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Abstract

In the context of multi-player, general-sum games, there is a growing interest in
solution concepts involving some form of communication among players, since
they can lead to socially better outcomes with respect to Nash equilibria and may
be reached through learning dynamics in a decentralized fashion. In this paper,
we focus on coarse correlated equilibria (CCEs) in sequential games. First, we
complete the picture on the complexity of finding social-welfare-maximizing CCEs
by proving that the problem is not in Poly-APX, unless P = NP, in games with
three or more players (including chance). Then, we provide simple arguments
showing that CFR—working with behavioral strategies—may not converge to a
CCE in multi-player, general-sum sequential games. In order to amend this issue,
we devise two variants of CFR that provably converge to a CCE. The first one
(CFR-S) is a simple stochastic adaptation of CFR which employs sampling to
build a correlated strategy, whereas the second variant (called CFR-Jr) enhances
CFR with a more involved reconstruction procedure to recover correlated strategies
from behavioral ones. Experiments on a rich testbed of multi-player, general-sum
sequential games show that both CFR-S and CFR-Jr are dramatically faster than
the state-of-the-art algorithms to compute CCEs, with CFR-Jr being also a good
heuristic to find socially-optimal CCEs.

1 Introduction

A number of recent studies explore relaxations of the classical notion of equilibrium (i.e., the
Nash equilibrium (NE) [30]), allowing to model communication among the players [3, 14, 34].
Communication naturally brings about the possibility of playing correlated strategies. These are
customarily modeled through a trusted external mediator who privately recommends actions to the
players [1]. In particular, a correlated strategy is a correlated equilibrium (CE) if each player has
no incentive to deviate from the recommendation, assuming the other players would not deviate
either. A popular variation of the CE is the coarse correlated equilibrium (CCE), which only prevents
deviations before knowing the recommendation [28]. In sequential games, CEs and CCEs are
well-suited for scenarios where the players have limited communication capabilities and can only
communicate before the game starts, such as, e.g., military settings where field units have no time or
means of communicating during a battle, collusion in auctions where communication is illegal during
bidding, and, in general, any setting with costly communication channels or blocking environments.
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CCEs present a number of appealing properties. A CCE can be reached through simple (no-regret)
learning dynamics in a decentralized fashion [17, 22], and, in several classes of games (such as, e.g.,
normal-form and succinct games [31, 26]), it can be computed exactly in time polynomial in the size
of the input. Furthermore, an optimal (i.e., social-welfare-maximizing) CCE may provide arbitrarily
larger welfare than an optimal CE, which, in turn, may provide arbitrarily better welfare than an
optimal NE [12]. Although the problem of finding an optimal CCE is NP-hard for some game classes
(such as, e.g., graphical, polymatrix, congestion, and anonymous games [3]), Roughgarden [34] shows
that the CCEs reached through regret-minimizing procedures have near-optimal social welfare when
the (λ, µ)-smoothness condition holds. This happens, e.g., in some specific auctions, congestion
games, and even in Bayesian settings, as showed by Hartline et al. [23]. Thus, decentralized
computation via learning dynamics, computational efficiency, and welfare optimality make the CCE
one of the most interesting solution concepts for practical applications. However, the problem of
computing CCEs has been addressed only for some specific games with particular structures [3, 23].
In this work, we study how to compute CCEs in the general class of games which are sequential,
general-sum, and multi-player. This is a crucial advancement of CCE computation, as sequential
games provide a model for strategic interactions which is richer and more adherent to real-world
situations than the normal form.

In sequential games, it is known that, when there are two players without chance moves, an optimal
CCE can be computed in polynomial time [12]. Celli et al. [12] also provide an algorithm (with no
polynomiality guarantees) to compute solutions in multi-player games, using a column-generation
procedure with a MILP pricing oracle. As for computing approximate CCEs, in the normal-form
setting, any Hannan consistent regret-minimizing procedure for simplex decision spaces may be
employed to approach the set of CCEs [5, 13]—the most common of such techniques is regret
matching (RM) [4, 22]. However, approaching the set of CCEs in sequential games is more demanding.
One could represent the sequential game with its equivalent normal form and apply RM to it. However,
this would result in a guarantee on the cumulative regret which would be exponential in the size
of the game tree (see Section 2). Thus, reaching a good approximation of a CCE could require
an exponential number of iterations. The problem of designing learning algorithms avoiding the
construction of the normal form has been successfully addressed in sequential games for the two-
player, zero-sum setting. This is done by decomposing the overall regret locally at the information sets
of the game [15]. The most widely adopted of such approaches are counterfactual regret minimization
(CFR) [43] and CFR+ [39, 38], which originated variants such as those introduced by Brown and
Sandholm [9] and Brown et al. [10]. These techniques were the key for many recent remarkable
results [6, 7, 8? ]. However, these algorithms work with players’ behavioral strategies rather than
with correlated strategies, and, thus, they are not guaranteed to approach CCEs in general-sum games,
even with two players. The only known theoretical guarantee of CFR when applied to multi-player,
general-sum games is that it excludes dominated actions [19]. Some works also attempt to apply
CFR to multi-player, zero-sum games, see, e.g., [32].

Original contributions First, we complete the picture on the computational complexity of finding
an optimal CCE in sequential games, showing that the problem is inapproximable (i.e., not in Poly-
APX), unless P = NP, in games with three or more players (chance included). In the rest of the paper,
we focus on how to compute approximate CCEs in multi-player, general-sum, sequential games using
no-regret-learning procedures. We start pointing out simple examples where CFR-like algorithms
available in the literature cannot be directly employed to our purpose, as they only provide players’
average behavioral strategies whose product is not guaranteed to converge to an approximate CCE.
However, we show how CFR can be easily adapted to approach the set of CCEs in multi-player,
general-sum sequential games by resorting to sampling procedures (we call the resulting, naïve
algorithm CFR-S). Then, we design an enhanced version of CFR (called CFR-Jr) which computes
an average correlated strategy guaranteed to converge to an approximate CCE with a bound on the
regret sub-linear in the size of the game tree. The key component of CFR-Jr is a polynomial-time
algorithm which constructs, at each iteration, the players’ normal-form strategies by working on the
game tree, avoiding to build the (exponential-sized) normal-form representation. We evaluate the
scalability of CFR-S and CFR-Jr on a rich testbed of multi-player, general-sum sequential games.
Both algorithms solve instances which are orders of magnitude larger than those solved by previous
state-of-the-art CCE-finding techniques. Moreover, CFR-Jr proved to be a good heuristic to compute
optimal CCEs, returning nearly-socially-optimal solutions in all the instances of our testbeds. Finally,
we also test our algorithms against CFR in multi-player, general-sum games, showing that, in several
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instances of our testbed, CFR does not converge to a CCE and it returns solutions providing a social
welfare considerably lower than that achieved with CFR-S and CFR-Jr.

2 Preliminaries

In this section, we introduce some basic concepts which are used in the rest of the paper (see Shoham
and Leyton-Brown [36] and Cesa-Bianchi and Lugosi [13] for further details).

2.1 Extensive-form games and relevant solution concepts

We focus on extensive-form games (EFGs) with imperfect information and perfect recall. We
denote the set of players as P ∪ {c}, where c is the Nature (chance) player (representing exogenous
stochasticity) selecting actions with a fixed known probability distribution. H is the set of nodes
of the game tree, and a node h ∈ H is identified by the ordered sequence of actions from the root
to the node. Z ⊆ H is the set of terminal nodes, which are the leaves of the game tree. For every
h ∈ H \ Z, we let P (h) be the unique player who acts at h and A(h) be the set of actions she has
available. We write h · a to denote the node reached when a ∈ A(h) is played at h. For each player
i ∈ P , ui : Z → R is the payoff function. We denote by ∆ the maximum range of payoffs in the
game, i.e., ∆ = maxi∈P (maxz∈Z ui(z)−minz∈Z ui(z)).

We represent imperfect information using information sets (from here on, infosets). Any infoset I
belongs to a unique player i, and it groups nodes which are indistinguishable for that player, i.e.,
A(h) = A(h′) for any pair of nodes h, h′ ∈ I . Ii denotes the set of all player i’s infosets, which
form a partition of {h ∈ H | P (h) = i}. We denote by A(I) the set of actions available at infoset I .
In perfect-recall games, the infosets are such that no player forgets information once acquired.

We denote with πi a behavioral strategy of player i, which is a vector defining a probability distribution
at each player i’s infoset. Given πi, we let πi,I be the (sub)vector representing the probability
distribution at I ∈ Ii, with πi,I,a denoting the probability of choosing action a ∈ A(I).

An EFG has an equivalent tabular (normal-form) representation. A normal-form plan for player i
is a vector σi ∈ Σi =×I∈Ii A(I) which specifies an action for each player i’s infoset. Then, an
EFG is described through a |P|-dimensional matrix specifying a utility for each player at each joint
normal-form plan σ ∈ Σ =×i∈P Σi. The expected payoff of player i, when she plays σi ∈ Σi and
the opponents play normal-form plans in σ−i ∈ Σ−i =×j 6=i∈P Σj , is denoted, with an overload of
notation, by ui(σi, σ−i). Finally, a normal-form strategy xi is a probability distribution over Σi. We
denote by Xi the set of the normal-form strategies of player i. Moreover, X denotes the set of joint
probability distributions defined over Σ.

We also introduce the following notation. We let ρπi be a vector in which each component ρπiz is the
probability of reaching the terminal node z ∈ Z, given that player i adopts the behavioral strategy πi
and the other players play so as to reach z. Similarly, given a normal-form plan σi ∈ Σi, we define
the vector ρσi . Moreover, with an abuse of notation, ρπiI and ρσiI denote the probability of reaching
infoset I ∈ Ii. Finally, Z(σi) ⊆ Z is the subset of terminal nodes which are (potentially) reachable
if player i plays according to σi ∈ Σi.

The classical notion of CE by Aumann [1] models correlation via the introduction of an external
mediator who, before the play, draws the joint normal-form plan σ∗ ∈ Σ according to a publicly
known x∗ ∈ X , and privately communicates each recommendation σ∗i to the corresponding player.
After observing their recommended plan, each player decides whether to follow it or not. A CCE is a
relaxation of the CE, defined by Moulin and Vial [28], which enforces protection against deviations
which are independent from the sampled joint normal-form plan.
Definition 1. A CCE of an EFG is a probability distribution x∗ ∈ X such that, for every i ∈ P , and
σ′i ∈ Σi, it holds: ∑

σi∈Σi

∑
σ−i∈Σ−i

x∗(σi, σ−i) (ui(σi, σ−i)− ui(σ′i, σ−i)) ≥ 0.

CCEs differ from CEs in that a CCE only requires that following the suggested plan is a best response
in expectation, before the recommended plan is actually revealed. In both equilibrium concepts, the
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entire probability distribution according to which recommendations are drawn is revealed before the
game starts. After that, each player commits to playing a normal-form plan (see Appendix A for
further details on the various notions of correlated equilibrium in EFGs). An NE [30] is a CCE which
can be written as a product of players’ normal-form strategies x∗i ∈ Xi. In conclusion, an ε-CCE is
a relaxation of a CCE in which every player has an incentive to deviate less than or equal to ε (the
same definition holds true for ε-CE and ε-NE).

2.2 Regret and regret minimization

In the online convex optimization framework [42], each player i plays repeatedly against an unknown
environment by making a series of decisions x1

i , x
2
i , . . . , x

t
i. In the basic setting, the decision space

of player i is the whole normal-form strategy space Xi. At iteration t, after selecting xti, player i
observes a utility uti(x

t
i). The cumulative external regret of player i up to iteration T is defined as

RTi = max
x̂i∈Xi

T∑
t=1

uti(x̂i)−
T∑
t=1

uti(x
t
i). (1)

A regret minimizer is a function providing the next player i’s strategy xt+1
i on the basis of the past

history of play and the observed utilities up to iteration t. A desirable property for regret minimizers
is Hannan consistency [21], which requires that lim supT→∞

1
TR

T
i ≤ 0, i.e., the cumulative regret

grows at a sublinear rate in the number of iterations T .

In an EFG, the regret can be defined at each infoset. After T iterations, the cumulative regret for not
having selected action a ∈ A(I) at infoset I ∈ Ii (denoted by RTI (a)) is the cumulative difference in
utility that player i would have experienced by selecting a at I instead of following the behavioral
strategy πti at each iteration t up to T . Then, the regret for player i at infoset I ∈ Ii is defined as
RTI = maxa∈A(I)R

T
I (a). Moreover, we let RT,+I (a) = max{RTI (a), 0}.

RM [22] is the most widely adopted regret-minimizing scheme when the decision space is Xi (e.g., in
normal-form games). In the context of EFGs, RM is usually applied locally at each infoset, where the
player selects a distribution over available actions proportionally to their positive regret. Specifically,
at iteration T + 1 player i selects actions a ∈ A(I) according to the following probability distribution:

πT+1
i,I,a =


RT,+I (a)∑

a′∈A(I) R
T,+
I (a′)

, if
∑
a′∈A(I)R

T,+
I (a′) > 0

1
|A(I)| , otherwise

.

Playing according to RM at each iteration guarantees, on iteration T ,RTI ≤ ∆

√
|A(I)|√
T

[13]. CFR [43]
is an anytime algorithm to compute ε-NEs in two-player, zero-sum EFGs. CFR minimizes the external
regret RTi by employing RM locally at each infoset. In two-player, zero-sum games, if both players
have cumulative regrets such that 1

TR
T
i ≤ ε, then their average behavioral strategies are a 2ε-

NE [41]. CFR+ is a variation of classical CFR which exhibits better practical performances [39].
However, it uses alternation (i.e., it alternates which player updates her regret on each iteration),
which complicates the theoretical analysis to prove convergence [15, 11].

3 Hardness of approximating optimal CCEs

We address the following question: given an EFG, can we find a social-welfare-maximizing CCE in
polynomial time? As shown by Celli et al. [12], the answer is yes in two-player EFGs without Nature.
Here, we give a negative answer to the question in the remaining cases, i.e., two-player EFGs with
Nature (Theorem 1) and EFGs with three or more players without Nature (Theorem 2). Specifically,
we provide an even stronger negative result: there is no polynomial-time approximation algorithm
which finds a CCE whose value approximates that of a social-welfare-maximizing CCE up to any
polynomial factor in the input size, unless P = NP. 2 We prove our results by means of a reduction
from SAT, a well known NP-complete problem [18], which reads as follows.

2Formally, an r-approximation algorithm A for a maximization problem is such that OPT
APX
≤ r, where OPT

is the value of an optimal solution to the problem instance and APX is the value of the solution returned by A.
See [2] for additional details on approximation algorithms.
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Figure 1: Left: Example of game for the reduction of Theorem 1, where V = {x, y, z}, C =
{φ1, φ2, φ3}, φ1 = x, φ2 = x̄ ∨ y, and φ3 = x̄ ∨ ȳ. Right: Example of game for the reduction of
Theorem 2, with V and C as before.

Definition 2 (SAT). Given a finite set C of clauses defined over a finite set V of variables, is there a
truth assignment to the variables which satisfies all clauses?

For clarity, Figure 1 shows concrete examples of the EFGs employed for the reductions of Theo-
rems 1 and 2. Here, we only provide proof sketches, while we report full proofs in Appendix B.
Theorem 1. Given a two-player EFG with Nature, the problem of computing a social-welfare-
maximizing CCE is not in Poly-APX unless P = NP. 3

Proof sketch. An example of our reduction from SAT is provided on the left of Figure 1. Its main idea
is the following: player 2 selects a truth assignment to the variables, while player 1 chooses a literal
for each clause in order to satisfy it. It can be proved that there exists a CCE in which each player
gets utility 1 if and only if SAT is satisfiable (as player 1 selects aI), otherwise player 1 plays aO in
any CCE and its social welfare is ε. Assume there is a a polynomial-time poly(η)-approximation
algorithm A. If SAT is satisfiable, A would return a CCE with social welfare at least 2

poly(η) . Since,
for η sufficiently large it holds 2

poly(η) >
1
2η , then A would allow us to decide in polynomial time

whether SAT is satisfiable, leading to a contradiction unless P = NP.

Theorem 2. Given a three-player EFG without Nature, the problem of computing a social-welfare-
maximizing CCE is not in Poly-APX unless P = NP.

Proof sketch. An example of our reduction from SAT is provided on the right of Figure 1. It is based
on the same idea as that of the previous proof, where the uniform probability distribution played by
Nature is simulated by a particular game gadget (requiring a third player).

4 CFR in multi-player general-sum sequential games

In this section, we first highlight why CFR cannot be directly employed when computing CCEs of
general-sum games. Then, we show a simple way to amend it.

4.1 Convergence to CCEs in general-sum games

When players follow strategies recommended by a regret minimizer, the empirical frequency of play
approaches the set of CCEs [13]. Suppose that, at time t, the players play a joint normal-form plan
σt ∈ Σ drawn according to their current strategies. Then, the empirical frequency of play after T
iterations is defined as the joint probability distribution x̄T ∈ X such that x̄T (σ) := |t≤T :σt=σ|

T for
every σ ∈ Σ. However, vanilla CFR and its most popular variations (such as, e.g., CFR+ [39] and
DCFR [9]) do not keep track of the empirical frequency of play, as they only keep track of the players’

3Poly-APX is the class of optimization problems admitting a polynomial-time poly(η)-approximation
algorithm, where poly(η) is a polynomial function of the input size η [2].
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σR 0, 1 1, 1

100 101 102 103 104 105
0

0.2

0.4

Iterations

ε

x̄T
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Figure 2: Left: Game where x̄T1 ⊗ x̄T2 does not converge to a CCE. Right: Approximation attained by
x̄T and x̄T1 ⊗ x̄T2 when RM is applied to a variation of the Shapley game (see Appendix C).

average behavioral strategies. This ensures that the strategies are compactly represented, but it is
not sufficient to recover a CCE in multi-player, general-sum games. Indeed, it is possible to show
that, even in normal-form games, if the players play according to some regret-minimizing strategies,
then the product distribution x ∈ X resulting from players’ (marginal) average strategies may not
converge to a CCE. In order to see this, we provide the following simple example.

Example Consider the two-player normal-form game depicted on the left in Figure 2. At iteration
t, let players’ strategies xt1, x

t
2 be such that xt1(σL) = xt2(σL) = (t+ 1) mod 2. Clearly, ut1(xt1) =

ut2(xt2) = 1 for any t. For both players, at iteration t, the regret of not having played σL is 0, while
the regret of σR is −1 if and only if t is even, otherwise it is 0. As a result, after T iterations,
RT1 = RT2 = 0, and, thus, xt1 and xt2 minimize the cumulative external regret. Players’ average
strategies x̄T1 = 1

T

∑T
t=1 x

t
1 and x̄T2 = 1

T

∑T
t=1 x

t
2 converge to ( 1

2 ,
1
2 ) as T →∞. However, x ∈ X

such that x(σ) = 1
4 for every σ ∈ Σ is not a CCE of the game. Indeed, a player is always better off

playing σL, obtaining a utility of 1, while she only gets 3
4 if she chooses to stick to x. We remark that

x̄T converges, as T →∞, to x ∈ X : x(σL, σL) = x(σR, σR) = 1
2 , which is a CCE.

The example above employs handpicked regret-minimizing strategies, but similar examples can be
easily found when applying common regret minimizers. As an illustrative case, Figure 2 shows, on
the right, that, even with a simple variation of the Shapley game (see Appendix C), the outer product
of the average strategies x̄T1 ⊗ x̄T2 obtained via RM does not converge to a CCE as T → ∞. It is
clear that the same issue may (and does, see Figures 3 and 5) happen when directly applying CFR to
general-sum EFGs.

4.2 CFR with sampling (CFR-S)

Algorithm 1 CFR-S for player i

1: function CFR-S(Γ,i)
2: Initialize regret minimizer for each I ∈ Ii
3: t← 1
4: while t < T do
5: σti ← RECOMMEND(I∅)
6: Observe uti(σi) := ui(σi, σ

t
−i)

7: UPDATE(I∅, σ
t
i , u

t
i)

8: t← t+ 1

Motivated by the previous examples, we describe a
simple variation of CFR guaranteeing approachability
to the set of CCEs even in multi-player, general-sum
EFGs. Vanilla CFR proceeds as follows (see Subsec-
tion 2.2 for the details): for each iteration t, and for
each infoset I ∈ Ii, player i observes the realized
utility for each action a ∈ A(I), and then computes
πti,I according to standard RM. Once πti,I has been
computed, it is used by the regret minimizers of in-
fosets on the path from the root to I so as to compute
observed utilities. We propose CFR with sampling
(CFR-S) as a simple way to keep track of the empir-

ical frequency of play. The basic idea is letting each player i, at each t, draw σti according to her
current strategy. Algorithm 1 describes the structure of CFR-S, where function RECOMMEND builds
a normal-form plan σti by sampling, at each I ∈ Ii, an action in A(I) according to πti computed via
RM, and UPDATE updates the average regrets local to each regret minimizer by propagating utilities
according to σti . Each player i experiences utilities depending, at each t, on the sampled plans σt−i
(Line 6). Joint normal form plans σt := (σti , σ

t
−i) can be easily stored to compute the empirical

frequency of play. We state the following (see Appendix C for detailed proofs):
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Theorem 3. The empirical frequency of play x̄T obtained with CFR-S converges to a CCE almost
surely, for T →∞.

Moreover, the cumulative regret grows as O(T−1/2). This result is in line with the approach of Hart
and Mas-Colell [22] in normal-form games. Despite its simplicity, we show (see Section 6 for an
experimental evaluation) that it is possible to achieve better perfomances via a smarter reconstruction
technique that keeps CFR deterministic, avoiding any sampling step.

5 CFR with joint distribution reconstruction (CFR-Jr)

We design a new method—called CFR with joint distribution reconstruction (CFR-Jr)—to enhance
CFR so as to approach the set of CCEs in multi-player, general-sum EFGs. Differently from the
naïve CFR-S algorithm, CFR-Jr does not sample normal-form plans, thus avoiding any stochasticity.

The main idea behind CFR-Jr is to keep track of the average joint probability distribution x̄T ∈ X
arising from the regret-minimizing strategies built with CFR. Formally, x̄T = 1

T

∑T
t=1 x

t, where
xt ∈ X is the joint probability distribution defined as the product of the players’ normal-form
strategies at iteration t. At each t, CFR-Jr computes πti with CFR’s update rules, and then constructs
a strategy xti ∈ Xi which is realization equivalent (i.e., it induces the same probability distribution
on the terminal nodes, see [36] for a formal definition) to πti . We do this efficiently by directly
working on the game tree, without resorting to the normal-form representation. Strategies xti are then
employed to compute xt. The pseudocode of CFR-Jr is provided in Appendix D.

Algorithm 2 Reconstruct xi from πi

1: function NF-STRATEGY-RECONSTRUCTION(πi)
2: X← ∅ .X is a dictionary defining xi
3: ωz ← ρπiz ∀z ∈ Z
4: while ω > 0 do
5: σ̄i ← arg maxσi∈Σi

minz∈Z(σi) ωz
6: ω̄ ← minz∈Z(σ̄i) ωz
7: X← X ∪ (σ̄i, ω̄)
8: ω ← ω − ω̄ ρσ̄i

return xi built from the pairs in X

Algorithm 2 shows a polynomial-time pro-
cedure to compute a normal-form strat-
egy xi ∈ Xi realization equivalent to a
given behavioral strategy πi. The algo-
rithm maintains a vector ω which is initial-
ized with the probabilities of reaching the
terminal nodes by playing πi (Line 3), and
it works by iteratively assigning probabil-
ity to normal-form plans so as to induce
the same distribution as ω over Z. 4 In or-
der for this to work, at each iteration, the
algorithm must pick a normal-form plan
σ̄i ∈ Σi which maximizes the minimum

(remaining) probability ωz over the terminal nodes z ∈ Z(σ̄i) reachable when playing σ̄i (Line 5).
Then, the probabilities ωz for z ∈ Z(σ̄i) are decreased by the minimum (remaining) probability ω̄
corresponding to σ̄i, and σ̄i is assigned probability ω̄ in xi. The algorithm terminates when the vector
ω is zeroed, returning a normal-form strategy xi realization equivalent to πi. This is formally stated
by the following result, which also provides a polynomial (in the size of the game tree) upper bound
on the run time of the algorithm and on the support size of the returned normal-form strategy xi. 5

Theorem 4. Algorithm 2 outputs a normal-form strategy xi ∈ Xi realization equivalent to a given
behavioral strategy πi, and it runs in time O(|Z|2). Moreover, xi has support size at most |Z|.
Intuitively, the result in Theorem 4 (its full proof is in Appendix D) relies on the crucial observation
that, at each iteration, there is at least one terminal node z ∈ Z whose corresponding probability
ωz is zeroed during that iteration. The algorithm is guaranteed to terminate since each ωz is never
negative, which is the case given how the normal-form plans are selected (Line 5), and since the game
has perfect recall. This guarantees that the algorithm eventually terminates in at most |Z| iterations.

Finally, the following theorem (whose full proof is in Appendix D) proves that the average distribution
x̄T obtained with CFR-Jr approaches the set of CCEs. Formally:
Theorem 5. If 1

TR
T
i ≤ ε for each player i ∈ P , then x̄T obtained with CFR-Jr is an ε-CCE.

This is a direct consequence of the connection between regret-minimizing procedures and CCEs,
and of the fact that x̄T is obtained by averaging the products of normal-form strategies which are
equivalent to regret-minimizing behavioral strategies obtained with CFR.

4Vector ω is a realization-form strategy, as defined by Farina et al. [14, Definition 2].
5Given a normal-form strategy xi ∈ Xi, its support is defined as the set of σi ∈ Σi such that xi(σi) > 0.
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Table 1: Comparison between the run time and the social welfare of CFR-S, CFR-Jr (for various
levels of accuracy α), and the CG algorithm. General-sum instances are marked with ?. Results of
CFR-S are averaged over 50 runs. We generated 20 instances for each Rp-d family. > 24h means
that the execution of the algorithm was stopped before its completion, after running for 24 hours.

Game Tree size CFR-S CFR-Jr CG#infosets α = 0.05 α = 0.005 α = 0.0005 swAPX/swOPT α = 0.05 α = 0.005 α = 0.0005 swAPX/swOPT

K3-6 72 1.41s 9h15m > 24h - 1.03s 13.41s 11m21s - 3h47m
K3-7 84 4.22s 17h11m > 24h - 2.35s 14.33s 51m27s - 14h37m

K3-10 120 22.69s > 24h > 24h - 7.21s 72.78s 4h11m - > 24h

L3-4 1200 10m33s > 24h > 24h - 1m15s 6h10s > 24h - > 24h
L3-6 2664 2h5m > 24h > 24h - 2m40s 11h19m > 24h - > 24h
L3-8 4704 13h55m > 24h > 24h - 20m22s > 24h > 24h - > 24h

G2-4-A? 4856 10m31s > 24h > 24h 0.979 20m23m 11h4m > 24h 0.994 > 24h
G2-4-DA? 4856 2m1s 3h28m 4h17m 0.918 1m36 56m6s > 24h 0.976 > 24h
G2-4-DH? 4856 1m19s 2h7m 3h28m 0.918 1m51s 1h5m > 24h 0.976 > 24h
G2-4-AL? 4856 2m3s 1h33m 4h20m 0.919 1m48s 55m43s > 24h 0.976 > 24h
G3-4-A? 98508 1h33m > 24h > 24h 0.996 1h3m 4h13m > 24h 0.999 > 24h

G3-4-DA? 98508 1h13m > 24h > 24h 0.987 12m18s 1h50m > 24h 1.000 > 24h
G3-4-DH? 98508 47m33s 19h40m > 24h 0.886 16m38s 4h8m 15h27m 1.000 > 24h
G3-4-AL? 98508 32m34s 15h32m 17h30m 0.692 1h21m 5h2s > 24h 0.730 > 24h

R3-12? 3071 1m44s 35m38s 3h8m 0.907 16.94s 3m19s 24m6s 0.897 > 24h
R3-15? 24542 21m30s 4h28m 7h50m 0.924 3m34s 14m53s 3h3m 0.931 > 24h

6 Experimental evaluation

We experimentally evaluate CFR-Jr, comparing its performance with that of CFR-S, CFR, and the
state-of-the-art algorithm for computing optimal CCEs (denoted by CG) [12]. 6 This algorithm is a
variation of the simplex method employing a column generation technique based on a MILP pricing
oracle (we use the GUROBI 8.0 MILP solver). Notice that directly applying RM on the normal form
is not feasible, as |Σ| > 1020 even for the smallest instances. Further results are in Appendix E.

Setup We conduct experiments on parametric instances of three-player Kuhn poker games [27],
three-player Leduc hold’em poker games [37], two/three-player Goofspiel games [33], and some
randomly generated general-sum EFGs. The two-player, zero-sum versions of these games are
standard benchmarks for imperfect-information game solving. In Appendix E, we describe their
multi-player, general-sum counterparts. Each instance is identified by parameters p and r, which
denote, respectively, the number of players and the number of ranks in the deck of cards. For example,
a three-player Kuhn game with rank four is denoted by Kuhn3-4, or K3-4. We use different tie-
breaking rules for the Goofspiel instances (denoted by A, DA, DH, AL—see Appendix E). Moreover,
Rp-d denotes a random game instance with p players and depth of the game tree d.

Convergence We evaluate the run time required by the algorithms to find an approximate CCE.
The results are provided in Table 1, which reports the run time needed by CFR-S and CFR-Jr to
achieve solutions with different levels of accuracy, and the time needed by CG for reaching an
equilibrium. 7 The accuracy α of the ε-CCEs reached is defined as α = ε

∆ . Both CFR-S and CFR-Jr
consistently outperform CG, as the latter fails to find a CCE in all instances except for the smallest
ones (with less than 100 infosets). We also compare the convergence rates of CFR-S and CFR-Jr to
that of CFR in multi-player, general-sum game instances. As expected, our experiments show that,
in many instances, CFR fails to converge to a CCE. For instance, Figure 3, on the left, shows the
performance of CFR-Jr, CFR-S (mean plus/minus standard deviation), and CFR over G2-4-DA in
terms of accuracy α. CFR performs dramatically worse than CFR-S and CFR-Jr, and it exhibits a
non-convergent behavior with α being stuck above 4 · 10−2.

6The only other known algorithm to compute a CCE is by Huang and von Stengel [24] (see also [26] for an
amended version). However, this algorithm relies on the ellipsoid method, which is inefficient in practice [20].

7Table 1 only accounts for algorithms with guaranteed convergence to a CCE (recall that CFR is not
guaranteed to converge in multi-player, general-sum EFGs). The original version of the CG algorithm computes
an optimal CCE. For our tests, we modified it to stop when a feasible solution is reached.
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Figure 3: Left: Convergence rate attained in G2-4-DA. Right: Social welfare attained in G2-4-DA.

Social welfare Table 1 shows, for the general-sum games, the social welfare approximation ratio
between the social welfare of the solutions returned by the algorithms (swAPX) and an upper bound
on the optimal social welfare (swOPT). In particular, swOPT is the maximum sum of players’ utilities,
which, while it is not guaranteed to be achievable by a CCE, it is always greater than or equal to
the social welfare of an optimal CCE. 8 Interestingly, the approximation ratio provided by CFR-Jr
is always better than that of CFR-S. Moreover, the social welfare guaranteed by CFR-Jr is always
nearly optimal, which makes it a good heuristic to compute optimal CCEs. Reaching a socially good
equilibrium is crucial, in practice, to make correlation credible. Figure 3, on the right, details the
performance of CFR-Jr, CFR-S (mean plus/minus standard deviation), and CFR over G2-4-DA in
terms of social welfare approximation ratio. CFR performs worse than the other two algorithms.
This shows that, not only CFR does not converge to a CCE, but it is also not a good heuristic to find
social-welfare-maximizing equilibria in multi-player, general-sum games.

7 Conclusions and future works

In this paper, we proved that finding an optimal (i.e., social-welfare maximizing) CCE is not in
Poly-APX, unless P = NP, in general-sum EFGs with two players and chance or with multiple
players. We proposed CFR-Jr as an appealing remedy to the conundrum of computing correlated
strategies for multi-player, general-sum settings with game instances beyond toy-problems. In the
future, it would be interesting to further study how to approximate CCEs in other classes of structured
games such as, e.g., polymatrix games and congestion games. Moreover, a CCE strategy profile could
be employed as a starting point to approximate tighter solution concepts which admit some form
of correlation. This could be the case, e.g., of the TMECor [14], which is used to model collusive
behaviors and interactions involving teams. Finally, it would be interesting to further investigate
whether it is possible to define regret-minimizing procedures for general EFGs leading to refinements
of the CCEs, such as CEs and EFCEs. This begets new challenging problems in the study of how to
minimize regret in structured games.
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