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Abstract

We consider Markov Decision Processes (MDPs) where the rewards are unknown
and may change in an adversarial manner. We provide an algorithm that achieves a
regret bound of O(y/7(In S| + In [A])T In(T')), where S is the state space, A is
the action space, 7 is the mixing time of the MDP, and T is the number of periods.
The algorithm’s computational complexity is polynomial in |S| and | A|. We then
consider a setting often encountered in practice, where the state space of the MDP is
too large to allow for exact solutions. By approximating the state-action occupancy
measures with a linear architecture of dimension d < |S/|, we propose a modified
algorithm with a computational complexity polynomial in d and independent of
|S|. We also prove a regret bound for this modified algorithm, which to the best
of our knowledge, is the first O(ﬁ ) regret bound in the large-scale MDP setting
with adversarially changing rewards.

1 Introduction

In this paper, we study Markov Decision Processes (hereafter MDPs) with arbitrarily varying rewards.
MDP provides a general mathematical framework for modeling sequential decision making under
uncertainty [8} 24, |35]]. In the standard MDP setting, if the process is in some state s, the decision
maker takes an action a and receives an expected reward of (s, a). The process then randomly enters
a new state according to some known transition probability. In particular, the standard MDP model
assumes that the decision maker has complete knowledge of the reward function (s, a), which does
not change over time.

Over the past two decades, there has been much interest in sequential learning and decision making
in an unknown and possibly adversarial environment. A wide range of sequential learning problems
can be modeled using the framework of Online Convex Optimization (OCO) [45}20]. In the OCO
setting, the decision maker plays a repeated game against an adversary for a given number of rounds.
At the beginning of each round indexed by ¢, the decision maker chooses an action a; from a convex
compact set A and the adversary chooses a concave reward function r;(-), hence a reward of r;(a;)
is received. After observing the realized reward function, the decision maker chooses its next action
a¢+1 and so on. Since the decision maker does not know the future reward functions, its goal is to
achieve a small regret; that is, the cumulative reward earned throughout the game should be close to
the cumulative reward if the decision maker had been given the benefit of hindsight to choose a fixed
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action. We can express the regret for 7" rounds as

T
Regret(T) = max ri(a) — Zn(at).

t=1 t=1

The OCO model has many applications such as universal portfolios [13} 27, 23], online shortest path
[38], and online submodular minimization [22]]. It is also closely related with areas such as convex
optimization [21,[7] and game theory [10]. There are many algorithms that guarantee sublinear regret,
e.g., Online Gradient Descent [45]], Perturbed Follow the Leader [28]], and Regularized Follow the
Leader [37, 14]]. Compared with the MDP setting, the main difference is that in OCO there is no notion
of states, however the payoffs may be chosen by an adversary.

In this work, we study a general problem framework that unites MDP and OCO, which we call the
Online MDP problem. More specifically, we consider MDPs where the transition probabilities are
known but the rewards are sequentially chosen by an adversary.

We list below some canonical motivating examples that can be modeled as Online MDPs.

e Adversarial Multi-Armed Bandits with Constraints [43]]: We can generalize the adversarial
multi-armed bandits problem with k& arms (see Auer et al. [5]) with various constraints
such as: restricting the number of times that an arm can be chosen in a given time interval,
limiting how we switch between arms, etc. These constraints can be captured easily by
defining appropriate states in the Online MDP.

e The Paging Problem [17]]: Suppose we are given n pages. A memory can hold at most
k (k < n) of them. An arbitrary sequence of paging request arrives. A page request is a
hit if the associated page is in memory, and is a miss otherwise. After each request, the
decision maker may swap any page in memory by paying some cost. Note that the state of
the memory and the swapping decisions can be modeled using MDP. The decision maker’s
goal is to maximize the number of hits minus the switching costs.

e The k-Server Problem [29,[17]: In this classical problem in computer science, there are k
servers, represented as points in a metric space. Requests arrive to the metric space, which
are also represented as points. As each request arrives, the decision maker can choose to
move one of the servers to the requested point. The goal is to minimize the total distance all
servers move. If the arrivals of requests are adversarial, this problem can be modeled as an
Online MDP problem, where the state represents the position of servers.

Notice that in all of the problems above, the transition probabilities are known, while the adversarial
rewards/costs are observed by the decision maker sequentially after each decision epoch. Moreover,
in each of these Online MDP problems, the size of the state space may grow exponentially with the
number k. Some other noteworthy examples are the stochastic inventory control problem [35]] and
some server queuing problems [14} 3.

1.1 Main Results

We propose a new computationally efficient algorithm that achieves near optimal regret for the
Online MDP problem. Our algorithm is based on the (dual) linear programming formulation of
infinite-horizon average reward MDPs, which uses the occupancy measure of state-action pairs
as decision variables. This approach differs from other papers that have studied the Online MDP
problem previously, see review in §1.2]

We prove that the algorithm’s regret is bounded by O(7 + /7T (In S| + In|A[) In(T)), where S
denotes the state space, A denotes the action space, 7 is the mixing time of the MDP, and T is the
number of periods. Notice that this regret bound depends logarithmically on the size of the state and
action space. The algorithm solves a regularized linear program in each period with poly(|S||A|)
complexity. The regret bound and the computation complexity compares favorably to the existing
methods, which are summarized in §1.2]

We then extend our results to the case where the state space S is extremely large so that poly(|S||A|)
computational complexity is impractical. We assume the state-action occupancy measures associated
with stationary policies are approximated with a linear architecture of dimension d < |.S|. We design
an approximate algorithm combining several innovative techniques for solving large scale MDPs



inspired by [2,13]. A salient feature of this algorithm is that its computational complexity does not
depend on the size of the state-space but instead on the number of features d. The algorithm has a

regret bound O(cg 4(In|S|+1n|A|)vV 7T InT), where cg_4 is a problem dependent constant. To the
best of our knowledge, this is the first O(v/T') regret result for large scale Online MDPs.

1.2 Related Work

The history of MDP goes back to the seminal work of Bellman [6]] and Howard [24] from the
1950’s. Some classic algorithms for solving MDP include policy iteration, value iteration, policy
gradient, Q-learning and their approximate versions (see 33} 18} 9] for an excellent discussion). In
this paper, we will focus on a relatively less used approach, which is based on finding the occupancy
measure using linear programming, as done recently in [12} |39} 2] to solve MDPs with static rewards
(see more details in Section [3.1)). To deal with the curse of dimensionality, Chen et al. [12] uses
bilinear functions to approximate the occupancy measures and Abbasi-Yadkori et al. [2] uses a linear
approximation.

The Online MDP problem was first studied a decade ago by [43,[17]. Even-Dar et al. [17] developed

no regret algorithms where the bound scales as O(724/T In(]A|)), where 7 is the mixing time defined
in Their method runs an expert algorithm (e.g. Weighted Majority [31]) on every state where the
actions are the experts. However, the authors did not consider the case with large state space in their
paper. Yu et al. [43] proposed a more computationally efficient algorithm using a variant of Follow
the Perturbed Leader [28]], but unfortunately their regret bound becomes O(|S||A|?7T3/4+<). They
also considered approximation algorithm for large state space, but did not establish an exact regret
bound. The work most closely related to ours is that from Dick et al. [[15], where the authors also use
a linear programming formulation of MDP similar to ours. However, there seem to be some gaps
in the proof of their results That issue aside, in order to solve large-scale MDPs, their focus is to
efficiently solve the quadratic sub-problems that define their iterates efficiently. Instead, we leverage
the linear approximation scheme introduced in [2].

Ma et al. [32] also considers Online MDPs with large state space. Under some conditions, they show
sublinear regret using a variant of approximate policy iteration, but the regret rate is left unspecified
in their paper. Zimin and Neu [44] considered a special class of MDPs called episodic MDPs and
design algorithms using the occupancy measure LP formulation. Following this line of work, Neu
et al. [34] shows that several reinforcement learning algorithms can be viewed as variant of Mirror
Descent [25]], thus one can establish convergence properties of these algorithms. In [33]], the authors
considered Online MDPs with bandit feedback and provide an algorithm based on [17]]’s with regret
of O(T2/3). Some other related work can be found in [[11} 30l 26].

A more general problem to the Online MDP setting considered here is where the MDP transition
probabilities also change in an adversarial manner, which is beyond the scope of this paper. It
is believed that this problem is much less tractable computationally; see discussion in [16]. Yu
and Mannor [42] studied MDPs with changing transition probabilities, although [33] questions the
correctness of their result, as the regret obtained seems to have broken a lower bound. In [19], the
authors use a sliding window approach under a particular definition of regret. Abbasi-Yadkori et
al. [1]] achieved sublinear regret with changing transition probabilities when compared against a
restricted policy class.

2 Problem Formulation: Online MDP

We consider a general Markov Decision Process (MDP) with known transition probabilities but
unknown and adversarially chosen rewards. Let S denote the set of possible states, and A denote
the set of actions. (For notational simplicity, we assume the set of actions a player can take is the
same for all states, but this assumption can be relaxed easily.) At each period ¢ € [T, if the system is
in state s; € S, the decision maker chooses an action a; € A and collects a reward (s, a;). Here,
ry 1S x A — [—1,1] denotes a reward function for period ¢. We assume that the sequence of reward

'In particular, we believe the proof of Lemma 1 in [[13] is incorrect. Equation (8) in their paper states that
the regret relative to a policy is equal to the sum of a sequence of vector products; however, the dimensions
of vectors involved in these dot products are incompatible. By their definition, the variable v, is a vector of
dimension |S|, which is being multiplied with a loss vector with dimension |S||A|.



functions {r;}._, is initially unknown to the decision maker. The function r; is revealed only after
the action a; has been chosen. We allow the sequence {r;}._; to be chosen by an adaptive adversary,
meaning 7, can be chosen using the history {s;}_; and {a;}Z{. In particular, the adversary does
not observe the action a; when choosing r;. After a; is chosen the system then proceeds to state
S¢+1 in the next period with probability P(s;t1]|s¢, a;). We assume the decision maker has complete
knowledge of the transition probabilities given by P(s’|s,a): S x A — S.

Suppose that the initial state of the MDP follows s; ~ 14, where v is a probability distribution
over S. The objective of the decision maker is to choose a sequence of actions based on the history
of states and rewards observed, such that the cumulative reward in T periods is close to that of
the optimal offline static policy. Formally, let 7 denote a stationary (possibly randomized) policy:
m: S — A4, where A 4 is the set of probability distributions over the action set A. Let IT denote the
set of all stationary policies. We aim to find an algorithm that minimizes

T
MDP-Regret(T) £ sup R(T, ), with R(T, ) Z (sT,a7)] Z (s¢,a0)], (1)

well t=1

where the expectations are taken with respect to random transitions of MDP and (possibly) external
randomization of the algorithm.

3 Preliminaries

Next, we provide additional notations for the MDP. Let P[,, £ P(s' | s,7(s)) be the probability
of transmonmg from state s to s’ given a policy 7. Let P~ be an |S| x |S| matrix with entries

PT. (Vs,s" € S). We use row vector v; € Ag to denote the probability distribution over states at
time ¢. Let " " 1 be the distribution over states at time ¢ + 1 under policy =, given by v/, | = v, P™.
Let v7, denote the stationary distribution for policy 7, which satisfies the linear equation v];, = v, P™.
We assume the following condition on the convergence to stationary distribution, which is commonly
used in the MDP literature [see 43\ 17, 133].

Assumption 1. There exists a real number T > 0 such that for any policy m € 1l and any pair of
distributions v,V € Ag, it holds that ||[vP™ — /' P™ ||y < e~ 7 ||y — /| 1.

We refer to 7 in Assumption [I] as the mixing time, which measures the convergence speed to the
stationary distribution. In particular, the assumption implies that v/, is unique for a given policy 7.
We use p(s,a) to denote the proportion of time that the MDP visits state-action pair (s,a) in

the long run. We call u™ € RISIXIAl the occupancy measure of policy 7. Let p7 be the long-
run average reward under policy 7 when the reward function is fixed to be r; every period, i.e.,

pr 2 limy e &= 301 Elry(sT, af)]. We define p, 2 pf*, where m, is the policy selected by the
decision maker at time ¢.

3.1 Linear Programming Formulation for the Average Reward MDP

Given a reward function r : S x A — [—1, 1], suppose one wants to find a policy 7 that maximizes
the long-run average reward: p* = sup, limr_,c 7 Zle r(sT,al). Under Assumption the
Markov chain induced by any policy is ergodic and the long-run average reward is independent of
the starting state (see [8]]). It is well known that the optimal policy can be obtained by solving the
Bellman equation, which in turn can be written as a linear program (in the dual form):

p —m&XZZ sa sa (2)

se€ES acA

s.t. ZZ s,a)P(s'|s,a) = Zu(s’,a) vs' e S
sES acA a€A
ZZu(s,a)zl, wu(s,a) >0 VseS, Vae A
s€ES acA

Let /* be an optimal solution to the LP (2Z). We can construct an optimal policy of the MDP by

defining 7* (s, a) = % for all s € S such that ), " (s, a) > 0; for states where the



denominator is zero, the policy may choose arbitrary actions, since those states will not be visited in
the stationary distribution. Let v/}, be the stationary distribution over states under this optimal policy.

For simplicity, we will write the first constraint of LP (2)) in the matrix form as u' (P — B) = 0,
where B is an appropriately chosen matrix with 0-1 entries. We denote the feasible set of the above
LPasAy 2 {p€R:pu>0,u"1=1,u" (P~ B)=0}. The following definition will be used in
the analysis later.

Definition 1. Let 5y > 0 be the largest real number such that for all § € [0, o), the set Ays 5 =
{peRSXIAL > 6 uT1 =1,u" (P — B) = 0} is nonempty.

4 A Sublinear Regret Algorithm for Online MDP

In this section, we present an algorithm for the Online MDP problem. The algorithm is very intuitive
given the LP formulation (2) for the static problem. As the rewards may change each round, the
algorithm simply treats the Online MDP problem as an Online Convex Optimization (OCO) problem
with reward functions {r;}]_; and decision set A ;.

Algorithm 1 (MDP-RFTL)
input: parameter 6 > 0,7 > 0, regularization term R(u) = > ¢ > ,ca i(5,a)In(u(s, a))

initialization: choose any 11 € Ay s C RISIXIAI
fort=1,...T do
observe current state s;

if >, c 4 1¢(5¢,a) > 0 then
choose action a € A with probability %

else
choose action a € A with probability I%\\

end if

observe reward function 7, € [—1, 1]/SI14l

update jig 41 ¢ ATgMAXen 5 Doy |(Tis 1) — %R(M)}
end for

At the beginning of each round ¢ € [T, the algorithm starts with an occupancy measure f;. If the
MDP is in state s;, we play action a € A with probability % If the denominator is O,
the algorithm picks any action in A with equal probability. After observing reward function r; and
collecting reward r¢(s;, a; ), the algorithm changes the occupancy measure to ;1.

The new occupancy measure is chosen according to the Regularized Follow the Leader (RFTL)
algorithm [37|4]. RFTL chooses the best occupancy measure for the cumulative reward observed so
far, 22:1 r;, plus a regularization term R(1). The regularization term forces the algorithm not to
drastically change the occupancy measure from round to round. In particular, we choose R(u) to be
the entropy function. This choice will allow us to get In(].S||A|) dependence in the regret bound.

The complete algorithm is shown in Algorithm[I} The main result of this section is the following.

Theorem 1. Suppose {r;}L_, is an arbitrary sequence of rewards such that |r(s,a)| < 1 for all
se Sanda e A. ForT > 1n*(1/dy), the MDP-RFTL algorithm with parameters 1 = 1/ w,
§=e VI/VT guarantees

MDP-Regret(T) < O (T +4y/7T(In|S] + In|A]) 1n(T)) :

The regret bound in Theorem (1| is near optimal: a lower bound of 2(1/T In|A|) exists for the
problem of learning with expert advice [18, 20], a special case of Online MDP where the state
space is a singleton. We note that the bound only depends logarithmically on the size of the state
space and action space. The state-of-the-art regret bound for Online MDPs is that of [17]], which is

O(1 + 72y/In(JA])T). Compared to their result, our bound is better by a factor of 73/2. However,



our bound has depends on +/In |S| + In | A|, whereas the bound in [17] depends on /In |A|. Both
algorithms require poly(|S||A|) computation time, but are based on different ideas: the algorithm of
[17] is based on expert algorithms and requires computing ()-functions at each time step, whereas
our algorithm is based on RFTL. In the next section, we will show how to extend our algorithm to the
case with large state space.

4.1 Proof Idea for Theorem[1]

The key to analyze our algorithm is to decompose the regret with respect to policy 7 € II as follows

T T
Z pL— Z Pt
t=1 t=1

This decomposition was first used by [[17]]. We now give some intuition on why R(T', 7) should be
sublinear. By the mixing condition in Assumption [T} the state distribution v/ at time ¢ under a policy
m differs from the stationary distribution v/7, by at most O(7). This result can be used to bound the
first term of (3).

The second term of (3) can be related to the online convex optimization (OCO) problem through
the linear programming formulation from §3.1} Notice that pf = Y o> ca 1™ (s,a)r(s,a) =

(we,r),and pr = >0 gD aca i (s,a)r(s,a) = (u™, ). Therefore, we have

T T
Z Pt_E[Z Tt(St, at)] . 3

t= t=1

+ +

T T
R(T,m) = |E[Y_re(s7,af)]=)_ pf

t=1

T

T T T
DT =D =) W) =Y W), e
t=1 t=1

t=1 t=1

which is exactly the regret quantity commonly studied in the OCO problem. We are thus seeking an

algorithm that can bound max,,~ca ,, E‘iT_l (U™, re)— Zthl (u™, r¢). In order to achieve logarithmic
dependence on | S| and |A[ in Theorem |1} we apply the RFTL algorithm, regularized by the negative
entropy function R(u). A technical challenge we faced in the analysis is that R(u) is not Lipschitz
continuous over the feasible set Ay;. So we design the algorithm to play in a shrunk set A, 5 for
some & > 0 (see Definition [T}, in which R(y) is indeed Lipschitz continuous.

For the last term in (3)), note that it is similar to the first term, albeit more complicated: the policy 7
is fixed in the first term, but the policy m; used by the algorithm is varying over time. To solve this
challenge, the key idea is to show that the policies do not change too much from round to round, so
that the third term grows sublinearly in 7. To this end, we use the property of the RFTL algorithm
with a carefully chosen regularization parameter 7 > 0. The complete proof of Theorem [I]can be
found in Appendix [A]

5 Online MDPs with Large State Space

In the previous section, we designed an algorithm for Online MDP with sublinear regret. However,
the computational complexity of our algorithm is O(poly(|S||A|)) per round. MDPs in practice often
have extremely large state space S due to the curse of dimenionality [8]], so computing the exact
solution becomes impractical. In this section, we propose an approximate algorithm that can handle
large state space.

5.1 Approximating Occupancy Measures and Regret Definition

We consider an approximation scheme introduced in [3]] for standard MDPs. The idea is to use d
feature vectors (with d < |S||A|) to approximate occupancy measures z € RIS1*I41 Specifically,
we approximate /1 &~ ®6 where @ is a given matrix of dimension |S||A| x d,and § € © £ {§ € R% :
[10]lcc < W} for some positive constant W. As we will restrict the occupancy measures chosen by
our algorithm to satisfy p = ®6, the definition of MDP-regret (I)) is too strong as it compares against
all stationary policies. Instead, we restrict the benchmark to be the set of policies II® that can be
represented by matrix ®, where

IS {m € I : there exists 4™ € A such that u™ = ®6 for some § € O}.



Our goal will now be to achieve sublinear ®-MDP-regret defined as

T

T
®-MDP-Regret(T) £ E[ 5
egret( TI{I;%); 2 ri(sy,ay) tzzlrt St,a)] ®))

where the expectation is taken with respect to random state transitions of the MDP and randomization
used in the algorithm. Additionally, we want to make the computational complexity independent of
|S] and | A].

Choice of Matrix ® and Computation Efficiency. The columns of matrix & € RISII41>¢ represent
probability distributions over state-action pairs. The choice of ® is problem-dependent, and a
detailed discussion is beyond the scope of this paper. Abbasi-Yadkori et al. [3]] shows that for many
applications such as the game of Tetris and queuing networks, ® can be naturally chosen as a sparse
matrix, which allows constant time access to entries of ¢ and efficient dot product operations. We
will assume such constant time access throughout our analysis. We refer readers to [3] for further
details.

5.2 The Approximate Algorithm

The algorithm we propose is built on MDP-RFTL, but is significantly modified in several aspects.
We start with key ideas on how and why we need to modify the previous algorithm, and then formally
present the new algorithm. To aid our analysis, we make the following definition.

Definition 2. Let 0y > 0 be the largest real number such that for all § € [0, 6] the set A% M= £{ue

RISIAL: there exists 0 € © such that jp = ®0, 11> 6,41 =1, u" (P — B) = 0} is nonempty. We
also write A%, = Ao

As a first attempt, one could replace the shrunk set of occupancy measures Ay s in Algorithm [1]
with Aﬁj 5 defined above. We then use occupancy measures ;®%+1 £ g7 1 given by the RFTL
algorithm, i.e., 07, = argmaxgeas, | S [{ri, ) — (1/n)R()]. The same proof of Theorem
would apply and guarantee a sublinear ®-MDP-Regret. Unfortunately, replacing A ;s with A%y s
does not reduce the time complexity of computing the iterates {1 ®% }1_,, which is still poly(|S||A]).
To tackle this challenge, we will not apply the RFTL algorithm exactly, but will instead obtain an

approximate solution in poly(d) time. We relax the constraints > § and ' (P — B) = 0 that
define the set A% 5> and add the following penalty term to the objective function:

V(0) £ —H[[(20) " (P — B)|l — He|| min{3, 20} .. (6)

Here, { H;}]_, is a sequence of tuning parameters that will be specified in Theorem I Let ©% £
{0 € ©,17(®0) = 1}. Thus, the original RFTL step in Algorlthmlnow becomes

t t
1

max > ¢"(0), where ct"(6) & {r-,@& — —R(®0)| + V(). 7

s 3 0) )23 | #0) ~ LR (@9)] +V ) ™

In the above function, we use a modified entropy function R?(-) as the regularization term, because

the standard entropy function has an infinite gradient at the origin. More specifically, let R, (1) =

(s, a)In(u(s,a)) be the entropy function. We define R°(p) = 2 (s.0) R‘(ss’a) (1(s,a)), where

5 A {R(s,a) (1) if p(s,a) > 6 "

(@) 7 Ris,) (0) + gfray Bis.y (0)(u(s,a) —8)  otherwise.

Since computing an exact gradient for function ¢*(-) would take O(|S||A|) time, we solve problem
by stochastic gradient ascent. The following lemma shows how to efficiently generate stochastic
subgradients for function ¢*" via sampling.



Lemma 1. Let q1 be any probability distribution over state-action pairs, and qs be any probability
distribution over all states. Sample a pair (s',a’) ~ q1 and 8" ~ qo. The quantity

H
gsl"alys//(g) = @TT’t + m®(8/7a/)7zﬂ{®(slﬁal)7:9 S (5}
— i[(P—B)T@] i .sign([(P — B) @], .60) — ' R (®0)
g2(s") ot ST (s ar) 0T

satisfies By o/)mqy s mgs (957,51 (0)]0] = Vo () for any 6 € ©. Morever, we have ||g(0)]]2 <
tVd + Hy(Cy + Cy) + %(1 + In(Wd) + | In(d)|)Cy, wp.1, where
125,00, 12 I(P - B). @l

0 = P2 - o) - pax o ——as 712 9
s T L) ®

Putting everything together, we present the complete approximate algorithm for large state online
MDPs in Algorithm 2] The algorithm uses Projected Stochastic Gradient Ascent (Algorithm[3)) as a
subroutine, which uses the sampling method in Lemma(I]to generate stochastic sub-gradients.

Algorithm 2 (LARGE-MDP-RFTL)

input: matrix ®, parameters: 7, > 0, convex function R (1), SGA step-size schedule {w;}7_,
penalty term parameters { H; }7_;
initialize: 6, < PSGA(—R%(®0) + V (6), 0% wy, Ko)
fort=1,...,T do

observe current state s;; play action a with distribution
[SI1A]

__[®0]s (s00)
>acal®Oi]y(se,a)
observe ry € [—1,1]
Or41 + PSGA(Y_, [(ri, ®0) — LR (20)] 4+ V(6), O, wy, Ky)
end for

Algorithm 3 Projected Stochastic Gradient Ascent: PSGA(f, X, w, K)

input: concave objective function f, feasible set X, stepsize w, r1 € X
fork=1,..K do
compute a stochastic subgradient gy, such that E[gx] = V f(x)) using Lemma
set xp11 + Px(zp +wg(zy))
end for

output: L %

5.3 Analysis of the Approximate Algorithm
We establish a regret bound for the LARGE-MDP-RFTL algorithm as follows.

Theorem 2. Suppose {r;}_, is an arbitrary sequence of rewards such that |r(s,a)| < 1 for
alls € Sanda € A. ForT > IHQ(%), LARGE-MDP-RFTL with parameters n = \/é,é =

_ 2
‘ \/T’ K(t) B [W3/2t2d3/274(01 +C2)T3/2 ln(WTd)] S \/m(t\/ﬁ+ﬁ(‘/g1+c‘z)+icl)
n

guarantees that
®-MDP-Regret(T) < O(cs,aIn(|S||A)VTT In(T)).
Here cg, 4 is a problem dependent constant. The constants C, Cy are defined in Lemma[Z]
A salient feature of the LARGE-MDP-RFTL algorithm is that its computational complexity in each
period is independent of the size of state space |.S| or the size of action space | A[, and thus is amenable

to large scale MDPs. In particular, in Theorem [2] the number of SGA iterations, K (), is O(d) and
independent of |S| and | A|.

Compared to Theorem[I] we achieve a regret with similar dependence on the number of periods 7'
and the mixing time 7. The regret bound also depends on In(|S]) and In(|A4]|), with an additional



constant term cg, 4. The constant comes from a projection problem (see details in Appendix [B)) and
may grow with |S| and |A| in general. But for some MDP problems, cs 4 can be bounded by an
absolute constant: an example is the well-known (Markovian) multi-armed bandit problem [41]]. For
a more detailed discussion of the constant cg 4, we refer readers to Appendix E}

Proof Idea for Theorem Consider the MDP-RFTL iterates ,{#; } Z_;, and the occupancy measures
{p®%}7_, induced by following policies {®6; }/_,. Since 6; € A%, ; it holds that u*% = ®6;
for all ¢. Thus, following the proof of Theorem[I} we can obtain the same ®-MDP-Regret bound in
Theoremif we follow policies {®0; }1_,. However, computing ¢; takes O(poly(]S||A|)) time.

The crux the proof of Theorem |2[is to show that the {@ét}z;l iterates in Algorithm [2| induce

occupancy measures {u®%}7_ | that are close to {u®% }7_,. Since the algorithm has relaxed
constraints of A%, s, in general we have ®6; ¢ A%, ; and thus p®% = ®6,. So we need to show that

D41

the distance between u<1>9;‘+1’ and p is small. Using triangle inequality we have

10— W)y < 1™~ Pag (®0)]l1 + 1| Pas, ,(90,) — @0,] + [, — u®* |,

M,s

where PA% s (+) denotes the Euclidean projection onto A;IC{, s+ We then proceed to bound each term
individuall};. We defer the details to Appendix [B|as bounding each term requires lengthy proofs.

6 Conclusion

We consider Markov Decision Processes (MDPs) where the transition probabilities are known but the
rewards are unknown and may change in an adversarial manner. We provide a simple online algorithm,
which applies Regularized Follow the Leader (RFTL) to the linear programming formulation of
the average reward MDP. The algorithm achieves a regret bound of O(+/7(In |S| + In [A|)T In(T)),
where S is the state space, A is the action space, 7 is the mixing time of the MDP, and 7’ is the number
of periods. The algorithm’s computational complexity is polynomial in |S| and | A| per period.

We then consider a setting often encountered in practice, where the state space of the MDP is
too large to allow for exact solutions. We approximate the state-action occupancy measures with
a linear architecture of dimension d < |S||A|. We then propose an approximate algorithm that
relaxes the constraints in the RFTL algorithm, and then solve the relaxed problem using stochastic
gradient descent method. The computational complexity of this approximate algorithm is indepen-
dent of the size of state space |S| and the size of action space |A|. We prove a regret bound of
O(cs,.aIn(|S||A|)VTT In(T)) compared to the best static policy approximated by the linear archi-
tecture, where cg 4 is a problem dependent constant. To the best of our knowledge, this is the first

O(V/T) regret bound for large scale MDPs with changing rewards.
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