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Abstract

Selection of input features such as relevant pieces of text has become a common
technique of highlighting how complex neural predictors operate. The selection can
be optimized post-hoc for trained models or incorporated directly into the method
itself (self-explaining). However, an overall selection does not properly capture the
multi-faceted nature of useful rationales such as pros and cons for decisions. To this
end, we propose a new game theoretic approach to class-dependent rationalization,
where the method is specifically trained to highlight evidence supporting alternative
conclusions. Each class involves three players set up competitively to find evidence
for factual and counterfactual scenarios. We show theoretically in a simplified
scenario how the game drives the solution towards meaningful class-dependent
rationales. We evaluate the method in single- and multi-aspect sentiment classifica-
tion tasks and demonstrate that the proposed method is able to identify both factual
(justifying the ground truth label) and counterfactual (countering the ground truth
label) rationales consistent with human rationalization. The code for our method is
publicly available2.

1 Introduction

Interpretability is rapidly rising alongside performance as a key operational characteristics across
NLP and other applications. Perhaps the most straightforward means of highlighting how a complex
method works is by selecting input features relevant for the prediction (e.g., [19]). If the selected
subset is short and concise (for text), it can potentially be understood and verified against domain
knowledge. The selection of features can be optimized to explain already trained models [24],
incorporated directly into the method itself as in self-explaining models [19, 12], or optimized to
mimic available human rationales [8].

One of the key questions motivating our work is extending how rationales are defined and estimated.
The common paradigm to date is to make an overall selection of a feature subset that maximally
explains the target output/decision. For example, maximum mutual information criterion [12, 19]
chooses an overall subset of features such that the mutual information between the feature subset and
the target output decision is maximized, or, equivalently, the entropy of the target output decision
conditional on this subset is minimized. Rationales can be multi-faceted, however, involving support
for different outcomes, just with different degrees. For example, we could understand the overall
sentiment associated with a product in terms of weighing associated pros and cons contained in the
review. Existing rationalization techniques strive for a single overall selection, therefore lumping
together the facets supporting different outcomes.

We propose the notion of class-wise rationales, which is defined as multiple sets of rationales
that respectively explain support for different output classes (or decisions). Unlike conventional
∗Authors contributed equally to this paper.
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rationalization schemes, class-wise rationalization takes a candidate outcome as input, which can
be different from the ground-truth class labels, and uncovers rationales specifically for the given
class. To find such rationales, we introduce a game theoretic algorithm, called Class-wise Adversarial
Rationalization (CAR). CAR consists of three types of players: factual rationale generators, which
generate rationales that are consistent with the actual label, counterfactual rationale generators, which
generate rationales that counter the actual label, and discriminators, which discriminate between
factual and counterfactual rationales. Both factual and counterfactual rationale generators try to
competitively “convince” the discriminator that they are factual, resulting in an adversarial game
between the counterfactual generators and the other two types of players.

We will show in a simplified scenario how CAR game drives towards meaningful class-wise rational-
ization, under an information-theoretic metric, which is a class-wise generalization of the maximum
mutual information criterion. Moreover, empirical evaluation on both single- and multi-aspect senti-
ment classification show that CAR can successfully find class-wise rationales that align well with
human understanding. The data and code will become publicly available.

2 Related Work

There are two lines of research on generating interpretable features of neural network. The first is
to directly incorporate the interpretations into the models, a.k.a self-explaining models [3, 4, 5, 15].
The other line is to generate interpretations in a post-hoc manner. There are several ways to perform
post-hoc interpretations. The first class of method is to explicitly introduce a generator that learns
to select important subsets of inputs as explanations [12, 19, 21, 30, 31], which often comes with
some information-theoretic properties. The second class is to evaluate the importance of each input
feature via backpropagation of the prediction. Many of these methods utilize gradient information [6,
20, 25, 26, 27, 28], while techniques like local perturbations [11, 13, 16, 22] and Parzen window [7]
have also been used to loose the requirement of differentiability. Finally, the third class is locally
fitting a deep network with interpretable models, such as linear models [2, 24]. There are also some
recent works trying to improve the fidelity and/or stability of post hoc explanations by including the
explanation mechanism in the training procedure [17, 18].

Although none of the aforementioned approaches can perform class-wise rationalization, gradient-
based methods can be intuitively adapted for this purpose, which produces explanations toward a
certain class by probing the importance with respect to the corresponding class logit. However, as
noted in [24], when the input feature is far away from the corresponding class, the local gradient or
perturbation probe can be very inaccurate. Evaluation of such methods will be provided in section 5.

3 Class-wise Rationalization

In this section, we will introduce our adversarial approach to class-wise rationalization. For notations,
upper-cased letters, e.g. X or X, denote random variables or random vectors respectively; lower-cased
letters, e.g. x or x, denote deterministic scalars or vectors respectively; script letters, e.g. X , denote
sets. pX|Y (x|y) denotes the probability of X = x conditional on Y = y. E[X] denotes expectation.

3.1 Problem Formulation

Consider a text classification problem, where X is a random vector representing a string of text, and
Y ∈ Y represents the class that X is in. The class-wise rationalization problem can be formulated as
follows. For any input X, our goal is to derive a class-wise rationale Z(t) for any t ∈ Y such that
Z(t) provides evidence supporting class t. Each rationale can be understood as a masked version
X, i.e. X with a subset of its words masked away by a special value (e.g. 0). Note that class-wise
rationales are defined for every class t ∈ Y. For t = Y (the correct class) the corresponding rationale
is called factual; for t 6= Y we call them counterfactual rationales. For simplicity, we will focus on
two-class classification problems (Y = {0, 1}) for the remainder of this section. Generalization to
multiple classes will be discussed in appendix A.4.

As a clarification, notice that during inference, the class t that is provided to the system does not
need to be the ground truth. No matter what t is provided, factual or counterfactual, the algorithm is
supposed to try its best to find evidence in support of t. Therefore, the inference does not need to
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Figure 1: CAR training and inference procedures of the class-0 case. (a) The training procedure. (b) During
inference, there is no ground truth label. In this case, we will always trigger the factual generators.

access the ground truth label. However, the training of the algorithm requires the ground truth label
Y , because it needs to learn the phrases and sentences that are informative of each class.

3.2 The CAR Framework

CAR uncovers class-wise rationales using adversarial learning, inspired by outlining pros and cons for
decisions. Specifically, there are two factual rationale generators, gf

t (X), t ∈ {0, 1}, which generate
rationales that justify class t when the actual label agrees with t, and two counterfactual rationale
generators, gc

t (X), t ∈ {0, 1}, which generate rationales for the label other than the ground truth.
Finally, we introduce two discriminators dt(Z), t ∈ {0, 1}, which aim to discriminate between factual
and counterfactual rationales, i.e., between gf

t (X) and gc
t (X). We thus have six players, divided into

two groups. The first group pertains to t = 0 and involves gf
0 (X), gc

0(X) and d0(Z) as players. Both
groups play a similar adversarial game, so we focus the discussion on the first group.

Discriminator: In our adversarial game, d0(·) takes a rationale Z generated by either gf
0 (·) or gc

0(·)
as input, and outputs the probability that Z is generated by the factual generator gf

0 (·). The training
target for d0(·) is similar to the generative adversarial network (GAN) [14]:

d0(·) = argmin
d(·)

−pY (0)E[log d(gf
0 (X))|Y = 0]− pY (1)E[log(1− d(gc

0(X)))|Y = 1]. (1)

Generators: The factual generator gf
0 (·) is trained to generate rationales from text labeled Y = 0.

The counterfactual generator gc
0(·), in contrast, learns from text labeled Y = 1. Both generators try to

convince the discriminator that they are factual generators for Y = 0.

gf
0 (·) = argmax

g(·)
E[h0(d0(g(X)))|Y = 0], and gc

0(·) = argmax
g(·)

E[h1(d0(g(X)))|Y = 1],

s.t. gf
0 (X)) and gc

0(X) satisfy some sparsity and continuity constraints.
(2)

The constraints stipulate that the words selected as rationales should be a relatively small subset of
the entire text (sparse) and they should constitute consecutive segments (continuous). We will keep
the constraints abstract for generality for now. The actual form of the constraints will be specified
in section 4. h0(·) and h1(·) are both monotonically-increasing functions that satisfy the following
properties:

xh0

(
x

x+ a

)
is convex in x, and xh1

(
a

x+ a

)
is concave in x, ∀x, a ∈ [0, 1]. (3)

One valid choice is h0(x) = log(x) and h1(x) = − log(1− x), which reduces the problem to the more
canonical GAN-style problem. In practice, we find that other functional forms have more stable
training behavior. As shown later, this generalization is closely related to f -divergence.

Figure 1(a) summarizes the training procedure of these three players. As can be seen, gc
0(·) plays an

adversarial game with both d0(·) and gf
0 (·), because it tries to trick d0(·) into misclassifying its output

as factual, whereas gf
0 (·) helps d0(·) make the correct decision. The other group of players, gf

1 (·),
gc
1(·) and d1(·), play a similar game. The only difference is that now the factual generator operates on

text with label Y = 1, and the counterfactual generator on text with label Y = 0.
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3.3 How Does It Work?

Consider a simple bag-of-word scenario, where the input text is regarded as a collection of words
drawn from a vocabulary of size N . In this case, X can be formulated as an N -dimensional binary
vector. Xi = 1, if the i-th word is present, and Xi = 0 otherwise. pX|Y (x|y) represents the probability
distribution of X in natural text conditional on different classes Y = y.

The rationales Zf
0 and Zc

0 are also multivariate binary vectors. Zf
0,i = 1 if the i-th word is selected

as part of the factual rationale, and Zf
0,i = 0 otherwise. p

Z
f
0 |Y

(z|0) denotes the induced distribution
of the factual rationales, which is only well-defined in the factual case (Y = 0). This distribution is
determined by how gf

0 (·) generates the rationales across examples. In the optimization problem, we
will primarily make use of the induced distribution, and similarly for the counterfactual rationales.

To simplify our discussion, we assume that the dimensions of X are independent conditional on Y .
Furthermore, we assume that the rationale selection scheme selects each word independently, so
the induced distributions over Zf

0 and Zc
0 are also independent across dimensions, conditional on Y .

Formally, ∀x,z ∈ {0, 1}N , ∀y ∈ {0, 1},

pX|Y (x|y) =
N∏
i=1

pXi|Y (xi|y), pZf
0 |Y

(z|y) =
N∏
i=1

p
Z

f
0,i|Y

(zi|y), pZc
0 |Y (z|y) =

N∏
i=1

pZc
0,i|Y (zi|y). (4)

Figure 2(left) plots pXi|Y (1|0) and pXi|Y (1|1) as functions of i (the horizontal axis corresponds to
sorted word identities). These two curves represent the occurrence of each word in the two classes.
In the figure, the words to the left satisfy pXi|Y (1|0) > pXi|Y (1|1), i.e. they occur more often in
class 0 than in class 1. These words are most indicative of class 0, which we will call class-0 words.
Similarly, the words to the right are called class-1 words.

Figure 2(left) also plots an example of p
Z

f
0,i|Y

(1|0) and pZc
0,i|Y (1|1) curves (solid, shaded curves),

which represents the occurrence of each word in the factual and counterfactual rationales respectively.
Note that these two curves must satisfy the following constraints:

p
Z

f
0,i|Y

(1|0) ≤ pXi|Y (1|0), and pZc
0,i|Y (1|1) ≤ pXi|Y (1|1). (5)

This is because a word can be chosen as a rationale only if it appears in a text, and this strict
relation translates into an inequality constraint in terms of the induced distributions. As shown in
figure 2(left), the p

Z
f
0,i|Y

(1|0) and pZc
0,i|Y (1|1) curves are always below the pXi|Y (1|0) and pXi|Y (1|1)

curves respectively. For the remainder of this section, we will refer to pXi|Y (1|0) as the factual
upper-bound, and pXi|Y (1|1) as the counterfactual upper-bound. What we intend to show is that the
optimal strategy for both rationale generators in this adversarial game is to choose the class-0 words.

The optimal strategy for the counterfactual generator: We will first find out what is the optimal
strategy for the counterfactual generator, or, equivalently, the optimal pZc

0,i|Y (1|1) curve, given an
arbitrary p

Z
f
0,i|Y

(1|1) curve. The goal of the counterfactual generator is to fool the discriminator.
Therefore, its optimal strategy is to match the the counterfactual rationale distribution with the factual
rationale distribution. As shown in figure 2(middle), the pZc

0,i|Y (1|1) (blue) curve tries to overlay
with the p

Z
f
0,i|Y

(1|1) (green) curve, within the limits of the counterfactual upper bound constraint.

The optimal strategy for the factual generator: The goal of the factual generator is to help the
discriminator. Therefore, its optimal strategy, given the optimized counterfactual generator, is to
“steer” the factual rationale distribution away from the counterfactual rationale distribution. Recall
that the counterfactual rationale distribution always tries to match the factual rationale distribution,
unless its upper-bound is binding. The factual generator will therefore choose the words whose factual
upper-bound is much higher than the counterfactual upper-bound. These words are, by definition,
most indicative of class 0. The counterfactual generator will also favor the same set of words, due to
its incentive to match the distributions. Figure 2(right) illustrates the optimal strategy for the factual
rationale under sparsity constraint

N∑
i=1

E[Zf
0,i] =

N∑
i=1

p
Z

f
0,i|Y

(1|1) ≤ α. (6)

The left-hand side in equation (6) represents the expected factual rationale length (in number of
words). It also represents the area under the p

Z
f
0,i|Y

(1|1) curve (the green shaded areas in figure 2).
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Figure 2: An illustration of how CAR works in the bag-of-word scenario with independence assumption
(equation (4)). Left: example probability of occurrence of each word in the rationales from each class (solid
lines), upper bounded by the probability of occurrence of each word in the natural text from each class (dashed
lines). Middle: the optimal strategy for the counterfactual rationale is to match the factual rationale distribution,
unless prohibited by the upper-bound. Right: the optimal strategy for the factual rationale is to steer away from
the counterfactual rationale distribution, leveraging the upper-bound difference.

3.4 Information-theoretic Analysis

Now we are ready to embark on a more formal analysis of the effectiveness of the CAR framework,
as stated in the following theorem.
Theorem 1. In the bag-of-word scenario with the independence assumption as in equation (4):

(1) Given the optimal d0(·) and an arbitrary gf
0 (·), the optimal gc

0(·) to equation (2) (left) will generate
the counterfactual rationales that follow the following distribution:

pZc
0,i|Y (1|1) = min

{
p
Z

f
0,i|Y

(1|0), pXi|Y (1|1)
}
. (7)

(2) Under some additional assumptions (see appendix A.1), given the optimal d0(·) and the optimal
gc
0(·), the optimal gf

0 (·) to equation (2) (right) subject to the sparsity constraint as in equation (6) is
given by Zf

0,i = XI∗ , where

I∗ =argmax
I

EX∼pX|Y (·|0)

[
h

(
pXI |Y (XI |0)
pXI (XI)

)]
, s.t. pXi|Y (1|0) > pXi|Y (1|1), ∀i ∈ I, (8)

where XI denotes a subvector of X containing Xi, ∀i ∈ I.

The proof will be given in the appendix. To better understand equation (8), it is useful to first write
down the mutual information between XI and Y , a similar quantity to which has been applied to the
maximum mutual information criterion [12, 19].

I(Y ;XI) = EX,Y∼pX,Y (·,·)

[
log

(
pXI |Y (XI |Y )

pXI (XI)

)]
=

1∑
y=0

pY (y)EX∼pX|Y (·|y)

[
log

(
pXI |Y (XI |y)
pXI (XI)

)]
.

(9)
As can be seen, there is a correspondence between equations (8) and (9). First, the log(·) function
in equation (9) is generalized a wider selection of functional forms, h(·). As will be shown in
the appendix A.2, equation (8) applies the f-divergence [1], which is a generalization to the KL-
divergence as applied in equation (9). Second, notice that equation (9) is decomposed into two
class-dependent terms, while equation (8) is for class-0 generators only. It can be easily shown that
the class-1 generators come with a similar theoretical guarantee that corresponds to the term with
y = 1. Therefore, the target function in equation (8) can be considered as the component in the mutual
information that is specifically related to class 0. Hence we call it class-wise mutual information.

3.5 Coping with Degeneration

It has been pointed out in [32] that the existing generator-predictor framework in [12] and [19]
can suffer from the problem of degeneration. Since the generator-predictor framework aims to
maximize the predictive accuracy of the predictor, the generator and predictor can collude by
selecting uninformative symbols to encode the class information, instead of selecting words and
phrases that truly explain the class. For example, consider the following punctuation communication
scheme: when Y = 0, the rationale would select only one comma “,”; when Y = 1, the rationale
would select only one period “.”. This rationalization scheme guarantees a high predictive accuracy.
However, this is apparently not what we expect. Such cases are called degeneration.
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From section 3.3, we can conclude that CAR will not suffer from degeneration. This is because if
the factual rationale generators attempt to select uninformative words or symbols like punctuation
(i.e. words in the middle of the x-axis in figure 2), then the factual rationale distribution can be easily
matched by the counterfactual rationale distribution. Therefore, this strategy is not optimal for the
factual generators, whose goal is to avoid being matched by the counterfactual generators.

4 Architecture Design and Implementation

Architecture with parameter sharing: In our actual implementation, we impose parameter sharing
among the players. This is motivated by our observation in sections 3.3 and 3.4 that both the
factual and counterfactual generators adopt the same rationalization strategy upon reaching the
equilibrium. Therefore, instead of having two separate networks for the two generators, we introduce
one unified generator network for each class, a class-0 generator and a class-1 generator, with the
ground truth label Y as an additional input to identify between factual and counterfactual modes.
Specifically, gc

0(·) and gf
0 (·) now share the same parameters in a single generator network g0(·, Y ),

where gf
0 (·) = g0(·, 0), and gc

0(·) = g0(·, 1). Please note that after the parameter sharing, g0(·, 0) and
g0(·, 1) are still considered as two distinct players, in the sense that they are still trained to optimize
different target functions (equation (2)), and they still play the same adversarial game with each other.
Similarly, gc

1(·) and gf
1 (·) share the same parameters in a single generator network g1(·, Y ). We also

impose parameter sharing between the two discriminators, d0(·) and d1(·), by introducing a unified
discriminator, d(·, t), with an additional input t to identify between the class-0 and class-1 cases. The
trainable parameters are significantly reduced with parameter sharing.

Both the generators and the discriminators consist of a word embedding layer, a bi-direction LSTM
layer followed by a linear projection layer. The generators generate the rationales by the independent
selection process as proposed in [19]. At each word position k, the convolutional layer outputs a
quantized binary mask Sk, which equals to 1 if the k-th word is selected and 0 otherwise. The binary
masks are multiplied with the corresponding words to produce the rationales. For the discriminators,
the outputs of all the times are max-pooled to produce the factual/counterfactual decision.

For parameter sharing, we append the input class as a one-hot vector to each word embedding vector
in both the generators and the discriminator. For the generators, the groundtruth class label Y of each
instance is appended; while for the discriminator, the class of generator t used for generating the
input rationale is appended.

Training: The training objectives are essentially equations (1) and (2). The only difference is that
we instantiate the constraints in equation (2) transform it into a multiplier form. Specifically, the
multiplier terms (or the regularization terms) are

λ1

∣∣∣∣ 1K E[‖S‖1]− α
∣∣∣∣+ λ2E

[ K∑
t=2

|Sk − Sk−1|
]
, (10)

where K denotes the number of words in the input text. The first term constrains on the sparsity
of the rationale. It encourages that the percentage of the words being selected as rationales is
close to a preset level α. The second term constrains on the continuity of the rationale. λ1, λ2 and
α are hyperparameters. The constraint is slightly different from the one in [19] in order have a
more precise control of the sparsity level. The h0(·) and h1(·) functions in equation (2) are set to
h0(x) = h1(x) = x, which empirically shows good convergence performance, and which can be
shown to satisfy equation (3). To resolve the non-differentiable quantization operation that produces
St, we apply the straight-through gradient computation technique [9]. The training scheme involves
the following alternate stochastic gradient descent. First, the class-0 generator and the discriminator
are updated jointly by passing one batch of data into the class-0 generator, and the resulting rationales,
which contain both factual and counterfatual rationales depending on the actual class, are fed into the
discriminator with t = 0. Then, the class-1 generator and the discriminator are updated jointly in a
similar fashion with t = 1.

Inference: During the inference, the ground truth label is unavailable for fair comparisons with the
baselines, therefore we have no oracle knowledge of which class is factual and which is counterfactual.
In this case, we always trigger the factual generators, no matter what the ground truth is, as shown
in figure 1(b). This is again justified by our observation in sections 3.3 and 3.4 that both the factual
and counterfactual modes adopt the same rationalization strategy upon reaching the equilibrium. The
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only reason why we favor the factual mode to the counterfactual mode is that the former has more
exposure to the words it is supposed to select during training.

5 Experiments

5.1 Datasets

To evaluate both factual and counterfactual rationale generation, we consider the following three
binary classification datasets. The first one is the single-aspect Amazon reviews [10] (book and
electronic domains), where the input texts often contain evidence for both positive and negative
sentiments. We use predefined rules to parse reviews containing comments on both the pros and cons
of a product, which is further used for automatic evaluations. We also evaluate algorithms on the multi-
aspect beer [23] and hotel reviews [29] that are commonly used in the field of rationalization [8, 19].
The labels of the beer review dataset are binarized, resulting in a harder rationalization task than in
[19]. The multi-aspect review is considered as a more challenging task, where each review contains
comments on different aspects. However, unlike the Amazon dataset, both beer and hotel datasets
only contain factual annotations. The construction of evaluation tasks is detailed in appendix B.1.

5.2 Baselines

RNP: A generator-predictor framework proposed by Lei et al. [19] for rationalizing neural prediction
(RNP). The generator selects text spans as rationales which are then fed to the predictor for label
classification. The selection maximizes the predictive accuracy of the target output and is constrained
to be sparse and continuous. RNP is only able to generate factual rationales.

POST-EXP: The post-explanation method generates rationales of both positive and negative classes
based on a pre-trained predictor. Given the predictor trained on full-text inputs, we train two separate
generators g0(X) and g1(X) on the data to be explained. g0(X) always generate rationales for the
negative class and g1(X) always generate rationales for the positive class. The two generators are
trained to maximize the respective logits of the fixed predictor subject to sparsity and continuity
regularizations, which is closely related to gradient-based explanations [20].

To seek fair comparisons, the predictors of both RNP and POST-EXP and the discriminator of CAR
are of the same architecture; the rationale generators in all three methods are of the same architecture.
The hidden state size of all LSTMs is set to 100. In addition, the sparsity and continuity constraints
are also in the same form as our method. It is important pointing out that CAR does not use any
ground truth label for generating rationales, which follows the procedures discussed in section 4.

5.3 Experiment Settings

Objective evaluation: We compare the generated rationales with the human annotations and report
the precision, recall and F1 score. To be consistent with previous studies [19], we evaluate different
algorithms conditioned on a similar actual sparsity level in factual rationales. Specifically, the target
factual sparsity level is set to around (±2%) 20% for the Amazon dataset and 10% for both beer and
hotel review. The reported performances are based on the best performance of a set of hyperparameter
values. For details of the setting, please refer to appendix B.2.

Subjective evaluation: We also conduct subjective evaluations via Amazon Mechanical Turk. Specif-
ically, we reserve 100 randomly balanced examples from each dev set for the subjective evaluations.
For the single-aspect dataset, the subject is presented with either the factual rationale or the counter-
factual rationale of a text generated by one of the three methods (unselected words blocked). For the
factual rationales, a success is credited when the subject correctly guess the ground-truth sentiment;
for the counterfactual rationales, a success is credited when the subject is convinced to choose the
opposite sentiment to the ground-truth. For the multi-aspect datasets, we introduce a much harder
test. In addition to guessing the sentiment, the subject is also asked to guess what aspect the rationale
is about. A success is credited only when both the intended sentiment and the correct aspect are
chosen. Under this criterion, a generator that picks the sentiment words only will score poorly. We
then compute the success rate as the performance metric. The test cases are randomly shuffled.
The subjects have to meet certain English proficiency and are reminded that some of the generated
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Table 1: Objective performances of selected rationales of the Amazon review dataset. The numbers in each
column represent the sparsity level, precision, recall, and F1 score, respectively. Each domain is trained
independently. All results are calculated in a “micro” perspective.

Amazon Book Electronic
Factual Counterfactual Factual Counterfactual

RNP [19] 18.6/55.1/20.1/29.5 - 20.7/49.7/22.8/31.3 -
POST-EXP 20.2/64.5/28.8/39.8 27.9/70.2/35.8/47.4 18.6/64.1/27.8/38.8 15.3/72.6/19.5/30.7
CAR 20.9/68.7/31.9/43.6 15.2/72.2/20.2/31.5 21.2/70.0/34.7/46.4 10.2/76.4/13.6/23.1

Table 2: Objective performances of selected factual rationales for both (a) beer and (b) hotel review datasets.
Each aspect is trained independently. S, P, R, and F1 indicate the sparsity level, precision, recall, and F1 score.

(a)

Beer Appearance Aroma Palate
S P R F1 S P R F1 S P R F1

RNP [19] 11.9 72.0 46.1 56.2 10.7 70.5 48.3 57.3 10.0 53.1 42.8 47.5
POST-EXP 11.9 64.2 41.4 50.4 10.3 50.0 33.1 39.8 10.0 33.0 26.5 29.4
CAR 11.9 76.2 49.3 59.9 10.3 50.3 33.3 40.1 10.2 56.6 46.2 50.9

(b)

Hotel Location Service Cleanliness
S P R F1 S P R F1 S P R F1

RNP [19] 10.9 43.3 55.5 48.6 11.0 40.0 38.2 39.1 10.6 30.5 36.0 33.0
POST-EXP 8.9 30.4 31.8 31.1 10.0 32.5 28.3 30.3 9.2 23.0 23.7 23.3
CAR 10.6 46.6 58.1 51.7 11.7 40.7 41.4 41.1 9.9 32.3 35.7 33.9

rationales are intended to trick them via word selections and masking (e.g. masking the negation
words). Appendix B.2 contains a screenshot and the details of the online evaluation setups.

5.4 Results

Table 1 shows the objection evaluation results for both factual and counterfactual rationales on
Amazon reviews. Constrained to highlighting 20% of the inputs, CAR consistently surpasses the other
two baselines in the factual case for both domains. Compared to the POST-EXP, our method generates
the counterfactual rationales with higher precision. However, since the sparsity constraint regularizes
both factual and counterfactual generations and the model selection is conducted on factual sparsity
only, we cannot control counterfactual sparsity among different algorithms. POST-EXP tends to
highlight much more text, resulting in higher recall and F1 score. However, as will be seen later, the
human evaluators still favor the counterfactual rationales generated by our algorithm.

Since the beer and hotel datasets contain factual annotations only, we report objective evaluation
results for the factual rationales in table 2. CAR achieves the best performances in five out of the six
cases in the multi-aspect setting. Specifically, for the hotel review, CAR achieves the best performance
almost in all three aspects. Similarly, CAR delivers the best performance for the appearance and
palate aspects of the beer review dataset, but fails on the aroma aspect. One possible reason for the
failure is that compared to the other aspects, the aroma reviews often have annotated ground truth
containing mixed sentiments. Therefore, CAR has low recalls of these annotated ground truth even
when it successfully selects all the correct class-wise rationales. Also to fulfill the sparsity constraint,
sometimes CAR has to select irrelevant aspect words with the desired sentiment, which decreases the
precision. Illustrative examples of the described case can be found in appendix B.3. Please note that
the RNP is not directly comparable to the results in [19], because the labels are binarized under our
experiment setting.

We visualize the generated rationales on the appearance aspect of beer reviews in figure 3. More
examples of other datasets can be found in appendix B.3. We observe that the CAR model is able to
produce meaningful justifications for both factual and counterfactual labels. The factual generator
picks “two inches of frothy light brown head with excellent retention” while the counterfactual one
picks “really light body like water”. By reading these selected texts alone, humans will easily predict
a positive sentiment for the first case and be tricked for the counterfactual case.

At last, we present the subjective evaluations in figure 4. Similar to the observations in the objective
studies, CAR achieves the best performances in almost all cases with two exceptions. The first one is
the aroma aspect of the beer reviews, of which we have discussed the potential causes already. The
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Beer - Appearance Label - Positive

poured into pint glass . a : used motor oil color . two inches of frothy light brown head with excellent
retention and quite a bit of lacing . nice cascade going for a while . s : oatmeal is the biggest component
of the aroma . not any hops content . a bit fusely and a bit of alcohol . t : tastes like slightly sour nothing .
i do n’t know what the hell made this dark because their is no crystal malt or roasted barley component in
the taste . this sucks . m : light body , really light body like water . carbonation is fine , but that ’s about
it . d : this is slightly sour water . how does anybody like this ?

Figure 3: Examples of CAR generated rationales on the appearance aspect of the beer reviews. All selected
words are bold and underlined. Factual generation uses blue highlight while the counterfactual uses red one.
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Figure 4: Subjective performances of generated rationales for both (a) factual and (b) counterfactual cases.
For the Amazon reviews, subjects are asked to guess the sentiment based on the generated rationales, which
random guess will have 50% accuracy. For multi-aspect beer and hotel reviews, subjects need to guess both the
sentiment and what aspect the rationale is about, which makes random guess only 16.67%.

second one is the counterfactual performance on the cleanliness aspect of the hotel reviews, where
both POST-EXP and CAR fail to trick human. One potential reason is that the reviews on cleanliness is
often very short and the valence is very clear without a mix of sentiments. Thus, it is very challenging
to generate counterfactual rationales to trick a human. This can be verified by the analysis in appendix
B.3. Specifically, according to figure 4, 69% of the time CAR is able to trick people to guess the
counterfactual sentiment, but often with the rationales extracted from the other aspects.

6 Conclusion

In this paper, we propose a game theoretic approach to class-wise rationalization, where the method
is trained to generate supporting evidence for any given label. The framework consists of three
types of players, which competitively select text spans for both factual and counterfactual scenarios.
We theoretically demonstrate the proposed game theoretic framework drives the solution towards
meaningful rationalizations in a simplified case. Extensive objective and subjective evaluations
on both single- and multi-aspect sentiment classification datasets demonstrate that CAR performs
favorably against existing algorithms in terms of both factual and counterfactual rationale generations.
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