
Motivation of the method Following Reviewer #3, we clarify the motivation behind NC. We emphasize our goal of1

learning features from unsupervised data, useful for downstream tasks. This is the main point validated throughout our2

experiments. We show that our paradigm of learning many conditional distributions of the data allows the extraction of3

these unsupervised features from incomplete data, as well as arbitrary data imputations (inpaintings).4

General changes to the manuscript Following Reviewer’s #1 suggestion, we included in the Appendix our experi-5

mental protocols, architectures, and optimization parameter grids for all methods. We also added error bars to Tables 16

and 3 from the manuscript. Following Reviewer’s #3 suggestion, we tone down our claims about unsupervised learning.7

Regarding Sections 4.2 and 4.3 We apologize for the confusion brought by using the Donsker-Varadhan lower8

bound as an objective for the discriminator. As pointed out by Reviewer #1, we acknowledge that the statement from9

lines 188-190 is misleading. Our intent was to reason about optimal discriminators. Given an optimal discriminator, the10

optimal NC minimizes the Jensen-Shannon divergence between pθ∗(xr | xa, a, r) and p(xr | xa, a, r), where pθ and p11

represent the model and data distributions, respectively. Consequently, at optimality we have that DKL(p||pθ∗) = 0,12

and thus the negative log-likelihood is equal to H(XR|XA). Then, the more information XA holds about XR, the13

lower the negative log-likelihood. Following Reviewer’s #1 and #3 remarks, we replace the Donsker-Varadhan lower14

bound by one in terms of the Jensen-Shannon divergence, merging Sections 4.2 and 4.3, removing the misleading15

statement from lines 188-190, making clear that our reasoning follows for optimal discriminators and NC’s, and making16

the variables on which the different distributions depend explicit. We thank the reviewers for their careful reading.17

Regarding conditional distributions consistency We thank Reviewer #1 for bringing18

this subtle point to our attention. We now provide a proof about the consistency of19

conditional and marginalized densitities in our Appendix. The proof sketch goes as20

follows: if we assume that the data has support on a compact set Ω, and that the NC21

is trained to optimality, then, writing λ for the Lebesgue measure on Ω, we can show22

that DJS(pθ(xS | xA)||
∫
pθ(xS , xR−S | xA)λ(dxR−S)) is small by leveraging the23

triangular inequality of the distance on probability measure on Ω defined by the square24

root of the Jensen-Shannon divergence. We then use Jensen’s inequality with uniform25

weights 1
λ(supp(XR−S)) to bound the distance between the model and data marginalized26

distributions by the integral of the distance between the model and data conditional27

distributions. We leave the theoretical analysis for the case for non-compact supports to28

future work. Moreover, we illustrate this consistency between conditional and marginalized29

densities empirically, here in the Figure on the right.30

Better empirical comparison against VAEAC As suggested, we improve our empirical31

comparison against VAEAC and update the manuscript with the results shown here in Table 1 (Left, semi-supervised32

learning results on SVHN), and Table 1 (Middle, missing data imputation on three UCI datasets).33

Improved performances on the missing data imputation task As requested by Reviewer #3, Table 1 (Middle)34

shows substantially improved missing data imputations results for our model. This results were obtained after fixing a35

bug in our code.36

Performance degradation depending on train/test masks mismatch We follow Reviewer’s #1 suggestion to37

analyze the performance of NC as a function of the mismatch between train and test masks. To this end, we report the38

RMSE between XR and X̂R on the UCI/Letter dataset. We consider four different scenarios: (i) masks observed during39

training applied on train data, (ii) masks observed during training applied on test data, (iii) masks unobserved during40

training applied on train data, and (iv) masks unobserved during training applied on test data. Results in Table 1 (Right).41

Algorithm Test error (%)
VAEAC 57.89± 1.01

NC 17.2± 0.59

Algorithm Spam Letter Credit
GAIN .0513± .002 .1198± .005 .1858± .001

VAEAC .0552± .002 .1115± .001 .1523± .002

NC .0486± .001 .0851± .002 .1276± .002

Masks/Data Train Test
Train .0891± .001 .0896± .001

Test .0897± .001 .0901± .001

Table 1: (Left) Semi-supervised learning on SVHN using 1000 labels. (Middle) RMSE for missing data imputation on
UCI datasets. (Right) RMSE on UCI/Letter using train/test data/masks.


