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Abstract

Understanding the predictions of a machine learning model can be as crucial as the
model’s accuracy in many application domains. However, the black-box nature of
most highly-accurate (complex) models is a major hindrance to their interpretability.
To address this issue, we introduce the symbolic metamodeling framework — a
general methodology for interpreting predictions by converting “black-box” models
into “white-box” functions that are understandable to human subjects. A symbolic
metamodel is a model of a model, i.e., a surrogate model of a trained (machine
learning) model expressed through a succinct symbolic expression that comprises
familiar mathematical functions and can be subjected to symbolic manipulation. We
parameterize metamodels using Meijer G-functions — a class of complex-valued
contour integrals that depend on real-valued parameters, and whose solutions reduce
to familiar algebraic, analytic and closed-form functions for different parameter
settings. This parameterization enables efficient optimization of metamodels via
gradient descent, and allows discovering the functional forms learned by a model
with minimal a priori assumptions. We show that symbolic metamodeling provides
a generalized framework for model interpretation — many common forms of model
explanation can be analytically derived from a symbolic metamodel.

1 Introduction

The ability to interpret the predictions of a machine learning model brings about user trust and supports
understanding of the underlying processes being modeled. In many application domains, such as the
medical and legislative domains [1-3], model interpretability can be a crucial requirement for the
deployment of machine learning, since a model’s predictions would inform critical decision-making.
Model explanations can also be central in other domains, such as social and natural sciences [4, 5],
where the primary utility of a model is to help understand an underlying phenomenon, rather than
merely making predictions about it. Unfortunately, most state-of-the-art models — such as ensemble
models, kernel methods, and neural networks — are perceived as being complex “black-boxes”, the
predictions of which are too hard to be interpreted by human subjects [1, 6-16].

Symbolic metamodeling. In this paper, we approach the problem of model interpretation by introduc-
ing the symbolic metamodeling framework for expressing black-box models in terms of transparent
mathematical equations that can be easily understood and analyzed by human subjects (Section 2).
The proposed metamodeling procedure takes as an input a (trained) model — represented by a black-
box function f(x) that maps a feature x to a prediction y — and retrieves a symbolic metamodel
g(x), which is meant to be an interpretable mathematical abstraction of f(x). The metamodel g(x)
is a tractable symbolic expression comprising a finite number of familiar functions (e.g., polynomial,
analytic, algebraic, or closed-form expressions) that are combined via elementary arithmetic opera-
tions (i.e., addition and multiplication), which makes it easily understood by inspection, and can be

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Model f(x) Metamodel ¢(x)

9 =ma(l-me™™)
0 = Lo
Age Symbolic — ‘ 05
[J] | \
z1 | ) 0 0 } Metamodeling } ‘g \ 8';‘
Qv : |
— - 0* Q 0.2
-0 @@ W
o 0.0

Blood ' 0.0 0.5
pressure o 0 6" = argmingeo £(f(x), G(x;6)) Age (11)

Figure 1: Pictorial depiction of the symbolic metamodeling framework. Here, the model f(x) is a deep
neural network (left), and the metamodel g(x) is a closed-form expression z1 z2 (1 — z2 exp(—z1)) (right).

analytically manipulated via symbolic computation engines such as Mathematica [17], Wolfram
alpha [18], or Sympy [19]. Our approach is appropriate for models with small to moderate number
of features, where the physical interpretation of these features are of primary interest.

A high-level illustration of the proposed metamodeling approach is shown in Figure 1. In this Figure,
we consider an example of using a neural network to predict the risk of cardiovascular disease based
on a (normalized) feature vector x = (1, z2), where z is a person’s age and x is their blood
pressure. For a clinician using this model in their daily practice or in the context of an epidemiological
study, the model f(x) is completely obscure — it is hard to explain or draw insights into the model’s
predictions, even with a background knowledge of neural networks. On the other hand, the metamodel
g(x) = x1 29 (1 — 9 exp(—x1)) is a fully transparent abstraction of the neural network model, from
which one can derive explanations for the model’s predictions through simple analytic manipulation,
without the need to know anything about the model structure and its inner workings'. Interestingly
enough, having such an explicit (simulatable) equation for predicting risks is already required by
various clinical guidelines to ensure the transparency of prognostic models [21].

Metamodeling with Meijer G-functions. In order to find the symbolic metamodel g(x) that best
approximates the original model f(x), we need to search a space of mathematical expressions and
find the expression that minimizes a “metamodeling loss” ¢(g(x), f(x)). But how can we construct a
space of symbolic expressions without predetermining its functional from? In other words, how do
we know that the metamodel g(x) = 1 22 (1 — x2 exp(—=1)) in Figure 1 takes on an exponential
form and not, say, a trigonometric or a polynomial functional form?

To answer this question, we introduce a novel parameterized representation of symbolic expressions
(Section 3), G(x; ), which reduces to most familiar functional forms — e.g., arithmetic, polynomial,
algebraic, closed-form, and analytic expressions, in addition to special functions, such as Bessel
functions and Hypergeometric functions — for different settings of a real-valued parameter 6. The
representation G(x; 6) is based on Meijer G-functions [22-24], a class of contour integrals used in
the mathematics community to find closed-form solutions for otherwise intractable integrals. The
proposed Meijer G-function parameterization enables minimizing the metamodeling loss efficiently
via gradient descent — this is a major departure from existing approaches to symbolic regression,
which use genetic programming to select among symbolic expressions that comprise a small number
of predetermined functional forms [25-27].

Symbolic metamodeling as a gateway to all explanations. Existing methods for model interpre-
tation focus on crafting explanation models that support only one “mode” of model interpretation.
For instance, methods such as DeepLIFT [8] and LIME [16], can explain the predictions of a model
in terms of the contributions of individual features to the prediction, but cannot tell us whether the
model is nonlinear, or whether statistical interactions between features exist. Other methods such
as GA2M [9] and NIT [13], focus exclusively on uncovering the statistical interactions captured by
the model, which may not be the most relevant mode of explanation in many application domains.
Moreover, none of the existing methods can uncover the functional forms by which a model captures
nonlinearities in the data — such type of interpretation is important in applications such as applied
physics and material sciences, since researchers in these fields focus on distilling an analytic law that
describes how the model fits experimental data [4, 5].

"Note that here we are concerned with explaining the predictions of a trained model, i.e., its response surface.
Other works, such as [20], focus on explaining the model’s loss surface in order to understand how it learns.



Our perspective on model interpretation departs from previous works in that, a symbolic metamodel
g(x) is not hardwired to provide any specific type of explanation, but is rather designed to provide
a full mathematical description of the original model f(x). In this sense, symbolic metamodeling
should be understood as a tabula rasa upon which different forms of explanations can be derived —
as we will show in Section 4, most forms of model explanation covered in previous literature can be
arrived at through simple analytic manipulation of a symbolic metamodel.

2 Symbolic Metamodeling

Let f : X — ) be a machine learning model trained to predict a target outcome y € ) on the basis of
a d-dimensional feature instance x = (z1,...,24) € X. We assume that f(.) is a black-box model
to which we only have query access, i.e., we can evaluate the model’s output y = f(x) for any given
feature instance x, but we do not have any knowledge of the model’s internal structure. Without loss
of generality, we assume that the feature space X’ is the unit hypercube, i.e., X = [0, 1]¢.

The metamodeling problem. A symbolic metamodel g € G
is a “model of the model” f that approximates f(x) for all Model space

x € X, where G is a class of succinct mathematical expres-

sions that are understandable to users and can be analytically o f(%)
manipulated. Typically, G would be set as the class of all

arithmetic, polynomial, algebraic, closed-form, or analytic F

expressions. Choice of G will depend on the desired com-

plexity of the metamodel, which in turn depends on the appli- '“Cfe?s"_‘tg
complexity

cation domain. For instance, in experimental physics, special
functions — such as Bessel functions — would be considered
interpretable [4], and hence we can take G to be the set of all
analytic functions. On the contrary, in medical applications,
we might opt to restrict G to algebraic expressions. Given G,
the metamodeling problem consists in finding the function g
in G that bests approximates the model f.
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Figure 2: The metamodeling problem.

Figure 2 shows a pictorial depiction of the metamodeling problem as a mapping from the modeling
space F — i.e., the function class that the model f inhabits?> — to the interpretable metamodeling
space G. Metamodling is only relevant when JF spans functions that are considered uninterpretable to
users. For models that are deemed interpretable, such as linear regression, J will already coincide
with G, because the linear model is already an algebraic expression (and a first-order polynomial). In
this case, the best metamodel for f is the model f itself, i.e., g = f.

Formally, the metamodeling problem can be defined through the following optimization problem:

o = argmint(o. /). fa.f) =1~ gl = [ (abx) = S0 dx, n

where £(.) is the metamodeling loss, which we set to be the mean squared error (MSE) between f and g.
In the following Section, we will focus on solving the optimization problem in (1).

3 Metamodeling via Meijer GG-functions

In order to solve the optimization problem in (1), we need to induce some structure into the meta-
modeling space G. This is obviously very challenging since G encompasses infinitely many possible
mathematical expressions with very diverse functional forms. For instance, consider the exemplary
metamodel in Figure 1, where g(x) = 21 25 (1 — x5 exp(—x1)). If G is set to be the space of all
closed-form expressions, then it would include all polynomial, hyperbolic, trigonometric, logarithmic
functions, rational and irrational exponents, and any combination thereof [28, 29]. Expressions such
as g'(x) = (2% + 23) and g” (x) = sin(x1) - cos(xz) are both valid metamodels, i.e., ¢’, g" € G, yet
they each have functional forms that are very different from g. Thus, we need to parameterize G in
such a way that it encodes all such functional forms, and enables an efficient solution to (1).

?For instance, for an L-layer neural network, F is the space of compositions of L nested activation functions.
For a random forest with L trees, F is the space of summations of L piece-wise functions.



To this end, we envision a parameterized metamodel g(x) = G(x;0), 0 € ©, where © = RM is a
parameter space that fully specifies the metamodeling space G, i.e., G = {G(.;0) : § € ©}. Such
parameterization should let G(x; 6) reduce to different functions for different settings of § — for the
aforementioned example, we should have G(x;6') = (22 + z3) and G(x;0") = sin(z) - cos(zz)
for some ¢, 0" € O. Given the parameterization G(x; 6), the problem in (1) reduces to

g% (x) = G(x;0"), where 0" = arglgéig UG (x;0), f(x)). (2)

Thus, if we have a parameterized symbolic expression G(x; 6), then the metamodeling problem boils
down to a straightforward parameter optimization problem. We construct G(x; €) in Section 3.1.

3.1 Parameterizing symbolic metamodels with Meijer G-functions

We propose a parameterization of G (x; 6) that includes two steps. The first step involves decomposing
the metamodel G(x; ) into a combination of univariate functions. The second step involves modeling
these univariate functions through a very general class of special functions that includes most known
familiar functions as particular cases. Both steps are explained in detail in what follows.

Step 1: Decomposing the metamodel. We breakdown the multivariate function g(x) into simpler,
univariate functions. From the Kolmogorov superposition theorem [30], we know that every mul-
tivariate continuous function g(x) can be written as a finite composition of univariate continuous
functions and the addition operation as follows?:

T d
9(x) = g(@1, . wn) = > g7 | Y g (zy) |, 3)
i=0 j=1

out

where g;" and g{}* are continuous univariate basis functions, and r € N . The exact decomposition
in (3) always exists for r = 2d, and for some basis functions g7** : R — R, and g;} : [0, 1] — R [36].
When r = 1, (3) reduces to the generalized additive model [37]. While we proceed our analysis with
the general formula in (3), in our practical implementation we set r = 1, g°“* as the identify function,
and include extra functions g} of the interactions {x; x;}; ; to account for the complexity of g(x).

Step 2: Meijer G-functions as basis functions. Based on the decomposition in (3), we can now
parameterize metamodels in terms of their univariate bases, i.e., G(x;0) = G(x; {g7"" }i, {97 }i.5)s
where every selection of a different set of bases would lead to a different corresponding metamodel.
However, in order to fully specify the parameterization G(x;0), we still need to parameterize the
basis functions themselves in terms of real-valued parameters that we can practically optimize, while
ensuring that the corresponding parameter space spans a wide range of symbolic expressions.

To fully specify G(x; 0), we model the basis functions in (3) as instances of a Meijer G-function — a
univariate special function given by the following line integral in the complex plane s [22, 23]:

Gmon (al,...,ap !x) _ i/ H;n:l I'(b; —s) H?Zl I'l—aj+s) 5 ds @
Pd A 01be 21 Jg H?:mﬂ (1 —b; +s) H?:n+1 [(a; +s) ’

where I'(.) is the Gamma function and L is the integration path in the complex plane. (In Appendix A,
we provide conditions for the convergence of the integral in (4), and the detailed construction of
the integration path £.) The contour integral in (4) is known as Mellin-Barnes representation [24].
An instance of a Meijer G-function is specified by the real-valued parameters a, = (a1,...,ap),
by = (b1, ..., bq), and indexes n and m, which define the poles and zeros of the integrand in (4) on the
complex plane®. In the rest of the paper, we refer to Meijer G-functions as G functions for brevity.

For each setting of a, and by, the integrand in (4) is configured with different poles and zeros, and
the resulting integral converges to a different function of . A powerful feature of the G function is
that it encompasses most familiar functions as special cases [24] — for different settings of a,, and
by, it reduces to almost all known elementary, algebraic, analytic, closed-form and special functions.

3The Kolmogorov decomposition in (3) is a universal function approximator [31]. In fact, (3) can be thought
of as a 2-layer neural network with generalized activation functions [32-34, 31, 35].

*Since I'(2) = (—1)!, the zeros of factors I'(b; —s) and T'(1—a; +s) are (b; —k) and (1—a; —k), k € No,
respectively, whereas the poles of I'(1 — b; + s) and I'(a; + s) are (—a; — k) and (1 — b; — k), k € No.



Exgmples for spegial values of the p(.)l.es and zeros for G-function Equivalent form
which the G function reduces to familiar functions are
shown in Table 1. (A more elaborate Table of equivalen- ng ( 2’?’2 |$) z
cies is provided in Appendix A.) Perturbing the poles G (5 |x) e
and zeros around their values in Table 1 gives rise to A
variants of these functional forms, e.g., x log(z), sin(x), Gy (10l log(1 + )
x2e™", etc. A detailed illustrative example for the dif- GLo ( - |22 ) L cos(x)
ferent symbolic expressions that G functions take on a 0.2 0‘15 4 v
2D parameter space is provided in Appendix A. Tables Gézg ( z; ‘x) 2 arctan(z)

3

of equivalence between G functions and familiar func-
tions can be found in [38], or computed using programs  Table 1: Representation of familiar elementary
such as Mathematica [17] and Sympy [19]. functions in terms of the G function.

By using G functions as univariate basis functions (g;" and g7;**) for the decomposition in (3), we
arrive at the following parameterization for G(x; 0):

r d
Ga0) = 3 G (0| 3G (057 127) ). )
i=0 j=1
where 6 = (0°%,0™), 0°** = (g™, ...,0°"*) and 6" = {(0%7,...,0:7)}, are the G function parameters.

Here, we use Gy, (0 | ©) = G (ap, by | ), 0 = (ap, by), as a shortened notation for the G function
for convenience. The indexes (m, n, p, g, r) are viewed as hyperparameters of the metamodel.

Symbolic metamodeling in action. To demonstrate how the parameterization G (x; 6) in (5) captures
symbolic expressions, we revisit the stylized example in Figure 1. Recall that in Figure 1, we had a
neural network model with two features, x1 and x5, and a metamodel g(x) = z1 22 (1 — 22 e~ %1). In
what follows, we show how the metamodel g(x) can be arrived at from the parameterization G(x; 6).

Figure 3 shows a schematic illustration for T T2

the parameterization G (x; 6) in (5) — with %

r = 2 — put in the format of a “computa-

tion graph”. Each box in this graph corre- Gy (bile)||Ga3 (L) Gt (1% |z) o (%22 |z)
sponds to one of the basis functions {g:"}; i o L -
and {g2'}; ;, and inside each box, we show 961 962 911 913
the corresponding instance of G function log(z1) log(z2) log(z1) — 21 2log(22)
that is needed to give rise to the symbolic )

expression g(x) = x1 z2 (1 —z2e721). To 95"t | G (5 |) 92t | Go1 (5 |z)

tune the poles and zeros of each of the 6 G
functions in Figure 3 to the correct values,
we need to solve the optimization problem
in (2). In Section 3.2, we show that this can
be done efficiently via gradient descent. Figure 3: Schematic for the metamodel in Figure 1.

Z1

Ty - oy (1 —z9e™™1)

3.2 Optimizing symbolic metamodels via gradient descent

Another advantage of the parameterization in (5) is that the gradients of the G function with respect
to its parameters can be approximated in analytic form as follows [24]:

d a ta— _ _ _
m,n P ~ ar—1  ~mntl l,a1—1,...,an—1,an41—1,.. .,ap—1
dak Gpvq (bq SL‘) ~T Gp+17q ( b1y bmsbmyts. . bg ) 1 S k S Ds
d a
m,n P ~ . 1—bg . m,n Al,. ;0 ,An41,---,0p
dby, G;D,q (bq x) ~x Gp,q-i—l (b1—1,- cobm=1,0,bm41—1,. . .,bg—1 ‘CC) I<k<gq (6)

From (6), we see that the approximate gradient of a GG function is also a G function, and hence the
optimization problem in (2) can be solved efficiently via standard gradient descent algorithms.

The solution to the metamodel optimization problem in (2) must be confined to a predefined space of
mathematical expressions G. In particular, we consider the following classes of expressions:

Polynomial expressions C Algebraic expressions C Closed-form expressions C Analytic expressions,

where the different classes of mathematical expressions correspond to different levels of metamodel
complexity, with polynomial metamodels being the least complex (See Figure 2).



Algorithm 1 summarizes all the steps involved
in solving the metamodel optimization prob-
lem. The algorithm starts by drawing n fea-
ture points uniformly at random from the fea-
ture space [0, 1] — these feature points are
used to evaluate the predictions of both the
model and the metamodel in order to esti-
mate the metamodeling loss in (1). Gradient
descent is then executed using the gradient
estimates in (6) until convergence. (Any vari-
ant of gradient descent can be used.) We then

Algorithm 1 Symbolic Metamodeling

m Input: Model f(x), hyperparameters (m, n, p, q, )
m Output: Metamodel g(x) € G

o X; ~ Unif([0,1]%), 5= {1,...,n}.
o Repeat until convergence:

0¥t = 0" —y Vo 3, U(G(Xi30), £(X))| oy,
o g(x) «— G(X;;0%)

check if every basis function in the resulting
metamodel g(x) lies in G. If g(x) ¢ G, we 5
search for an approximate version of the meta- 9
model §(x) ~ g(x), such that g(x) € . g

x) = G(x;0), G(x;0) € G,||0 — 6%|| < 8, 0r

)

e lfy(x) ¢ G:
(
(x) = Chebyshev(g(x))

The approximate metamodel g(x) € G is obtained by randomly perturbing the optimized parameter
6 (within a Euclidean ball of radius ¢) and searching for a valid §(x) € G. If no solution is found,
we resort to a Chebyshev polynomial approximation of g(x) — we can also use the Taylor or Padé
approximations — since polynomials are valid algebraic, closed-form and analytic expressions.

4 Related Work: Symbolic Metamodels as Gateways to Interpretation

The strand of literature most relevant to our work is the work on symbolic regression [25-27]. This is a
regression model that searches a space of mathematical expressions using genetic programming. The
main difference between this method and ours is that symbolic regression requires predefining the
functional forms to be searched over, hence the number of its parameters increases with the number of
functions that it can fit. On the contrary, our Meijer G-function parameterization enables recovering
infinitely many functional forms through a fixed-dimensional parameter space, and allows optimizing
metamodels via gradient descent. We compare our method with symbolic regression in Section 5.

Symbolic metamodeling as a unifying framework for interpretation. We now demonstrate how
symbolic metamodeling can serve as a gateway to the different forms of model explanation covrered in
the literature. To vivify this view, we go through common types of model explanation, and show that
given a metamodel g(x) we can recover these explanations via analytic manipulation of g(x).

The most common form of model explanation involves computing importance scores of each feature
dimension in x on the prediction of a given instance. Examples for methods that provide this type of
explanation include SHAP [1], INVASE [6], DeepLIFT [8], L2X [15], LIME [10, 16], GAM [37],
and Saliency maps [39]. Each of these methods follows one of two approaches. The first approach,
adopted by saliency maps, use the gradients of the model output with respect to the input as a measure
of feature importance. The second approach, followed by LIME, DeepLIFT, GAM and SHAP, uses
local additive approximations to explicitly quantify the additive contribution of each feature.

Symbolic metamodeling enables a unified framework for (instancewise) feature importance scoring
that encapsulates the two main approaches in the literature. To show how this is possible, consider the
following Taylor expansion of the metamodel g(x) around a feature point xg:

9(x) = g(x0) + (x—x%0) Vxg(x0) + (x—x0)  H(x) (x—%0) + ..., (7
where H (x) = [0%g/0x;0x,]; j is the Hessian matrix. Now consider — for simplicity of exposition
— a second-order approximation of (7) with a two-dimensional feature space x = (x1, z2), i.e.,
g(x0) + (1 —20,1) gy (X0) — 0,2 * T1 * Gayao (X0) + 3 (21 — I0,1)2.q:z:1:z:1(xo)

+ (22 — 20,2) - 9oy (X0) — T0,1 - T2 * Gy 20 (X0) + 5 (22 — -7/?0.2)2 Gzazs(X0)
+ 2122 Gryas (X0),

g(x) ~

®)

where g, = V, g and xg = (20,1, Zo,2). In (8), the term in blue (first line) reflects the importance
of feature x1, the term in red (second line) reflects the importance of feature x5, whereas the last
term (third line) is the interaction between the two features. The first two terms are what generalized
additive models, such as GAM and SHAP, compute. LIME is a special case of (8) that corresponds



to a first-order Taylor approximation. Similar to saliency methods, the feature contributions in (8)
are computed using the gradients of the model with respect to the input, but (8) is more general as it
involves higher order gradients to capture the feature contributions more accurately. All the gradients
in (8) can be computed efficiently since the exact gradient of the GG function with respect to its input
can be represented analytically in terms of another G function (see Appendix A).

Statistical interactions between features are another form of model interpretation that has been recently
addressed in [9, 13]. As we have seen in (8), feature interactions can be analytically derived from a
symbolic metamodel. The series in (8) resembles the structure of the pairwise interaction model GA*M
in [9] and the NIT disentanglement method in [13]. Unlike both methods, a symbolic metamodel
can analytically quantify the strength of higher-order (beyond pairwise) interactions with no extra
algorithmic complexity. Moreover, unlike the NIT model in [13], which is tailored to neural networks,
a symbolic metamodel can quantify the interactions in any machine learning model (7).

Table 2: Comparison between SM and SR.
fi(z) = e fa(®) = o2 f3(x) = sin(x) fa(z) = Jo(10/)

SMP —z® 4+ 52 —z)+1 g—a—%—i—% a4 ~T(2*—x) - 14
R?:0.995 R?:0.985 R?:0.999 R?: 475

SM* S z(x+1)7? L4zh!? Io.0003 (106% ﬁ)
R?:0.999 R?:0.999 R?:0.999 R?:0.999

SR 22 —1.924+0.9 T —0.172% + 2 4 0.016 —z (z — 0.773)
R?:0.970 R?0.981 R?:0.998 R?:0.116

S Experiments and Use Cases

Building on the discussions in Section 4, we demonstrate the use cases of symbolic metamodeling
through experiments on synthetic and real data. In all experiments, we used Sympy [19] (a symbolic
computation library in Python) to carry out computations involving Meijer G-functions®.

5.1 Synthetic experiments

Can we learn complex symbolic expressions? We start off with four synthetic experiments with the
aim of evaluating the richness of symbolic expressions discovered by our metamodeling algorithm.
In each experiment, we apply Algorithm 1 (Section 3.2) on a ground-truth univariate function f(x)
to fit a metamodel g(x) = f(x), and compare the resulting mathematical expression for g(z) with
that obtained by Symbolic regression [25], which we implement using the gplearn library [40].

In Table 2, we compare symbolic metamodeling (SM) and symbolic regression (SR) in terms of the
expressions they discover and their R? coefficient with respect to the true functions. We consider four
functions: an exponential e 3, a rational x/(z + 12), a sinusoid sin(x) and a Bessel function of the
first kind Jo(104/). We consider two versions of SM: SM? for which G = Polynomial expressions,
and SM€ for which G = Closed-form expressions. As we can see, SM is generally more accurate
and more expressive than SR. For f1(x), fo(x) and f4(x), SM managed to figure out the functional

forms of the true functions (Jo(z) = Io(e” ), where Iy(z) is the Bessel function of the second
kind. For f5(x), SM® recovered a parsimonious approximation gs(x) since sin(z) =~ z for z € [0, 1].
Moreover, SMP managed to retrieve more accurate polynomial expressions than SR.

Instancewise feature importance. Now we evaluate the ability of symbolic metamodels to explain
predictions in terms of instancewise feature importance (Section 4). To this end, we replicate the
experiments in [15] with the following synthetic data sets: XOR, Nonlinear additive features, and
Feature switching. (See Section 4.1 in [15] or Appendix B for a detailed description of the data sets.)
Each data set has a 10-dimensional feature space and 1000 data samples.

For each of the three data sets above, we fit a 2-layer neural network f(x) (with 200 hidden units) to
predict the labels based on the 10 features, and then fit a symbolic metamodel g(x) for the trained

The code is provided at https: //bitbucket .org/mvdschaar/mlforhealthlabpub.
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Figure 4: Box-plots for the median ranks of features by their estimated importance per sample over the 1000
samples of each data set. The red line is the median. Lower median ranks are better.

network f(x) using the algorithm in Section 3.2. Instancewise feature importance is derived using
the (first-order) Taylor approximation in (8). Since the underlying true features are known for each
sample, we use the median feature importance ranking of each algorithm as a measure of the accuracy
of its feature ranks as in [15]. Lower median ranks correspond to more accurate algorithms.

In Figure 4, we compare the performance of metamodeling (SM) with DeepLIFT, SHAP, LIME, and
L2X. We also use the Taylor approximation in (8) to derive feature importance scores from a symbolic
regression (SR) model as an additional benchmark. For all data sets, SM performs competitively
compared to L2X, which is optimized specifically to estimate instancewise feature importance. Unlike
LIME and SHAP, SM captures the strengths of feature interactions, and consequently it provides
more modes of explanation even in the instances where it does not outperform the additive methods
in terms of feature ranking. Moreover, because SM recovers more accurate symbolic expressions
than SR, it provides a more accurate feature ranking as a result.

5.2 Predicting prognosis for breast cancer

We demonstrate the utility of symbolic metamodeling in a real-world setup for which model inter-
pretability and transparency are of immense importance. In particular, we consider the problem of
predicting the risk of mortality for breast cancer patients based on clinical features. For this setup, the
ACC/J guidelines require prognostic models to be formulated as transparent equations [21] — sym-
bolic metamodeling can enable machine learning models to meet these requirements by converting
black-box prognostic models into risk equations that can be written on a piece of paper.

Using data for 2,000 breast cancer patients extracted from the UK cancer registry (data description is
in Appendix B), we fit an XGBoost model f(x) to predict the patients’ 5 year mortality risk based on
5 features: age, number of nodes, tumor size, tumor grade and Estrogen-receptor (ER) status. Using
5-fold cross-validation, we compare the area under receiver operating characteristic (AUC-ROC) accu-
racy of the XGBoost model with that of the PREDICT risk calculator (https://breast.predict.nhs.uk/),
which is the risk equation most commonly used in current practice [41]. The results in Table 3 show
that the XGBoost model provides a statistically significant improvement over the PREDICT score.

Using our metamodeling algorithm (with
G set to be the space of closed-form ex-
pressions), we obtained the symbolic
metamodel for both the XGBoost and
PREDICT models. As we can see in Fig-
ure 5, by inspecting the median instance-
wise feature ranks, we can see that PRE-

EEm PREDICT: AUC-ROC = 0.762 +/- 0.02
B XGBoost: AUC-ROC = 0.833 +/- 0.02

Median Feature Rank

. . < N
DICT overestimates the importance of © R O g S I R
. S & & O
some features and underestimates that of ROS 7 O
. . . . . 2 O
others. This gives us an indication as to «° N

why XGBoost was able to achieve a gain

in predictive accuracy. Figure 5: Feature importance for PREDICT and XGBoost.

Through a symbolic equation, clinicians can transparently use the accurate prognostic model learned
by XGBoost, without worrying about its original black-box nature. The transparent nature of the
metamodel not only ensures its trustworthiness, but also helps us understand the sources of perfor-
mance gain achieved by the original XGBoost model. Moreover, using the metamodel, we were able
to draw insights into the impact of the interactions between ER, number of nodes and tumor size on a
patient’s risk. Such insights would be very hard to distill from the original XGBoost model.


https://breast.predict.nhs.uk/
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