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Abstract

Defenses against adversarial examples, such as adversarial training, are typically
tailored to a single perturbation type (e.g., small `∞-noise). For other perturbations,
these defenses offer no guarantees and, at times, even increase the model’s vulnera-
bility. Our aim is to understand the reasons underlying this robustness trade-off,
and to train models that are simultaneously robust to multiple perturbation types.
We prove that a trade-off in robustness to different types of `p-bounded and spatial
perturbations must exist in a natural and simple statistical setting. We corroborate
our formal analysis by demonstrating similar robustness trade-offs on MNIST
and CIFAR10. We propose new multi-perturbation adversarial training schemes,
as well as an efficient attack for the `1-norm, and use these to show that models
trained against multiple attacks fail to achieve robustness competitive with that of
models trained on each attack individually. In particular, we find that adversarial
training with first-order `∞, `1 and `2 attacks on MNIST achieves merely 50%
robust accuracy, partly because of gradient-masking. Finally, we propose affine
attacks that linearly interpolate between perturbation types and further degrade the
accuracy of adversarially trained models.

1 Introduction

Adversarial examples [37, 15] are proving to be an inherent blind-spot in machine learning (ML)
models. Adversarial examples highlight the tendency of ML models to learn superficial and brittle
data statistics [19, 13, 18], and present a security risk for models deployed in cyber-physical systems
(e.g., virtual assistants [5], malware detectors [16] or ad-blockers [39]).

Known successful defenses are tailored to a specific perturbation type (e.g., a small `p-ball [25, 28, 42]
or small spatial transforms [11]). These defenses provide empirical (or certifiable) robustness
guarantees for one perturbation type, but typically offer no guarantees against other attacks [35,
31]. Worse, increasing robustness to one perturbation type has sometimes been found to increase
vulnerability to others [11, 31]. This leads us to the central problem considered in this paper:

Can we achieve adversarial robustness to different types of perturbations simultaneously?

Note that even though prior work has attained robustness to different perturbation types [25, 31, 11],
these results may not compose. For instance, an ensemble of two classifiers—each of which is robust
to a single type of perturbation—may be robust to neither perturbation. Our aim is to study the extent
to which it is possible to learn models that are simultaneously robust to multiple types of perturbation.

To gain intuition about this problem, we first study a simple and natural classification task, that has
been used to analyze trade-offs between standard and adversarial accuracy [41], and the sample-
complexity of adversarial generalization [30]. We define Mutually Exclusive Perturbations (MEPs) as
pairs of perturbation types for which robustness to one type implies vulnerability to the other. For this
task, we prove that `∞ and `1-perturbations are MEPs and that `∞-perturbations and input rotations
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(a) MNIST models trained on `1, `2 & `∞ attacks.
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(b) MNIST models trained on `∞ and RT attacks.
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(c) CIFAR10 models trained on `1 and `∞ attacks.
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(d) CIFAR10 models trained on `∞ and RT attacks.

Figure 1: Robustness trade-off on MNIST (top) and CIFAR10 (bottom). For a union of `p-balls
(left), or of `∞-noise and rotation-translations (RT) (right), we train models Advmax on the strongest
perturbation-type for each input. We report the test accuracy of Advmax against each individual
perturbation type (solid line) and against their union (dotted brown line). The vertical lines show the
adversarial accuracy of models trained and evaluated on a single perturbation type.

and translations [11] are also MEPs. Moreover, for these MEP pairs, we find that robustness to either
perturbation type requires fundamentally different features. The existence of such a trade-off for this
simple classification task suggests that it may be prevalent in more complex statistical settings.

To complement our formal analysis, we introduce new adversarial training schemes for multiple
perturbations. For each training point, these schemes build adversarial examples for all perturbation
types and then train either on all examples (the “avg” strategy) or only the worst example (the “max”
strategy). These two strategies respectively minimize the average error rate across perturbation types,
or the error rate against an adversary that picks the worst perturbation type for each input.

For adversarial training to be practical, we also need efficient and strong attacks [25]. We show that
Projected Gradient Descent [22, 25] is inefficient in the `1-case, and design a new attack, Sparse `1
Descent (SLIDE), that is both efficient and competitive with strong optimization attacks [8],

We experiment with MNIST and CIFAR10. MNIST is an interesting case-study, as distinct models
from prior work attain strong robustness to all perturbations we consider [25, 31, 11], yet no single
classifier is robust to all attacks [31, 32, 11]. For models trained on multiple `p-attacks (`1, `2, `∞
for MNIST, and `1, `∞ for CIFAR10), or on both `∞ and spatial transforms [11], we confirm a
noticeable robustness trade-off. Figure 1 plots the test accuracy of models Advmax trained using our
“max” strategy. In all cases, robustness to multiple perturbations comes at a cost—usually of 5-10%
additional error—compared to models trained against each attack individually (the horizontal lines).

Robustness to `1, `2 and `∞-noise on MNIST is a striking failure case, where the robustness trade-off
is compounded by gradient-masking [27, 40, 1]. Extending prior observations [25, 31, 23], we show
that models trained against an `∞-adversary learn representations that mask gradients for attacks in
other `p-norms. When trained against first-order `1, `2 and `∞-attacks, the model learns to resist
`∞-attacks while giving the illusion of robustness to `1 and `2 attacks. This model only achieves
52% accuracy when evaluated on gradient-free attacks [3, 31]. This shows that, unlike previously
thought [41], adversarial training with strong first-order attacks can suffer from gradient-masking.
We thus argue that attaining robustness to `p-noise on MNIST requires new techniques (e.g., training
on expensive gradient-free attacks, or scaling certified defenses to multiple perturbations).

MNIST has sometimes been said to be a poor dataset for evaluating adversarial examples defenses,
as some attacks are easy to defend against (e.g., input-thresholding or binarization works well for
`∞-attacks [41, 31]). Our results paint a more nuanced view: the simplicity of these `∞-defenses
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becomes a disadvantage when training against multiple `p-norms. We thus believe that MNIST
should not be abandoned as a benchmark just yet. Our inability to achieve multi-`p robustness for this
simple dataset raises questions about the viability of scaling current defenses to more complex tasks.

Looking beyond adversaries that choose from a union of perturbation types, we introduce a new affine
adversary that may linearly interpolate between perturbations (e.g., by compounding `∞-noise with
a small rotation). We prove that for locally-linear models, robustness to a union of `p-perturbations
implies robustness to affine attacks. In contrast, affine combinations of `∞ and spatial perturbations
are provably stronger than either perturbation individually. We show that this discrepancy translates
to neural networks trained on real data. Thus, in some cases, attaining robustness to a union of
perturbation types remains insufficient against a more creative adversary that composes perturbations.

Our results show that despite recent successes in achieving robustness to single perturbation types,
many obstacles remain towards attaining truly robust models. Beyond the robustness trade-off,
efficient computational scaling of current defenses to multiple perturbations remains an open problem.

The code used for all of our experiments can be found here: https://github.com/ftramer/
MultiRobustness

Proofs of all theorems, experimental setups, and additional experiments are in the full version of this
extended abstract [38].

2 Theoretical Limits to Multi-perturbation Robustness

We study statistical properties of adversarial robustness in a natural statistical model introduced in [41],
and which exhibits many phenomena observed on real data, such as trade-offs between robustness and
accuracy [41] or a higher sample complexity for robust generalization [31]. This model also proves
useful in analyzing and understanding adversarial robustness for multiple perturbations. Indeed,
we prove a number of results that correspond to phenomena we observe on real data, in particular
trade-offs in robustness to different `p or rotation-translation attacks [11].

We follow a line of works that study distributions for which adversarial examples exist uncondition-
ally [41, 21, 33, 12, 14, 26]. These distributions, including ours, are much simpler than real-world
data, and thus need not be evidence that adversarial examples are inevitable in practice. Rather, we
hypothesize that current ML models are highly vulnerable to adversarial examples because they learn
superficial data statistics [19, 13, 18] that share some properties of these simple distributions.

In prior work, a robustness trade-off for `∞ and `2-noise is shown in [21] for data distributed over
two concentric spheres. Our conceptually simpler model has the advantage of yielding results beyond
`p-norms (e.g., for spatial attacks) and which apply symmetrically to both classes. Building on
work by Xu et al. [43], Demontis et al. [9] show a robustness trade-off for dual norms (e.g., `∞ and
`1-noise) in linear classifiers.

2.1 Adversarial Risk for Multiple Perturbation Models

Consider a classification task for a distribution D over examples x ∈ Rd and labels y ∈ [C]. Let
f : Rd → [C] denote a classifier and let l(f(x), y) be the zero-one loss (i.e., 1f(x) 6=y).

We assume n perturbation types, each characterized by a set S of allowed perturbations for an input
x. The set S can be an `p-ball [37, 15] or capture other perceptually small transforms such as image
rotations and translations [11]. For a perturbation r ∈ S, an adversarial example is x̂ = x+ r (this
is pixel-wise addition for `p perturbations, but can be a more complex operation, e.g., for rotations).

For a perturbation set S and model f , we defineRadv(f ;S) := E(x,y)∼D [maxr∈S l(f(x+ r), y)]
as the adversarial error rate. To extendRadv to multiple perturbation sets S1, . . . , Sn, we can consider
the average error rate for each Si, denotedRavg

adv. This metric most clearly captures the trade-off in
robustness across independent perturbation types, but is not the most appropriate from a security
perspective on adversarial examples. A more natural metric, denotedRmax

adv , is the error rate against an
adversary that picks, for each input, the worst perturbation from the union of the Si. More formally,

Rmax
adv (f ;S1, . . . , Sn) := Radv(f ;∪iSi) , Ravg

adv(f ;S1, . . . , Sn) :=
1
n

∑
iRadv(f ;Si) . (1)

Most results in this section are lower bounds onRavg
adv, which also hold forRavg

max sinceRmax
adv ≥ R

avg
adv.
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Two perturbation types S1, S2 are Mutually Exclusive Perturbations (MEPs), ifRavg
adv(f ;S1, S2) ≥

1/|C| for all models f (i.e., no model has non-trivial average risk against both perturbations).

2.2 A binary classification task

We analyze the adversarial robustness trade-off for different perturbation types in a natural statistical
model introduced by Tsipras et al. [41]. Their binary classification task consists of input-label pairs
(x, y) sampled from a distribution D as follows (note that D is (d+ 1)-dimensional):

y
u.a.r∼ {−1,+1}, x0 =

{
+y, w.p. p0,
−y, w.p. 1− p0

, x1, . . . , xd
i.i.d∼ N (yη, 1) , (2)

where p0 ≥ 0.5, N (µ, σ2) is the normal distribution and η = α/
√
d for some positive constant α.

For this distribution, Tsipras et al. [41] show a trade-off between standard and adversarial accuracy
(for `∞ attacks), by drawing a distinction between the “robust” feature x0 that small `∞-noise cannot
manipulate, and the “non-robust” features x1, . . . , xd that can be fully overridden by small `∞-noise.

2.3 Small `∞ and `1 Perturbations are Mutually Exclusive

The starting point of our analysis is the observation that the robustness of a feature depends on the
considered perturbation type. To illustrate, we recall two classifiers from [41] that operate on disjoint
feature sets. The first, f(x) = sign(x0), achieves accuracy p0 for all `∞-perturbations with ε < 1 but
is highly vulnerable to `1-perturbations of size ε ≥ 1. The second classifier, h(x) = sign(

∑d
i=1 xi)

is robust to `1-perturbations of average norm below E[
∑d

i=1 xi] = Θ(
√
d), yet it is fully subverted

by a `∞-perturbation that shifts the features x1, . . . , xd by ±2η = Θ(1/
√
d). We prove that this

tension between `∞ and `1 robustness, and of the choice of “robust” features, is inherent for this task:
Theorem 1. Let f be a classifier for D. Let S∞ be the set of `∞-bounded perturbations with ε = 2η,
and S1 the set of `1-bounded perturbations with ε = 2. Then,Ravg

adv(f ;S∞, S1) ≥ 1/2 .

The proof is in Appendix F. The bound shows that no classifier can attain betterRavg
adv (and thusRmax

adv )
than a trivial constant classifier f(x) = 1, which satisfiesRadv(f ;S∞) = Radv(f ;S1) = 1/2.

Similar to [9], our analysis extends to arbitrary dual norms `p and `q with 1/p+ 1/q = 1 and p < 2.
The perturbation required to flip the features x1, . . . , xn has an `p norm of Θ(d

1
p−

1
2 ) = ω(1) and an

`q norm of Θ(d
1
q−

1
2 ) = Θ(d

1
2−

1
p ) = o(1). Thus, feature x0 is more robust than features x1, . . . , xn

with respect to the `q-norm, whereas for the dual `p-norm the situation is reversed.

2.4 Small `∞ and Spatial Perturbations are (nearly) Mutually Exclusive

We now analyze two other orthogonal perturbation types, `∞-noise and rotation-translations [11]. In
some cases, increasing robustness to `∞-noise has been shown to decrease robustness to rotation-
translations [11]. We prove that such a trade-off is inherent for our binary classification task.

To reason about rotation-translations, we assume that the features xi form a 2D grid. We also let x0
be distributed as N (y, α−2), a technicality that does not qualitatively change our prior results. Note
that the distribution of the features x1, . . . , xd is permutation-invariant. Thus, the only power of a
rotation-translation adversary is to “move” feature x0. Without loss of generality, we identify a small
rotation-translation of an input x with a permutation of its features that sends x0 to one of N fixed
positions (e.g., with translations of ±3px as in [11], x0 can be moved to N = 49 different positions).

A model can be robust to these permutations by ignoring theN positions that feature x0 can be moved
to, and focusing on the remaining permutation-invariant features. Yet, this model is vulnerable to
`∞-noise, as it ignores x0. In turn, a model that relies on feature x0 can be robust to `∞-perturbations,
but is vulnerable to a spatial perturbation that “hides” x0 among other features. Formally, we show:
Theorem 2. Let f be a classifier for D (with x0 ∼ N (y, α−2)). Let S∞ be the set of `∞-bounded
perturbations with ε = 2η, and SRT be the set of perturbations for an RT adversary with budget N .
Then,Ravg

adv(f ;S∞, SRT) ≥ 1/2−O(1/
√
N) .

The proof, given in Appendix G, is non-trivial and yields an asymptotic lower-bound onRavg
adv. We

can also provide tight numerical estimates for concrete parameter settings (see Appendix G.1).
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2.5 Affine Combinations of Perturbations

We definedRmax
adv as the error rate against an adversary that may choose a different perturbation type

for each input. If a model were robust to this adversary, what can we say about the robustness to
a more creative adversary that combines different perturbation types? To answer this question, we
introduce a new adversary that mixes different attacks by linearly interpolating between perturbations.

For a perturbation set S and β ∈ [0, 1], we denote β · S the set of perturbations scaled down by β.
For an `p-ball with radius ε, this is the ball with radius β · ε. For rotation-translations, the attack
budget N is scaled to β ·N . For two sets S1, S2, we define Saffine(S1, S2) as the set of perturbations
that compound a perturbation r1 ∈ β · S1 with a perturbation r2 ∈ (1− β) · S2, for any β ∈ [0, 1].

Consider one adversary that chooses, for each input, `p or `q-noise from balls Sp and Sq , for p, q > 0.
The affine adversary picks perturbations from the set Saffine defined as above. We show:
Claim 3. For a linear classifier f(x) = sign(wTx+b), we haveRmax

adv (f ;Sp, Sq) = Radv(f ;Saffine).

Thus, for linear classifiers, robustness to a union of `p-perturbations implies robustness to affine
adversaries (this holds for any distribution). The proof, in Appendix H extends to models that are
locally linear within balls Sp and Sq around the data points. For the distribution D of Section 2.2, we
can further show that there are settings (distinct from the one in Theorem 1) where: (1) robustness
against a union of `∞ and `1-perturbations is possible; (2) this requires the model to be non-linear;
(3) yet, robustness to affine adversaries is impossible (see Appendix I for details). Our experiments
in Section 4 show that neural networks trained on CIFAR10 have a behavior that is consistent with
locally-linear models, in that they are as robust to affine adversaries as against a union of `p-attacks.

In contrast, compounding `∞ and spatial perturbations yields a stronger attack, even for linear models:
Theorem 4. Let f(x) = sign(wTx + b) be a linear classifier for D (with x0 ∼ N (y, α−2)). Let
S∞ be some `∞-ball and SRT be rotation-translations with budget N > 2. Define Saffine as above.
Assume w0 > wi > 0,∀i ∈ [1, d]. ThenRadv(f ;Saffine) > Rmax

adv (f ;S∞, SRT).

This result (the proof is in Appendix J) draws a distinction between the strength of affine combinations
of `p-noise, and combinations of `∞ and spatial perturbations. It also shows that robustness to a
union of perturbations can be insufficient against a more creative affine adversary. These results are
consistent with behavior we observe in models trained on real data (see Section 4).

3 New Attacks and Adversarial Training Schemes

We complement our theoretical results with empirical evaluations of the robustness trade-off on
MNIST and CIFAR10. To this end, we first introduce new adversarial training schemes tailored to
the multi-perturbation risks defined in Equation (1), as well as a novel attack for the `1-norm.

Multi-perturbation adversarial training. Let

R̂adv(f ;S) =

m∑
i=1

max
r∈S

L(f(x(i) + r), y(i)) ,

bet the empirical adversarial risk, where L is the training loss and D is the training set. For a
single perturbation type, R̂adv can be minimized with adversarial training [25]: the maximal loss is
approximated by an attack procedure A(x), such that maxr∈S L(f(x+ r), y) ≈ L(f(A(x)), y).
For i ∈ [1, d], let Ai be an attack for the perturbation set Si. The two multi-attack robustness metrics
introduced in Equation (1) immediately yield the following natural adversarial training strategies:

1. “Max” strategy: For each input x, we train on the strongest adversarial example from all attacks,
i.e., the max in R̂adv is replaced by L(f(Ak∗(x)), y), for k∗ = argmaxk L(f(Ak(x)), y).

2. “Avg” strategy: This strategy simultaneously trains on adversarial examples from all attacks.
That is, the max in R̂adv is replaced by 1

n

∑n
i=1 L(f(Ai(x), y)).

The sparse `1-descent attack (SLIDE). Adversarial training is contingent on a strong and efficient
attack. Training on weak attacks gives no robustness [40], while strong optimization attacks (e.g., [6,
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Input: Input x ∈ [0, 1]d, steps k, step-size γ, percentile q, `1-bound ε
Output: x̂ = x+ r s.t. ‖r‖1 ≤ ε

r ← 0d

for 1 ≤ i ≤ k do
g ← ∇rL(θ,x+ r, y)
ei = sign(gi) if |gi| ≥ Pq(|g|), else 0
r ← r + γ · e/‖e‖1
r ← ΠSε1

(r)

end

Algorithm 1: The Sparse `1 Descent Attack (SLIDE). Pq(|g|) denotes the qth percentile of |g| and
ΠSε1

is the projection onto the `1-ball (see [10]).

8]) are prohibitively expensive. Projected Gradient Descent (PGD) [22, 25] is a popular choice of
attack that is both efficient and produces strong perturbations. To complement our formal results,
we want to train models on `1-perturbations. Yet, we show that the `1-version of PGD is highly
inefficient, and propose a better approach suitable for adversarial training.

PGD is a steepest descent algorithm [24]. In each iteration, the perturbation is updated in the steepest
descent direction argmax‖v‖≤1 v

Tg, where g is the gradient of the loss. For the `∞-norm, the
steepest descent direction is sign(g) [15], and for `2, it is g/‖g‖2. For the `1-norm, the steepest
descent direction is the unit vector e with ei∗ = sign(gi∗), for i∗ = argmaxi |gi|.
This yields an inefficient attack, as each iteration updates a single index of the perturbation r. We
thus design a new attack with finer control over the sparsity of an update step. For q ∈ [0, 1], let
Pq(|g|) be the qth percentile of |g|. We set ei = sign(gi) if |gi| ≥ Pq(|g|) and 0 otherwise, and
normalize e to unit `1-norm. For q � 1/d, we thus update many indices of r at once. We introduce
another optimization to handle clipping, by ignoring gradient components where the update step
cannot make progress (i.e., where xi + ri ∈ {0, 1} and gi points outside the domain). To project
r onto an `1-ball, we use an algorithm of Duchi et al. [10]. Algorithm 1 describes our attack. It
outperforms the steepest descent attack as well as a recently proposed Frank-Wolfe algorithm for
`1-attacks [20] (see Appendix B). Our attack is competitive with the more expensive EAD attack [8]
(see Appendix C).

4 Experiments

We use our new adversarial training schemes to measure the robustness trade-off on MNIST and
CIFAR10.1 MNIST is an interesting case-study as distinct models achieve strong robustness to
different `p and spatial attacks[31, 11]. Despite the dataset’s simplicity, we show that no single
model achieves strong `∞, `1 and `2 robustness, and that new techniques are required to close this
gap. The code used for all of our experiments can be found here: https://github.com/ftramer/
MultiRobustness

Training and evaluation setup. We first use adversarial training to train models on a single
perturbation type. For MNIST, we use `1(ε = 10), `2(ε = 2) and `∞(ε = 0.3). For CIFAR10 we use
`∞(ε = 4

255 ) and `1(ε = 2000
255 ). We also train on rotation-translation attacks with ±3px translations

and ±30◦ rotations as in [11]. We denote these models Adv1, Adv2, Adv∞, and AdvRT. We then use
the “max” and “avg” strategies from Section 3 to train models Advmax and Advavg against multiple
perturbations. We train once on all `p-perturbations, and once on both `∞ and RT perturbations.
We use the same CNN (for MNIST) and wide ResNet model (for CIFAR10) as Madry et al. [25].
Appendix A has more details on the training setup, and attack and training hyper-parameters.

We evaluate robustness of all models using multiple attacks: (1) we use gradient-based attacks
for all `p-norms, i.e., PGD [25] and our SLIDE attack with 100 steps and 40 restarts (20 restarts
on CIFAR10), as well as Carlini and Wagner’s `2-attack [6] (C&W), and an `1-variant—EAD [8];

1Kang et al. [20] recently studied the transfer between `∞, `1 and `2-attacks for adversarially trained models
on ImageNet. They show that models trained on one type of perturbation are not robust to others, but they do not
attempt to train models against multiple attacks simultaneously.
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Table 1: Evaluation of MNIST models trained on `∞, `1 and `2 attacks (left) or `∞ and rotation-
translation (RT) attacks (right). Models Adv∞, Adv1, Adv2 and AdvRT are trained on a single
attack, while Advavg and Advmax are trained on multiple attacks using the “avg” and “max” strategies.
The columns show a model’s accuracy on individual perturbation types, on the union of them
(1−Rmax

adv ), and the average accuracy across them (1−Ravg
adv). The best results are in bold (at 95%

confidence). Results in red indicate gradient-masking, see Appendix C for a breakdown of all attacks.

Model Acc. `∞ `1 `2 1−Rmax
adv 1−Ravg

adv

Nat 99.4 0.0 12.4 8.5 0.0 7.0

Adv∞ 99.1 91.1 12.1 11.3 6.8 38.2
Adv1 98.9 0.0 78.5 50.6 0.0 43.0
Adv2 98.5 0.4 68.0 71.8 0.4 46.7

Advavg 97.3 76.7 53.9 58.3 49.9 63.0
Advmax 97.2 71.7 62.6 56.0 52.4 63.4

Model Acc. `∞ RT 1−Rmax
adv 1−Ravg

adv

Nat 99.4 0.0 0.0 0.0 0.0

Adv∞ 99.1 91.4 0.2 0.2 45.8
AdvRT 99.3 0.0 94.6 0.0 47.3

Advavg 99.2 88.2 86.4 82.9 87.3
Advmax 98.9 89.6 85.6 83.8 87.6

(2) to detect gradient-masking, we use decision-based attacks: the Boundary Attack [3] for `2, the
Pointwise Attack [31] for `1, and the Boundary Attack++ [7] for `∞; (3) for spatial attacks, we use
the optimal attack of [11] that enumerates all small rotations and translations. For unbounded attacks
(C&W, EAD and decision-based attacks), we discard perturbations outside the `p-ball.

For each model, we report accuracy on 1000 test points for: (1) individual perturbation types; (2) the
union of these types, i.e., 1−Rmax

adv ; and (3) the average of all perturbation types, 1−Ravg
adv. We briefly

discuss the optimal error that can be achieved if there is no robustness trade-off. For perturbation sets
S1, . . . Sn, letR1, . . . ,Rn be the optimal risks achieved by distinct models. Then, a single model can
at best achieve riskRi for each Si, i.e., OPT(Ravg

adv) =
1
n

∑n
i=1Ri. If the errors are fully correlated,

so that a maximal number of inputs admit no attack, we have OPT(Rmax
adv ) = max{R1, . . . ,Rn}.

Our experiments show that these optimal error rates are not achieved.

Results on MNIST. Results are in Table 1. The left table is for the union of `p-attacks, and the
right table is for the union of `∞ and RT attacks. In both cases, the multi-perturbation training
strategies “succeed”, in that models Advavg and Advmax achieve higher multi-perturbation accuracy
than any of the models trained against a single perturbation type.

The results for `∞ and RT attacks are promising, although the best model Advmax only achieves 1−
Rmax

adv = 83.8% and 1−Ravg
adv = 87.6%, which is far less than the optimal values, 1−OPT(Rmax

adv ) =
min{91.4%, 94.6%} = 91.4% and 1 − OPT(Ravg

adv) = (91.4% + 94.6%)/2 = 93%. Thus, these
models do exhibit some form of the robustness trade-off analyzed in Section 2.

The `p results are surprisingly mediocre and re-raise questions about whether MNIST can be consid-
ered “solved” from a robustness perspective. Indeed, while training separate models to resist `1, `2
or `∞ attacks works well, resisting all attacks simultaneously fails. This agrees with the results of
Schott et al. [31], whose models achieve either high `∞ or `2 robustness, but not both simultaneously.
We show that in our case, this lack of robustness is partly due to gradient masking.

First-order adversarial training and gradient masking on MNIST. The model Adv∞ is not
robust to `1 and `2-attacks. This is unsurprising as the model was only trained on `∞-attacks. Yet,
comparing the model’s accuracy against multiple types of `1 and `2 attacks (see Appendix C) reveals
a more curious phenomenon: Adv∞ has high accuracy against first-order `1 and `2-attacks such as
PGD, but is broken by decision-free attacks. This is an indication of gradient-masking [27, 40, 1].

This issue had been observed before [31, 23], but an explanation remained illusive, especially since
`∞-PGD does not appear to suffer from gradient masking (see [25]). We explain this phenomenon by
inspecting the learned features of model Adv∞, as in [25]. We find that the model’s first layer learns
threshold filters z = ReLU(α · (x− ε)) for α > 0. As most pixels in MNIST are zero, most of the
zi cannot be activated by an ε-bounded `∞-attack. The `∞-PGD thus optimizes a smooth (albeit flat)
loss function. In contrast, `1- and `2-attacks can move a pixel xi = 0 to x̂i > ε thus activating zi, but
have no gradients to rely on (i.e, dzi/dxi = 0 for any xi ≤ ε). Figure 3 in Appendix D shows that
the model’s loss resembles a step-function, for which first-order attacks such as PGD are inadequate.

Note that training against first-order `1 or `2-attacks directly (i.e., models Adv1 and Adv2 in Table 1),
seems to yield genuine robustness to these perturbations. This is surprising in that, because of gradient
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Table 2: Evaluation of CIFAR10 models trained against `∞ and `1 attacks (left) or `∞ and
rotation-translation (RT) attacks (right). Models Adv∞, Adv1 and AdvRT are trained against a
single attack, while Advavg and Advmax are trained against two attacks using the “avg” and “max”
strategies. The columns show a model’s accuracy on individual perturbation types, on the union of
them (1−Rmax

adv ), and the average accuracy across them (1−Ravg
adv). The best results are in bold (at

95% confidence). A breakdown of all `1 attacks is in Appendix C.

Model Acc. `∞ `1 1−Rmax
adv 1−Ravg

adv

Nat 95.7 0.0 0.0 0.0 0.0

Adv∞ 92.0 71.0 16.4 16.4 44.9
Adv1 90.8 53.4 66.2 53.1 60.0

Advavg 91.1 64.1 60.8 59.4 62.5
Advmax 91.2 65.7 62.5 61.1 64.1

Model Acc. `∞ RT 1−Rmax
adv 1−Ravg

adv

Nat 95.7 0.0 5.9 0.0 3.0

Adv∞ 92.0 71.0 8.9 8.7 40.0
AdvRT 94.9 0.0 82.5 0.0 41.3

Advavg 93.6 67.8 78.2 65.2 73.0
Advmax 93.1 69.6 75.2 65.7 72.4

Table 3: Evaluation of affine attacks. For models trained with the “max” strategy, we evaluate
against attacks from a union SU of perturbation sets, and against an affine adversary that interpolates
between perturbations. Examples of affine attacks are in Figure 4.

Dataset Attacks acc. on SU acc. on Saffine

MNIST `∞ & RT 83.8 62.6
CIFAR10 `∞ & RT 65.7 56.0
CIFAR10 `∞ & `1 61.1 58.0

masking, model Adv∞ actually achieves lower training loss against first-order `1 and `2-attacks than
models Adv1 and Adv2. That is, Adv1 and Adv2 converged to sub-optimal local minima of their
respective training objectives, yet these minima generalize much better to stronger attacks.

The models Advavg and Advmax that are trained against `∞, `1 and `2-attacks also learn to use
thresholding to resist `∞-attacks while spuriously masking gradient for `1 and `2-attacks. This is
evidence that, unlike previously thought [41], training against a strong first-order attack (such as PGD)
can cause the model to minimize its training loss via gradient masking. To circumvent this issue,
alternatives to first-order adversarial training seem necessary. Potential (costly) approaches include
training on gradient-free attacks, or extending certified defenses [28, 42] to multiple perturbations.
Certified defenses provide provable bounds that are much weaker than the robustness attained by
adversarial training, and certifying multiple perturbation types is likely to exacerbate this gap.

Results on CIFAR10. The left table in Table 2 considers the union of `∞ and `1 perturbations,
while the right table considers the union of `∞ and RT perturbations. As on MNIST, the models
Advavg and Advmax achieve better multi-perturbation robustness than any of the models trained on a
single perturbation, but fail to match the optimal error rates we could hope for. For `1 and `∞-attacks,
we achieve 1−Rmax

adv = 61.1% and 1−Ravg
adv = 64.1%, again significantly below the optimal values,

1−OPT(Rmax
adv ) = min{71.0%, 66.2%} = 66.2% and 1−OPT(Ravg

adv) = (71.0% + 66.2%)/2 =
68.6%. The results for `∞ and RT attacks are qualitatively and quantitatively similar. 2

Interestingly, models Advavg and Advmax achieve 100% training accuracy. Thus, multi-perturbation
robustness increases the adversarial generalization gap [30]. These models might be resorting to
more memorization because they fail to find features robust to both attacks.

Affine Adversaries. Finally, we evaluate the affine attacks introduced in Section 2.5. These attacks
take affine combinations of two perturbation types, and we apply them on the models Advmax (we
omit the `p-case on MNIST due to gradient masking). To compound `∞ and `1-noise, we devise
an attack that updates both perturbations in alternation. To compound `∞ and RT attacks, we pick
random rotation-translations (with ±3βpx translations and ±30β◦ rotations), apply an `∞-attack
with budget (1− β)ε to each, and retain the worst example.

2An interesting open question is why the model Advavg trained on `∞ and RT attacks does not attain optimal
average robustnessRavg

adv. Indeed, on CIFAR10, detecting the RT attack of [11] is easy, due to the black in-painted
pixels in a transformed image. The following “ensemble” model thus achieves optimalRavg

adv (but not necessarily
optimal Rmax

adv ): on input x̂, return AdvRT(x̂) if there are black in-painted pixels, otherwise return Adv∞(x̂).
The fact that model Advavg did not learn such a function might hint at some limitation of adversarial training.
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The results in Table 3 match the predictions of our formal analysis: (1) affine combinations of `p
perturbations are no stronger than their union. This is expected given Claim 3 and prior observations
that neural networks are close to linear near the data [15, 29]; (2) combining of `∞ and RT attacks
does yield a stronger attack, as shown in Theorem 4. This demonstrates that robustness to a union of
perturbations can still be insufficient to protect against more complex combinations of perturbations.

5 Discussion and Open Problems

Despite recent success in defending ML models against some perturbation types [25, 11, 31], extend-
ing these defenses to multiple perturbations unveils a clear robustness trade-off. This tension may be
rooted in its unconditional occurrence in natural and simple distributions, as we proved in Section 2.

Our new adversarial training strategies fail to achieve competitive robustness to more than one attack
type, but narrow the gap towards multi-perturbation robustness. We note that the optimal risksRmax

adv
andRavg

adv that we achieve are very close. Thus, for most data points, the models are either robust to all
perturbation types or none of them. This hints that some points (sometimes referred to as prototypical
examples [4, 36]) are inherently easier to classify robustly, regardless of the perturbation type.

We showed that first-order adversarial training for multiple `p-attacks suffers from gradient masking
on MNIST. Achieving better robustness on this simple dataset is an open problem. Another challenge
is reducing the cost of our adversarial training strategies, which scale linearly in the number of pertur-
bation types. Breaking this linear dependency requires efficient techniques for finding perturbations
in a union of sets, which might be hard for sets with near-empty intersection (e.g., `∞ and `1-balls).
The cost of adversarial training has also be reduced by merging the inner loop of a PGD attack and
gradient updates of the model parameters [34, 44], but it is unclear how to extend this approach to a
union of perturbations (some of which are not optimized using PGD, e.g., rotation-translations).

Hendrycks and Dietterich [17], and Geirhos et al. [13] recently measured robustness of classifiers
to multiple common (i.e., non-adversarial) image corruptions (e.g., random image blurring). In that
setting, they also find that different classifiers achieve better robustness to some corruptions, and
that no single classifier achieves the highest accuracy under all forms. The interplay between multi-
perturbation robustness in the adversarial and common corruption case is worth further exploration.
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