i∈Il

φγ (Xi, yi; θ) +
1

n

∑
i∈Iul

(λ)

softmin
y∈Y

{φγ (Xi, y; θ)}+ γε, (3)

where the adversarial loss φγ (X, y; θ), and the soft-minimum operator softmin
(λ)
y∈Y (q) for any

q ∈ RY are defined as

φγ (X, y; θ) , sup
z′∈Z

` (z′; θ)−γc (z′, (X, y)) , and
(λ)

softmin
y∈Y

(q) ,
1

λ
log

 1

|Y|
∑
y∈Y

eλqy

 , (4)

respectively. Let θ∗ ∈ Θ be a minimizer of (2) for some given ε ≥ 0 and λ < 0. Then, there exists
γ ≥ 0 such that θ∗ is also a minimizer of (3) with the same parameter setting.

Proof of Theorem 1 is given in Appendix D. Note that softmin equals to : (i) min operator for
λ = −∞, (ii) average for λ = 0, and (iii) max for λ = +∞. Also, ε and γ are non-negative dual
parameters and fixing either of them uniquely determines the other one. Therefore, one can adjust γ
(for example via cross-validation), instead of ε. See [9] for a similar discussion.

A more subtle look at (3) shows that in the dual context of the proposed scheme, one is free to also
consider positive values for λ. The sign of λ indicates optimism (λ ≤ 0), or pessimism (λ > 0)
during the (soft-)label assignment. The choice between optimism vs. pessimism depends on the
compatibility of the model set Θ with the true distribution P0. In Section 2.2, we show that enabling
λ to take values in R rather than R− is crucial for establishing a generalization bound for (3). In
other words, for a very bad hypothesis set, one must choose to be pessimistic to be able to generalize
well. To see situations where pessimism in SSL helps, reader can refer to [32].

2.1 Numerical Optimization

We propose a numerical optimization scheme for solving (3) which has a convergence guarantee.
Lemmas E.1 and E.2 (supplementary) explicitly compute the gradients of (3). This way, one can
simply apply the mini-batch SGD to solve for (2) via Algorithm 1. Note that due to the strong
concavity property in Lemma E.1, δ can be chosen arbitrarily small. Other parameters such as γ
(or equivalently ε) and λ should be adjusted via cross-validation. The computational complexity
of Algorithm 1 is no more than η + |Y| (1− η) times of that of [9], where the latter can only
handle supervised data1. Note that Algorithm 1 reduces to [9] in fully-supervised scenarios, and
coincides with Pseudo-Labeling and EM algorithm when (γ =∞, λ = −∞) and (γ =∞, λ = −1),

1In scenarios where |Y| is very large, one can employ heuristic methods to reduce the set of possible labels
for an unlabeled data sample and gain more efficiency at the expense of degradation in performance
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Algorithm 1 Stochastic Gradient Descent for SSDRL

1: Inputs: D, γ, λ, (k ≤ n, δ, α, T )
2: Initialize θ0 ∈ Θ, and set t← 0.

3: for t = 0→ T − 1 do
4: Randomly select index set I ⊆ [n] with size k.
5: for i ∈ Il ∩ I do
6: Compute a δ-approx of z∗i (θt) from Lemma E.2.
7: end for
8: for (i, y) ∈ (Iul ∩ I)× Y do
9: Compute a δ-approximate of z∗i (y; θt) from Lemma E.2.

10: end for
11: Compute the sub-gradient of R̂SSAR (θ;D) from (E.3) (Lemma E.2) at point θ = θt

using only samples in I, and denote it with ∂θR̂SSAR (θt;D).
12: θt+1 ← ProjΘ

(
θt − α∂θR̂SSAR (θt;D)

)
13: end for
14: Output: θ∗ ← θT

respectively. The following theorem guarantees the convergence of Algorithm 1 to a local minimizer
of (3).

Theorem 2. Assume loss function `, transportation cost c, γ ≥ 0 and |λ| <∞ satisfy the conditions
of Lemma E.2. Also, assume ` is differentiable w.r.t. both z and θ, with Lipschitz gradients. Also,
let ‖∇θ` (z; θ)‖2 ≤ σ for some σ ≥ 0 all over Z × Θ. Denote θ0 ∈ Θ to be an initial hypothesis,
and θ∗ ∈ Θ as a local minimizer of (3). Assume the partially-labeled dataset D includes n i.i.d.
training samples. Also, let ∆R̂ , R̂SSAR (θ0;D)− R̂SSAR (θ∗;D). Then, for a fixed step size α∗,
the outputs of Algorithm 1 with parameters k = 1, δ > 0, α = α∗ after T iterations, say θ1, . . . , θT ,
satisfy the following inequality:

1

T

T∑
t=1

E
{∥∥∇θR̂SSAR (θt;D)

∥∥2

2

}
≤ 4σ2

√
∆R̂

T

(
B

σ2
+ (1− η) |λ| |Y|

)
+ Cδ, (5)

where constants B and C and step size α∗ only depend on γ and Lipschitz constants of `.

The proof of Theorem 2 with explicit formulations for constants B and C and step size α∗ are
given in Appendix D (supplementary). Theorem 2 guarantees a convergence rate of O

(
T−1/2

)
for

Algorithm 1, if one neglects δ. Note that the presence of δ is necessary since one cannot find the
exact maximizer of (E.2) in finite steps. However, due to Lemma E.1, δ can become infinitesimally
small. Theorem D.1 (supplementary) guarantees the convergence of Algorithm 1 in hard-decision
regimes, i.e. λ = ±∞. Note that ` is not necessarily convex w.r.t. θ, e.g. neural nets. However, given
a convex loss `, Theorem D.2 gives us a conditions on λ to guarantee the convexity of (3) as well.

2.2 Generalization Guarantee

We intend to bound the true adversarial risk, i.e. supP∈Bε(P0) EP {` (Z; θ∗)}, where θ∗ denotes the
optimizer of the empirical risk in (3). However, the two major concerns are: (i) we are training our
model against an adversary, and (ii) our training dataset is partially labeled. We first address these
issues and then present our main contribution in Theorem 3.

Classical Rademacher complexity, denoted byRn (F), measures how well a function set F can learn
noise, and thus is exposed to over-fitting on small datasets. We give a novel adversarial extension for
Rn which also appears in our generalization bound. Moreover, we show it converges to zero when
n→∞, for all function sets with a finite VC-dimension. Before that, let us define the set of ε-Monge
maps as Aε , {a : Z → Z| c (z, a (z)) ≤ ε, ∀z ∈ Z}.
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Definition 2 (Semi-Supervised Monge (SSM) Rademacher Complexity). For Z , X ×Y , assume a
function set F ⊆ RZ and a distribution P0 ∈M (Z). For ε ≥ 0 and n ∈ N, let us define

gl (n) , EZ1:n,σ

{
sup
f∈F

1

n

n∑
i=1

σi

[
sup
a∈Aε

f (a (Zi))

]}

and gul (n) ,
∑
y∈Y

EX1:n,σ

{
sup
f∈F

1

n

n∑
i=1

σi

[
sup
a∈Aε

f (a (Xi, y))

]}
,

where Z1:n
i.i.d.∼ P0 and X1:n

i.i.d.∼ P0X
. σ ∈ {−1,+1}n indicates a vector of i.i.d. symmetric

Rademacher variables. Then, for η ∈ [0, 1], the SSM Rademacher complexity of F is defined as

R(SSM)
n,(ε,η) (F) , ηgl (dnηe) + (1− η) gul (dn (1− η)e) .

By setting ε = 0 and η = 1, the above definition reduces to the classical Rademacher complexity
Rn. We define a function set to be learnable, if limn→∞Rn = 0. Similarly, a function class F is
said to be adversarially learnable w.r.t. parameters (ε, η), if limn→∞R(SSM)

n,(ε,η) (F) = 0. But, how
can we numerically compute this measure in practice? The main difference betweenRn and SSM
Rademacher complexity is that the latter adversarially alters the input distribution. However, many
distribution-free bounds already exist forRn [37], which apply to almost all practical function sets,
e.g. classifiers with a bounded VC-dimension (e.g. neural nets), restricted regression tools and etc.
We show that by having a distribution-free bound on the Rademacher complexity of F , one can
also bound the SSM Rademacher complexity. Mathematically speaking, assume that there exists
an asymptotically decreasing upper-bound ∆ (n) such that Rn (F) ≤ ∆ (n) , ∀P0 ∈ M (X × Y).
Then, for all η ∈ [0, 1] and ε ≥ 0, we have (Lemma E.3):

R(SSM)
n,(ε,η) (F) ≤ η∆ (dnηe) + (1− η) |Y|∆ (dn (1− η)e) , (6)

where the r.h.s. of (6) goes to zero as n → ∞. This includes almost all practical classifiers, e.g.
neural nets, support vector machines, random forests and etc. For example, consider the 0− 1 loss for
a classifier with a VC-dimension of dim (Θ). Then, due to Dudley’s entropy bound and Haussler’s
upper-bound [37], there exists constant C such that, regardless of ε or P0, we have (Lemma E.3):

∆ (n) ≤ C
√

dim (Θ)

n
, and thus R(SSM)

n,(ε,η) (F) ≤ C
√

dim (Θ)

n

(√
η +

√
1− η |Y|

)
. (7)

2.2.1 Minimum Supervision Ratio

As discussed earlier, generalization of SSL frameworks generally requires a compatibility assumption
on the hypothesis set F and data distribution P0. In Appendix C (and in particular, Definition
C.4), we introduce a new compatibility function, denoted by MSR, which has the following form:
MSR(F,P0) (λ,margin) : R∪{±∞}×R≥0 → [0, 1]. Intuitively, MSR(F,P0) quantifies the strength
of information theoretic relation between the marginal measure P0X

and the conditional P0|X . It
also measures the richness of F to learn such relations. Due to Theorem 3, in order to bound the
true risk when unlabeled data are involved, one needs η ≥ MSR(F,P0) (λ,margin), for some λ and
margin ≥ 0. Here, λ denotes the pessimism of the learner and margin ≥ 0 specifies a safety margin
for small-size datasets. MSR is an increasing function w.r.t. margin, while it decreases with λ. In
particular, MSR(F,P0) (+∞,margin) = 0, for all margin ≥ 0.

For a negative λ (optimistic learning), MSR remains small as long as there exists a strong dependency
between P0X

and label conditionals P0|X . This dependency can be obtained, for example, by the
cluster assumption. Additionally, some loss functions in F need to be capable of capturing such
dependency, e.g. by resembling the true negative log-likelihood− logP0 (X, y). Conversely, absence
of such properties will increase the MSR toward 1, which forces the learner to choose a large λ (in the
extreme case +∞) in order to use the bound of Theorem 3. Not to mention that a large λ increases
the empirical loss and loosens the bound. This fact, however, should not be surprising since improper
usage of unlabeled data in certain cases can degrade the generalization. Lemma C.3 (supplementary)
shows that one can analytically compute MSR function for a particular case of interest, i.e. when
cluster assumption holds for P0 and the loss function family F is chosen properly.

This way, the following Theorem gives a generalization bound for (3):
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Figure 1: Comparison of the test error-rates on adversarial examples attained via [9] among different
methods.

Theorem 3 (Generalization). For a space Z , X × Y , assume the set of continuous functions
L , {` (·; θ) | θ ∈ Θ}, with ` (·; θ) : Z → R and ‖`‖∞ ≤ B for some B ≥ 0. For γ ≥ 0, z ∈ Z
and θ ∈ Θ let φγ (z; θ) to be defined as in (4), and Φ ,

{
φγ (·; θ)

∣∣ θ ∈ Θ
}

. For a supervision ratio
η ∈ [0, 1], assume a partially labeled datasetD = {(Xi, yi)}ni=1 including n i.i.d. samples drawn
from P0 ∈M (Z), where labels can be observed with probability of η, independently. For 0 < δ ≤ 1
and λ ∈ R ∪ {±∞}, assume η satisfies the following condition:

η ≥ MSR(Φ,P0)

(
λ, 4B

√
log (1/δ)

2n
+ 4R(SSM)

n,(ε,η) (L)

)
. (8)

Then, with probability at least 1− δ, the following bound holds for all ε ≥ 0:

sup
P∈Bε(P0)

EP {` (Z; θ∗)} ≤ min
θ∈Θ

R̂SSAR (θ;D) + 2B

√
log (1/δ)

2n
+ 2R(SSM)

n,(ε,η) (L) , (9)

where θ∗ is the minimizer of R̂SSAR (θ;D).

Proof of Theorem 3 is given in Appendix D. Condition in (8) can always be satisfied based on
Lemma C.2, as long as λ and n are sufficiently large and L is adversarially learnable. A strongly-
compatible pair (Φ, P0) encourages optimism, where learner can choose a negative λ. However, in
some situations increasing λ might be necessary for (8) to hold; In fact, for a weakly-compatible
(Φ, P0), λ must be positive or even +∞ (the latter always satisfies (8) regardless of n or η). Note
that a larger λ increases the empirical risk R̂SSAR (θ∗;D), which also increases the bound in (9).
Interestingly, λ = +∞ coincides with the setting of [32], which makes it as a special case of our
analysis. The limiting cases of Theorem 3, i.e. ε = 0 and η = 1, lead to a new bound for non-robust
SSL, and an existing bound for the supervised DRL of [9], respectively.

3 Experimental Results

This section demonstrates our experimental results on some real-world datasets, and also compares
SSDRL with its state-of-the-art rival methodologies. Deep Neural Networks (DNN) are considered
for the loss {` (·; θ) |θ ∈ Θ}. Architecture and other specifications about our DNNs are explained in
details in Appendix A. The rival frameworks in this section are Virtual Adversarial Training (VAT)
[4], Pseudo-Labeling (PL) [19], and the supervised DRL of [9], which we simply denote as DRL. We
have also implemented a fast version of SSDRL, called F-SSDRL, where for each unlabeled training
sample considers only a limited number of more favorable labels in Algorithm 1. Here, by more
favorable labels, we refer to those labels that result in a smaller non-robust loss ` (·; θ). As a result,
F-SSDRL runs much faster than SSDRL without much degradation in performance. Surprisingly, we
found out that F-SSDRL often yields even better performances in practice compared to SSDRL (see
Appendix A for more details).

Figure 1 shows the misclassification rate vs. γ−1 on adversarial test examples attained by computing
φγ (·; θ) (same attack strategy as [9]). Recall γ as the dual-counterpart of the Wasserstein radius ε in
(2). Thus, γ−1 somehow quantifies the strength of the adversarial attacks, as suggested by [9]. Results
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(c) CIFAR-10

Figure 2: Comparison of the test error-rates on adversarial examples calculated by PGM [38], under
`2-norm constraint.

Method Test Error-Rate(%)
MNIST SVHN CIFAR-10

DRL
γ1 4.67±0.38 10.89±0.53 21.62±0.40
γ2 4.77±0.15 10.89±0.53 23.77±0.65
γ3 5.95±0.13 14.45±0.93 21.97±0.35

PL 8.70±0.47 6.39±0.46 21.19±0.25

VAT
ε1 1.30±0.04 5.47±0.33 15.19±0.55
ε2 1.30±0.04 7.01±0.24 15.19±0.55
ε3 1.32±0.10 7.01±0.24 15.19±0.55

F-SSDRL
γ1 1.29±0.09 6.19±0.22 17.94±0.20
γ2 1.51±0.03 6.19±0.22 18.35±0.24
γ3 3.58±1.13 6.74±0.22 18.64±0.16

Table 2: Test error-rates on clean
examples. For DRL, VAT and F-
SSDRL, rows 1 to 3 correspond to
the parameter (γi for DRL and F-
SSDRL, and εi for VAT) that yields
the lowest error rates on: (i = 1)
clean examples, (i = 2) adversarial
examples by [9], and (i = 3) ad-
versarial examples by PGM, respec-
tively.

have been depicted for MNIST, SVHN and CIFAR-10 datasets. Figure 2 demonstrates the same
procedure for adversarial examples generated by Projected-Gradient Method (PGM) [38]; In this
case, the error-rate is depicted vs. PGM’s strength of attack, i.e. ε. For VAT and SSDRL, curves have
been shown for different choices of hyper-parameters, i.e., (γi or εi) , i = 1, 2, 3, which correspond
to the lowest error rates on: (i = 1) clean examples, (i = 2) adversarial examples by [9], and (i = 3)
adversarial examples by PGM, respectively. Values of (γi, εi), and the choices of λ, transportation
cost c, and the supervision ratio η with more details on the experiments can be found in Appendix A.

According to Figures 1 and 2, the proposed method is always superior to DRL and PL. Also, SSDRL
outperforms VAT on SVHN dataset regardless of the attack type, while it has a comparable error-rate
on MNIST and CIFAR-10 based on Figures 1a and 2c, respectively. The superiority over DRL
highlights the fact that exploitation of unlabeled data has improved the performance. However,
SSDRL under-performs VAT on MNIST and CIFAR-10 datasets if the order of attacks are reversed,
even though performances are still close. According to Figure 2a, accuracy of PL degrades quite
slowly as PGM’s ε increases, although the loss values increase in Figure A.7a. This phenomenon is
due to the fact that the adversarial directions for increasing the loss and error-rate are not correlated
in this particular case.

Table 2 shows the test error-rates on clean examples for F-SSDRL, VAT, PL and DRL on MNIST,
SVHN and CIFAR-10 datasets. In fact, Table 2 quantifies the non-adversarial generalization that one
can attain in practice via distributional robustness. Again, F-SSDRL outperforms both PL and DRL
in all experimental settings. It also surpasses VAT on SVHN dataset. F-SSDRL under-performs VAT
on MNIST and CIFAR-10, however, the differences between error-rates remain small which means
the two methods have comparable performances.
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4 Conclusions

This paper investigates the application of distributionally robust learning in partially labeled datasets.
The core idea is to take a well-known semi-supervised framework, known as self-learning, and
make it robust to adversarial attacks. A novel framework, called SSDRL, has been proposed which
encompasses many existing methods such as Pseud-Labeling (PL) and EM algorithm as its special
cases. Computational complexity of our method is shown to be comparable with its supervised
counterparts. We have derived convergence and generalization guarantees for SSDRL, where for the
latter, a number of novel complexity measures are proposed. In particular, an adversarial extension of
Rademacher complexity is proposed and shown to converge to zero for almost all practical learning
frameworks, including neural networks, that have a finite VC-dimension. Moreover, our theoretical
analysis reveals a more general and fundamental condition to assess the role of unlabeled data
in generalization by introducing a new complexity measure called Minimum Supervision Ratio
(MSR). This is in contrast to many existing works that need more restrictive assumptions, such
as cluster assumption to be applicable. Computer simulation on real-world datasets demonstrate
a comparable-to-superior performance for SSDRL compared with those of the state-of-the-art. In
future, we try to improve the generalization, for example, by empirically computing the MSR. Also,
fitting more SSL methods into the core idea of our work is another research direction.
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