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Abstract

Modern applications of machine learning (ML) deal with increasingly heteroge-
neous datasets comprised of data collected from overlapping latent subpopulations.
As a result, traditional models trained over large datasets may fail to recognize
highly predictive localized effects in favour of weakly predictive global patterns.
This is a problem because localized effects are critical to developing individualized
policies and treatment plans in applications ranging from precision medicine to
advertising. To address this challenge, we propose to estimate sample-specific
models that tailor inference and prediction at the individual level. In contrast to
classical ML models that estimate a single, complex model (or only a few complex
models), our approach produces a model personalized to each sample. These
sample-specific models can be studied to understand subgroup dynamics that go
beyond coarse-grained class labels. Crucially, our approach does not assume that
relationships between samples (e.g. a similarity network) are known a priori.
Instead, we use unmodeled covariates to learn a latent distance metric over the
samples. We apply this approach to financial, biomedical, and electoral data as
well as simulated data and show that sample-specific models provide fine-grained
interpretations of complicated phenomena without sacrificing predictive accuracy
compared to state-of-the-art models such as deep neural networks.

1 Introduction

The scale of modern datasets allows an unprecedented opportunity to infer individual-level effects
by borrowing power across large cohorts; however, principled statistical methods for accomplishing
this goal are lacking. Standard approaches for adapting to heterogeneity in complex data include
random effects models, mixture models, varying coefficients, and hierarchical models. Recent work
includes the network lasso [11], the pliable lasso [32], personalized multi-task learning [37], and the
localized lasso [38]. Despite this long history, these methods either fail to estimate individual-level

(i.e. sample-specific) effects, or require prior knowledge regarding the relation between samples
(e.g. a network). At the same time, as datasets continue to increase in size and complexity, the
possibility of inferring sample-specific phenomena by exploiting patterns in these large datasets has
driven interest in important scientific problems such as precision medicine [5, 24]. The relevance
and potential impact of sample-specific inference has also been widely acknowledged in applications
including psychology [9], education [12], and finance [1].

In this paper, we explore a solution to this dilemma through the framework of “personalized” models.
Personalized modeling seeks to estimate a large collection of simple models in which each model is
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(a) Mixture model (b) Varying-Coefficient (c) Deep Neural Net (d) Personalized

Figure 1: Illustration of the benefits of personalized models. Each point represents the regression
parameters for a sample. Black points indicate true effect sizes, while the red points are estimates.
Mixture models (a) estimate a limited number of models. The varying-coefficients model (b)
estimates sample-specific models but the non-linear structure of the true parameters violates the
model assumptions, leading to a poor fit. The locally-linear models induced by a deep learning model
(c) do not accurately recover the underlying effect sizes. In contrast, personalized regression (d)
accurately recovers effect sizes.

tailored—or “personalized”—to a single sample. This is in contrast to models that seek to estimate a
single, complex model. To make this more precise, suppose we have n samples (X(i)

, Y
(i)), where

Y
(i) denotes the response and X

(i)
2 Rp are predictors. A traditional ML model would model the

relationship between Y
(i) and X

(i) with a single function f(X(i); ✓) parametrized by a complex
parameter ✓ (e.g. a deep neural network). In a personalized model, we model each sample with its
own function, allowing ✓ to be simple while varying with each sample. Thus, the model becomes
Y

(i) = f(X(i); ✓(i)). These models are estimated jointly with a single objective function, enabling
statistical power to be shared between sub-populations.

The flexibility of using different parameter values for different samples enables us to use a simple
model class (e.g. logistic regression) to produce models which are simultaneously interpretable and
predictive for each individual sample. By treating each sample separately, it is also possible to capture
heterogeneous effects within similar subgroups (an example of this will be discussed in Section 3.3).
Finally, the parameters learned through our framework accurately capture underlying effect sizes,
giving users confidence that sample-specific interpretations correspond to real phenomena (Fig 1).
Whereas previous work on personalized models either seeks only the population’s distribution of
parameters [34] or requires prior knowledge of the sample relationships [11, 37, 38], we develop a
novel framework which estimates sample-specific parameters by adaptively learning relationships
from the data. A Python implementation is available at http://www.github.com/blengerich/
personalized_regression.

Motivating Example. Consider the problem of understanding election outcomes at the local level.
For example, given data on a particular candidate’s views and policy proposals, we wish to predict the
probability that a particular locality (e.g. county, township, district, etc.) will vote for this candidate.
In this example we focus on counties for concreteness. More importantly, in addition to making
accurate predictions, we are interested in understanding and explaining how different counties react to
different platforms. The latter information—in addition to simple predictive measures—is especially
important to candidates and political consultants seeking advantages in major elections such as a
presidential election. This information is also important to social and political scientists seeking
to understand the characteristics of an electorate and how it is evolving. An application of this
motivating example using personalized regression can be found in in Section 3.4.

One approach would be to build individual models for each county, using historical data from previous
elections. Immediately we encounter several practical challenges: 1) By building independent models
for each county, we fail to share information between related counties, resulting in a loss of statistical
power, 2) Since elections are relatively infrequent, the amount of data on each county is limited,
resulting in a further loss of power, and 3) To ensure that the models are able to explain the preferences
of an electorate, we will be forced to use simple models (e.g. logistic regression or decision trees),
which will likely have limited predictive power compared to more complex models. This simultaneous
loss of power and predictive accuracy is characteristic of modeling large, heterogeneous datasets
arising from aggregating multiple subpopulations. Crucially, in this example the total number of
samples may be quite large (e.g. there are more than 3,000 US counties and there have been 58 US
presidential elections), but the number of samples per subpopulaton is small. Furthermore, these
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challenges are in no way unique to this example: similar problems arise for examples in financial,
biological, and marketing applications.

One way to alleviate these challenges is to model the ith county using a regression model f(X; ✓(i)),
where the ✓(i) are parameters that vary with each sample and are trained jointly using all of the

data. This idea of personalized modeling allows us to train accurate models using only a single
sample from each county—this is useful in settings where collecting more data may be expensive
(e.g. biology and medicine) or impossible (e.g. elections and marketing). By allowing the parameter
✓
(i) to be sample-specific, there is no longer any need for f to be complex, and simple linear and

logistic regression models will suffice, providing useful and interpretable models for each sample.

Alternative approaches and related work. One natural approach to heterogeneity is to use mix-
ture models, e.g. a mixture of regression [27] or mixture of experts model [10]. While mixture
models present an intriguing way to increase power and borrow strength across the entire cohort,
they are notoriously difficult to train and are best at capturing coarse-grained heterogeneity in data.
Importantly, mixture models do not capture individual, sample-specific effects and thus cannot model
heterogeneity within subgroups.

Furthermore, previous approaches to personalized inference [11, 20, 37, 38] assume that there is
a known network or similarity matrix that encodes how samples in a cohort are related to each
other. A crucial distinction between our approach and these approaches is that no such knowledge
is assumed. Recent work has also focused on estimating sample-specific parameters for structured
models [14, 16, 18, 20, 35]; in these cases, prior knowledge of the graph structure enables efficient
testing of sample-specific deviations.

More classical approaches include varying-coefficient (VC) models [8, 13, 30], where the parameter
✓
(i) = ✓(U (i)) is allowed to depend on additional covariates U in some smooth way, and random

effects models [15], where ✓ is modeled as a random variable. More recently, the spirit of the
VC model has been adapted to use deep neural networks as encoders for complex covariates like
images [2, 3] or domain adaptation [26, 29]. In contrast to our approach, which does not impose
any regularity or structural assumptions on the model, these approaches typically require strong
smoothness (in the case of VC) or distributional (in the case of random effects) assumptions.

Finally, locally-linear models estimated by recent work in model explanations [28] can be interpreted
as sample-specific models. We make explicit comparisons to this approach in our experiments
(Section 3), but we point out here that local explanations serve to interpret a black-box model—which
may be incorrect—and not the true mechanisms underlying the data. This is clearly illustrated in
Fig 1c, where local linear approximations do a good job of explaining the behaviour of the underlying
neural network, but nonetheless fail to capture the true regression coefficients. This tradeoff between
inference and prediction is well-established in the literature.

2 Learning sample-specific models

For clarity, we describe the main idea using a linear model for each personalized model; extension
to arbitrary generalized linear models including logistic regression is straightforward. In Section 3,
we include experiments using both linear and logistic regression. A traditional linear model would
dictate Y

(i) = hX(i)
, ✓i+ w

(i), where the w
(i) are noise and the parameter ✓ 2 Rp is shared across

different samples. We relax this model by allowing ✓ to vary with each sample, i.e.

Y
(i) = hX(i)

, ✓
(i)
i+ w

(i)
. (1)

Clearly, without additional constraints, this model is overparametrized—there is a (p�1)-dimensional
subspace of solutions to the equation Y

(i) = hX(i)
, ✓

(i)
i in ✓(i) for each i. Thus, the key is to choose

a solution ✓(i) that simultaneously leads to good generalization and accurate inferences about the ith
sample. We propose two strategies for this: (a) a low-rank latent representation of the parameters ✓(i)
and (b) a novel regularization scheme.

2.1 Low-rank representation

We constrain the matrix of personalized parameters ⌦ = [✓(1) | · · · | ✓(n)] 2 Rp⇥n to be low-rank,
i.e. ✓(i) = Q

T
Z

(i) for some loadings Z(i)
2 Rq and some dictionary Q 2 Rq⇥p. Letting Z 2 Rq⇥n
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denote the matrix of loadings, we have a low-rank representation of ⌦ = Q
T
Z. The choice of q is

determined by the user’s desired latent dimensionality; for q ⌧ p, using only ⇥
�
q(n+ p)

�
instead

of the ⇥(np) of a full-rank solution can greatly improve computational and statistical efficiency. In
addition, the low-rank formulation enables us to use `2 distance in Z in Eq. (4) to restrict Euclidean
distances between the ✓(i): After normalizing the columns of Q, we have

k✓
(i)
� ✓

(j)
k 
p
pkZ

(i)
� Z

(j)
k. (2)

This illustrates that closeness in the loadings Z(i) implies closeness in parameters ✓(i). This fact will
be exploited to regularize ✓(i) (Section 2.2).

This use of a dictionary Q is common in multi-task learning [23] based on the assumption that tasks
inherently use shared atomic representations. Here, we make the analogous assumption that samples
arise from combinations of shared processes, so sample-specific models based on a shared dictionary
efficiently characterize sample heterogeneity. Sparsity in ✓ can be realized by sparsity in Z,Q; for
instance, effect sizes which are consistently zero across all samples can be created by zero vectors in
the columns of Q. The low-rank formulation also implicitly constrains the number of personalized
sparsity patterns; this can be adjusted by changing the latent dimensionality q.

2.2 Distance-matching

Existing approaches [11, 20, 37, 38] assume that there is a known weighted network (�ij)ni,j=1 over
samples such that k✓(i) � ✓(j)k ⇡ �ij . In other words, we have prior knowledge of which parameters
should be similar. We avoid this strong assumption by instead assuming that we have additional
covariates U

(i)
2 Rk for which there exists some way to measure similarity that corresponds

to similarity in the parameter space, however, we don’t have advance knowledge of this. More
specifically, we regularize the parameters ✓(i) by requiring that similarity in ✓ corresponds to similarity
in U , i.e. k✓(i) � ✓(j)k ⇡ ⇢(U (i)

, U
(j)), where ⇢ is an unknown, latent metric on the covariates

U . In applications, the U
(i) represent exogenous variables that we do not wish to directly model;

for example, in our motivating example of an electoral analysis, this may include demographic
information about the localities.

To promote similar structures in parameters as in covariates, we adapt a distance-matching regular-
ization (DMR) scheme [17] to penalize the squared difference in implied distances. The covariate
distances are modeled as a weighted sum:

⇢�(u, v) =
kX

`=1

�`d`(u`, v`), �` � 0, (3)

where each d` (` = 1, . . . , k) is a metric for a covariate. The positive vector � represents a linear
transformation of these “simple” distances into more useful latent distance functions. By using a
linear parametrization for ⇢�, we can interpret the learned effects by inspecting the weights assigned
to each covariate.

By Eq. (2), in order for k✓(i) � ✓
(j)
k ⇡ ⇢�(U (i)

, U
(j)), it suffices to require kZ(i)

� Z
(j)
k ⇡

⇢�(U (i)
, U

(j)). With this in mind, define the following distance-matching regularizer:

D
(i)
� (Z,�) =

�

2

X

j2Br(i)

�
⇢�(U

(i)
, U

(j))� kZ(i)
� Z

(j)
k
2
�2
, (4)

where Br(i) = {j : kZ(i)
� Z

(j)
k
2
< r}. This regularizer promotes imitating the structure of

covariate values in the regression parameters. By using Z instead of ⌦ in the regularizer, calculation
of distances is much more efficient when q ⌧ p. A discussion of hyperparameter selection is
contained in Section. B.3 of the supplement.

2.3 Personalized Regression

Let `(x, y, ✓) be a loss function, e.g. least-squares or logistic loss. For each sample i of the training
data, define a regularized, sample-specific loss by

L
(i)(Z,Q,�) = `(X(i)

, Y
(i)
, Q

T
Z

(i)) +  �(Q
T
Z

(i)) +D
(i)
� (Z,�), (5)
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where  � is a regularizer such as the `1 penalty and D
(i)
� is the distance-matching regularizer defined

in Eq. (4). We learn ⌦ and � by minimizing the following composite objective:

L(Z,Q,�) =
nX

i=1

L
(i)(Z,Q,�) + �k�� 1k22, (6)

where the second term regularizes the distance function ⇢� with strength set by �, and we recall that
⌦ = Q

T
Z. The hyperparameter � trades off sensitivity to prediction of the response variable against

sensitivity to covariate structure.

Optimization. We minimize the composite objective L(Z,Q,�) with subgradient descent com-
bined with a specific initialization and learning rate schedule. An outline of the algorithm can be
found in Alg. 1 below. In detail, we initialize ⌦ by setting ✓(i) ⇠ N(b✓pop

, ✏I) for a population model
b✓pop such as the Lasso or elastic net and then initialize Z and Q by factorizing ⌦ with PCA. ✏ is a
very small value used only to enable factorization by the PCA algorithm. Each personalized estimator
is endowed with a personalized learning rate ↵(i)

t = ↵t/k
b✓(i)t �

b✓(pop)
k1, which scales the global

learning rate ↵t according to how far the estimator has traveled. In addition to working well in prac-
tice, this scheme guarantees that the center of mass of the personalized regression coefficients does
not deviate too far from the intialization b✓pop, even though the coefficients b✓(i) remain unconstrained.
This property is discussed in more detail in Section 2.4.

Algorithm 1 Personalized Estimation

Require: b✓pop, �, �, �,↵, c
1: ✓(1), . . . , ✓(n)  b✓pop
2: ⌦ [✓(1)| . . . | ✓(n)]
3: Z,Q PCA(⌦)
4: � 1
5: ↵ ↵0

6: do
7: eZ, eQ, e� Z,Q,�

8: � �� ↵
@
@�L(

eZ, eQ, e�;�, �, �)
9: Z

(i)
 Z

(i)
�

↵
k✓(i)�b✓popk1

⇥
@

@Z(i)

Pn
i=1 D

(i)
� ( eZ, e�)+

eQ
�
@`(X(i)

, Y
(i)
, ✓

(i)) + @ �(✓(i))
�⇤
8 i 2 [1, . . . , n]

10: Q Q� ↵
⇥

@
@Q

Pn
i=1 D

(i)
� ( eZ, e�) +

Pn
i=1

eZ(i)
�
@`(X(i)

, Y
(i)
, ✓

(i))T + @ �(✓(i))T
�⇤

11: ↵ ↵c

12: ✓
(i)
 Q

T
Z

(i)
8 i 2 [1, . . . , n]

13: ⌦ [✓(1)| . . . |✓(n)]
14: while not converged
15: return ⌦, Z,Q,�

Prediction. Given a test point (X,U), we form a sample-specific model by averaging the model
parameters of the kn nearest training points, according to the learned distance metric ⇢�:

✓ =
1

kn

knX

j=1

✓
(⌘(⇢�,U)[j])

, ⌘(⇢�, U) = argsort
1in

⇢�(U,U
(i)). (7a)

Increasing kn drives the test models toward the population model to control overfitting. In our
experiments, we use kn = 3.

We have intentionally avoided using X to select ✓ so that interpretation of ✓ is not confounded by X .
In some cases, however, the sample predictors can provide additional insight to sample distances (e.g.
[36]); we leave it to future work to examine how to augment estimations of sample distances by
including distances between predictors.
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Scalability. Naïvely, the distance-matching regularizer has O(n2) pairwise distances to calculate,
however this calculation can be made efficient as follows. First, the terms involving d`(U

(i)
` , U

(j)
` )

remain unchanged during optimization, so that their computation can be amortized. This allows the
use of feature-wise distance metrics which are computationally intensive (e.g. the output of a deep
learning model for image covariates). Furthermore, these values are never optimized, so the distance
metrics d` need not be differentiable. This allows for a wide variety of distance metrics, such as the
discrete metric for unordered categorical covariates. Second, we streamline the calculation of nearest
neighbors in two ways: 1) Storing Z in a spatial data structure and 2) Shrinking the hyperparameter r
used in (4). With these performance improvements, we are able to fit models to datasets with over
10,000 samples and 1000s of predictors on a Macbook Pro with 16GB RAM in under an hour.

2.4 Analysis

Initializing sample-specific models around a population estimate is convenient because the sample-
specific estimates do not diverge from the population estimate unless they have strong reason to
do so. Here, we analyze linear regression minimized by squared loss (e.g., f(X(i)

, Y
(i)
, ✓

(i)) =
(Y (i)

�X
(i)
✓
(i))2), though the properties extend to any predictive loss function with a Lipschitz-

continuous subgradient.
Theorem 1. Let us consider personalized linear regression with  �(x) = �kxk1 (i.e. `1 regulariza-

tion). Let X be normalized such that maxikX(i)
k1  1, kX

(i)
k1 = 1.

Define ✓t :=
1
n

Pn
i=1

b✓(i)t , where b✓(i)t is the current value of b✓(i) after t iterations.

Let the overall learning rate follow a multiplicative decay such that ↵t = ↵0c
t
, where ↵0 is the initial

learning rate and c is a constant decay factor. Then at iteration ⌧ ,

k✓⌧ �
b✓pop
k1 2 O(�). (8)

That is, the center of mass of the personalized regression coefficients does not deviate too far from the
initialization b✓pop, even though the coefficients b✓(i) remain unconstrained. In addition, the distance-
matching regularizer does not move the center of mass and the update to the center of mass does
not grow with the number of samples. Proofs of these claims are included in Appendix A of the
supplement.

3 Experiments

We compare personalized regression (hereafter, PR) to four baselines: 1) Population linear or
logistic regression, 2) A mixture regression (MR) model, 3) Varying coefficients (VC), 4) Deep
neural networks (DNN). First, we evaluate each method’s ability to recover the true parameters from
simulated data. Then we present three real data case studies, each progressively more challenging than
the previous: 1) Stock prediction using financial data, 2) Cancer diagnosis from mass spectrometry
data, and 3) Electoral prediction using historical election data. The results are summarized in Table 1
for easy reference. Details on all the algorithms and datasets used, as well as additional results and
figures, can be found in Appendix B of the supplement.

We believe the out-of-sample prediction results provide strong evidence that any harmful overfitting
of PR is outweighed by the benefit of personalized estimation. This agrees with famous results such
as [31], where it is showed that optimal ensembles of linear models consist of overfitted atoms; see
especially Eq. 12 and Fig. 2 therein.

3.1 Simulation Study

We first investigate the capacity of personalized regression to recover true effect sizes in a small-
scale simulation study. We generate Xj ⇠ Unif(�1, 1) (j = 1, 2), U ⇠ Unif(0, 1), ✓(i) =
[U (i)

, I|U(i)|>0.5 + 0.1 sin(U (i))] 2 R2, and Y
(i) = X

(i)
✓
(i) + w

(i), with w
(i)
⇠ N(0, 0.1). As

shown in Fig. 1, this produces regression parameters with a discontinuous distribution. The algorithms
are given both X and U as input during training, and we use LIME [28] to generate local linear
approximations to the DNN in order to estimate parameters ✓(i) for each sample. In this setting, there
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Table 1: Predictive performance on test sets. For continuous response variables, we report correlation
coefficient (R2) and mean squared error (MSE) of the predictions. For classification tasks, we report
area under the receiver operating characteristic curve (AUROC) and the accuracy (ACC). For the
simulation, we also report recovery error of the true regression parameters in the training set, with
(mean ± std) values calculated over 20 experiments with different values of X,U,w.

Model Simulation Financial Cancer Election
kb⌦ � ⌦k2 R2 MSE R2 MSE AUROC Acc R2 MSE

Pop. 24.76 ± 0.02 0.57 ± 0.03 0.133 ± 0.01 0.01 64144 0.794 0.962 0.00 0.019
MR 19.31 ± 0.87 0.83 ± 0.03 0.054 ± 0.01 0.74 16146 0.876 0.939 �0.56 0.031
VC 24.88 ± 0.09 0.66 ± 0.02 0.106 ± 0.01 0.06 60694 0.430 0.863 0.00 0.019
DNN 30.29 ± 0.55 0.91 ± 0.03 0.028 ± 0.01 �0.02 63028 0.901 0.955 0.00 0.019
PR 9.02 ± 2.53 0.936 ± 0.05 0.020 ± 0.01 0.86 4822 0.923 0.975 0.45 0.011

exists a discontinuous function which could output exactly the sample-specific regression models
from the covariates that a neural network should be able to learn accurately. In this sense, the neural
network is “correctly specified” for this dataset, testing how well locally-linear models approximate
the true parameters. More extensive simulation experiments, with varying n and p are available in
Sec. C.1 of the Supplement.

Results. The results are presented in Table 1 and visualized in Fig. 1. As expected, the recovery
error is much lower for PR, while the DNN shows competitive predictive error. The population
estimator successfully recovers the mean effect sizes, but this central model is not accurate for any
individual, resulting in poor performance both in recovering ⌦ and in prediction. Similarly, both MR
and VC perform poorly. As expected, the deep learning model excels at predictive error, however, the
local linear approximations do not accurately recover the sample-specific linear models. In contrast,
PR exhibits both the flexibility and the structure to learn the true regression parameters while retaining
predictive performance.

3.2 Financial Prediction

A common task in financial trading is to predict the price of a security at some point in the future.
This is a challenging task made more difficult by nonstationarity—the interpretation of an event
changes over time, and different securities may respond to the same event differently. We built a
dataset of security prices over a 30-year time frame by joining stock and ETF trading histories to a
database of global news headlines (details in supplement). The predictors X(i,t) consist of the trading
history of the 24 securities over the previous 2 weeks as well as global news headlines from the same
time period. The covariates U (i,t) consist of the date and security characteristics (name, region, and
industry). The target Y (i,t) is the price of this security 2 weeks after t.

Results. PR significantly outperforms baseline methods to predict price movements (Table 1).
In contrast to standard models which average effects over long time periods and/or securities, PR
summarizes gradual shifts in attention. The estimated sample-specific models are visualized in Fig. 2.
The strongest clustering behavior is due to time (Fig. 2b). For instance, models fit to samples in the
era of U.S. “stagflation" (1973-1975) are overlaid on models for samples in the early 1990s U.S.
recession. In both of these cases, real equity prices declined against the background of high inflation
rates. In contrast, the recessions marked by structural problems such as the Great Financial Crisis of
2008 are separated from the others. Within each time period, we also see that industries (Fig. S4a),
regions (Fig. S4b), and securities (Fig. S4c) are strongly clustered (details in supplement).

3.3 Cancer Analysis

In cancer analysis, the challenges of sample heterogeneity are paramount and well-known. Increasing
biomedical evidence suggests that patients do not fall into discrete clusters [5, 21], but rather each
patient experiences a unique disease that should be approached from an individualized perspective [7].
Here, we investigate the capacity of PR to distinguish malignant from benign skin lesions using a
dataset of desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of a common
skin cancer, basal cell carcinoma (BCC) [22] (details in supplement).
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(a) Models colored by industry of the security. (b) Models colored by date of prediction.

Figure 2: Personalized financial models using t-SNE [33] embedding. Each point represents a
regression model for one security at a single date.

Results. As shown in Table 1, PR produces the best predictions of tumor status amongst the
methods evaluated. The substantial improvement over competing methods is likely due to the long
tail of the distribution of characteristic features—we observe that the number of samples which
assign the largest influence to each feature has a long tail (Fig. S7). By summing the most important
features for each instance, we can transform these sample-specific explanations into patient-specific
explanations (Table S4). These explanations depict a clustering of patients in which there are 8
distinct subtypes (visualized in Fig. S6). While we may hope that a mixture model could recover
these patient clusters, actual mixture components are less accurate in prediction (Table 1), likely due
to their independent estimation and reduced statistical power. Furthermore, this clustering by patient
is incomplete—there is also significant heterogeneity in the models for each patient (Fig. S6). This
may point to the “mosaic" view of tumors, under which single tumors are comprised of multiple cell
lines [19]. This example underscores the benefits of treating sample heterogeneity as fundamental by
designing algorithms to estimate sample-specific models.

3.4 Presidential Election Analysis

Our last experiment illustrates a practical use case for the example of modeling election outcomes
discussed in Section 1. The goals are twofold: 1) To predict county-level election results, and
2) To explore the use of distinct regression models as embeddings of samples in order to better
understand voting preferences at the county (i.e. sample-specific) level. The data are from the 2012
U.S. presidential election and consist of discrete representations of each candidate based on candidate
positions while the outcomes are the county-level vote proportions (details in supplement). For the
covariates U , we used county demographic information from the 2010 U.S. Census. As the outcome
varies across samples but the predictors remain constant, the personalized regression models must
encode sample heterogeneity by estimating different regression parameters for different samples, thus
creating county representations (“embeddings") which combine both voting and demographic data.

Results. The out-of-sample predictive error is significantly reduced by personalization (Table 1).
Figs. 3, S8 depict embeddings of the Pennsylvania counties included in the training set. Generating
county embeddings based solely on voting outcome constrains the embeddings near a one-dimensional
manifold (Fig. S8b), while demographics produce embeddings which do not strongly correspond to
voting patterns (Fig. 3a). In contrast, the personalized models produce a structure which interpolates
between the two types of data (Fig. 3b). An interesting case is that of the Lackawanna and Allegheny
counties. While these counties had similar voting results in the 2012 election, their embeddings are
far apart due to the difference in demographics between their major metropolitan areas. This indicates
that the county populations may be voting for different reasons despite similar demographics, a
finding that is not discovered by jointly inspecting the demographic and voting data (Fig. S8e). Thus,
sample-specific models can be used to understand the complexities of election results.
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(a) Demographic Covariates, U (b) Personalized Estimation, bZ

Figure 3: Embeddings of Pennsylvania counties. Each point represents a county, with color gradi-
ent corresponding to the 2012 election result (red for Republican candidate, blue for Democratic
candidate). Due to space constraints, the name of each county has been abbreviated, with a key in
Table S5 of the Supplement. (a) The raw covariates U lie near a low-dimensional manifold that does
not correspond to voter outcome. (b) Personalized regression models form embeddings ( bZ) which
interpolate between demographic and voting information.

4 Discussion and Future Work

We have presented a framework to estimate collections of models by matching structure in sample
covariates to structure in regression parameters. We showed that this framework accurately recovers
sample-specific parameters, enabling collections of simple models to surpass the predictive capacity
of larger, uninterpretable models. Our framework also enables fine-grained analyses which can be
used to understand sample heterogeneity, even within groups of similar samples. Beyond estimating
sample-specific models, we also believe it would be possible to adapt these ideas to improve standard
models. For instance, the distance-matching regularizer may be applied to augment standard mixture
models. It would also be interesting to consider extensions of this framework to more structured
models such as personalized probabilistic graphical models. Overall, the success of these personalized
models underscores the importance of directly treating sample heterogeneity rather than building
increasingly-complicated cohort-level models.
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