Reward Constrained Interactive Recommendation
with Natural Language Feedback

Ruiyi Zhang'*, Tong Yu?* , Yilin Shen?, Hongxia Jin?, Changyou Chen®, Lawrence Carin'

! Duke University, 2 Samsung Research America, 3 University at Buffalo

Abstract

Text-based interactive recommendation provides richer user feedback and has
demonstrated advantages over traditional interactive recommender systems. How-
ever, recommendations can easily violate preferences of users from their past
natural-language feedback, since the recommender needs to explore new items
for further improvement. To alleviate this issue, we propose a novel constraint-
augmented reinforcement learning (RL) framework to efficiently incorporate user
preferences over time. Specifically, we leverage a discriminator to detect recom-
mendations violating user historical preference, which is incorporated into the
standard RL objective of maximizing expected cumulative future rewards. Our
proposed framework is general and is further extended to the task of constrained
text generation. Empirical results show that the proposed method yields consistent
improvement relative to standard RL methods.

1 Introduction

Traditional recommender systems depend heavily on user history. However, these approaches, when
implemented in an offline manner, cannot provide satisfactory performance due to sparse history
data and unseen dynamic new items (e.g., new products, recent movies, etc.). Recent work on
recommender systems has sought to interact with users, to adapt to user preferences over time. Most
existing interactive recommender systems are designed based on simple user feedback, such as
clicking data or updated ratings [6, 29, 32]. However, this type of feedback contains little information
to reflect complex user attitude towards various aspects of an item. For example, a user may like the
graphic of a dress but not its color. A click or numeric rating is typically not sufficient to express such
a preference, and thus it may lead to poor recommendations. By contrast, allowing a recommender
system to use natural-language feedback provides richer information for future recommendation,
especially for visual item recommendation [19, 20]. With natural-language feedback, a user can
describe features of desired items that are lacking in the current recommended items. The system
can then incorporate feedback and subsequently recommend more suitable items. This type of
recommendation is referred to as text-based interactive recommendation.

Flexible feedback with natural language may still induce undesired issues. For example, a system may
ignore the previous interactions and keep recommending similar items, for which a user has expressed
the preference before. To tackle these issues, we propose a reward constrained recommendation
(RCR) framework, where one sequentially incorporates constraints from previous feedback into
the recommendation. Specifically, we formulate the text-based interactive recommendation as
a constraint-augmented reinforcement learning (RL) problem. Compared to standard constraint-
augmented RL, there are no explicit constraints in text-based interactive recommendation. To this end,
we use a discriminator to detect violations of user preferences in an adversarial manner. To further
validate our proposed RCR framework, we extend it to constrained text generation to discourage
undesired text generation.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

* Equal contribution. Work done while RZ was a part-time research intern at Samsung Research America.



The main contributions of this paper are summarized as follows. (¢) A novel reward constrained rec-
ommendation framework is developed for text-based interactive recommendation, where constraints
work as a dynamically updated critic to penalize the recommender. (:¢) A novel way of defining
constraints is proposed, in an adversarial manner, with better generalization. (¢7¢) Extensive empirical
evaluations are performed on text-based interactive recommendation and constrained text generation
tasks, demonstrating consistent performance improvement over existing approaches.

2 Background
2.1 Reinforcement Learning

Reinforcement learning aims to learn an optimal policy for an agent interacting with an unknown
(and often highly complex) environment. A policy is modeled as a conditional distribution 7 (a|s),
specifying the probability of choosing action a € A when in state s € S. Formally, an RL problem
is characterized by a Markov decision process (MDP) [38], M = (S, A, P, R). In this work, we
consider recommendation for finite-horizon environments with the average reward criterion. If the
agent chooses action a € A at state s € S, then the agent will receive an immediate reward 7 (s, a),
and the state will transit to s’ € S with probability P(s’|s, a). The expected total reward of a policy
7 18 defined as [42]:

Jr(m) =Y Epqx[r(siar)]. (1)

In (1) the sum is over infinite time steps, but in practice we will be interested in finite horizons.

The goal of an agent is to learn an optimal policy that maximizes Jg (7). A constrained Markov
decision process (CMDP) [3] extends the MDP framework by introducing the constraint C'(s, a)
(mapping a state-action pair to costs, similar to the usual reward) ? and a threshold « € [0, 1]. Denoting
the expectation over the constraint C'(s, a) as Jo(m) = > o | Ep -[C(s¢, a;)], the constrained policy
optimization thus becomes [1]:

max Jr(m), st Jo(n) <a . 2)

2.2 Text-based Interactive Recommendation as Reinforcement Learning

We employ an RL-based formulation for sequential recommendation of items to users, utilizing user
feedback in natural language. Denote s; € S as the state of the recommendation environment at time
t and a; € A as the recommender-defined items from the candidate items set A. In the context of a
recommendation system, as discussed further below, the state s, corresponds to the state of sequential
recommender, implemented via a LSTM [23] state tracker. At time ¢, the system recommends item
a; based on the current state s; at time ¢t. After viewing item a;, a user may comment on the
recommendation in natural language (a sequence of natural-language text) x;, as feedback. The
recommender then receives a reward r; and perceives the new state s, 1. Accordingly, we can model
the recommendation-feedback loop as an MDP M = (S, A, P, R), where P : S x A xS — R
is the environment dynamic of recommendation and R : § x A — R is the reward function used
to evaluate recommended items. The recommender seeks to learn a policy parameterized by 6,
i.e., mg(als), that corresponds to the distribution of items conditioned on the current state of the
recommender. The recommender is represented as an optimal policy that maximizes the expected
reward as Jr(m) = >, Epr [r(s¢,a:)]. Ateach time step, the recommender sequentially selects
potential desired items at each time step via a; = arg maxqe.4 7o (als:).

3 Proposed Method

In text-based interactive recommendation, users provide natural-language-based feedback. We
consider the recommendation of visual items [19, 20]. As shown in Figure 2, the system recommends
an item to the user, with its visual appearance. The user then views the recommended item and
gives feedback in natural language, describing the desired aspects that the current recommended item
lacks. The system then incorporates the user feedback and recommends (ideally) more-suitable items,
until the desired item is found. While users provide natural-language feedback on recommendations,
standard RL methods may overlook the information from the feedback and recommend items that

ZFor simplicity, we here only introduce one constraint function; in practice, there may be many constraint
functions.



User
Rewards P e N e -

User >

History
Comments

&)+

|
: Constraint
! B ) Penal
| Qrefer high heel | ty Visual
s ! Encoder
- a

e

Predicted
Features St
MLP L
=
Qt+1 .
4 Matching
aN' o |
Next | Visual =
) | — —

Recommendation | Image Encoder | &

| [ 5.

Recommended Mttt S TR R R bbbl
Image ; Recommender Image Database
|
|
|

(
l\
4
e

Figure 1: Overview of the reward constrained recommender model. When receiving the recommended
images, the user gives natural-language feedback, and this feedback will be used for the next item
recommendation, as well as preventing future violations.

violate the user’s previous feedback. To better understand this issue, consider the example in Figure 2.
In round 3, the system forgets, and recommends an item that violates previous user preference on the
‘ankle boots’.

To alleviate this issue, we con- Round 1 Round 2 Round 3 Round 4

sider using feedback from users

as constraints, and formulate ﬁ = j g ‘ g
teXt_baS_ed 1nteract1ve. recom- | prefer ankle boots. | prefer shoes with | prefer ankle boots. | prefer shoes with
mendation as a constrained pol- suede texture. moc toe.

icy optimization problem. The Figure 2: An example of text-based interactive recommendation.
difference between the investigated problem and conventional constrained policy optimization [3, 5]

is that constraints are added sequentially, affecting the search space of a policy in a different manner.
Our model is illustrated in Figure 1.

3.1 Recommendation as Constrained Policy Optimization

We consider an RL environment with a large number of discrete actions, deterministic transitions,
and deterministic terminal returns. Suppose we have the user preference as constraints J () when
making recommendations. The objective of learning a recommender is defined as:

Jr(ms) =Y Epax, [r(se,ar)], st Jo(m) < a . 3)
t=1

If one naively augments previous user preferences as a hard constraint, i.e., exactly attributes matching,
it usually leads to a sub-optimal solution. To alleviate this issue, we propose to use a learned constraint
function based on the visual and textual information.

Constraint Functions In text-based interactive recommendation, we explicitly use the user prefer-
ence as constraints. Specifically, we exploit user feedback and put it as sequentially added constraints.
To generalize well on the constraints, we learn a discriminator Cy parameterized by ¢ as the con-
straint function. We define two distributions on feedback-recommendation pairs, i.e., non-violation
distribution p,., and violation distribution p (details provided in Appendix A.2). The objective of the
discriminator is to minimize the following objective:

L(¢) = —E(s,a)~p; [log(Cy(s,a))] — E(s,a)~p, [log(l = Cy(s,a))] . )

With the discriminator as the constraint i.e., Jc, () £ > o1 Ep ., [Cy(8e, ar)], the constraint is
imposed. However, directly solving the constrained-optimization problem in (3) is difficult, and we
employ the Lagrange relaxation technique [4] to transform the original objective to an equivalent
problem as:

&IlzigmgXL(A,@, ¢) = Iglzilgmgax [Jr(me) = X~ (Jo, (me) — )] (&)



where A\ > 0 is a Lagrange multiplier. Note that as ) increases, the solution to (5) converges to that
of (3). The goal is to find a saddle point (8*(A*), A*) of (5), that can be achieved approximately by
alternating gradient descent/ascent. Specifically, the gradient of (5) can be estimated using policy
gradient [42] as:

VGL(97 >\7 ¢) = EP,W[(T(Sty at) - AO¢(St, at)) v@ IOg 779(815’ at)] ) (6)
VAL(0, A, ¢) = —(Epx[Cy(st,ar)] — a), (7
where Cy(s¢, a) is the general constraint, specified in the following.

Penalized Reward Functions Note that the update in (6) is similar to the actor-critic method [42].
While the original use of a critic in reinforcement learning was for variance reduction [42], here we
use it to penalize the policy for constraint violations. In order to ensure the constraints, A is also
optimized using policy gradient via (7). The optimization proceeds intuitively as: i) when a violation
happens (i.e., Cy (s, a) > a), A will increase to penalize the policy. ii) If there is no violation (i.e.,
Cy(s,a) < ), A will decrease to give the policy more reward.

Model Training We alternatively update the constraint function, i.e., the discriminator and the
recommender 7y, similar to the Generative Adversarial Network (GAN) [15]. Specifically, the
parameters are updated via the following rules:

9k+1 - Fg[ek + Ul(k)VOL(/\k» 9k7 ¢k)] ) (8)
Prr1 = Or +1m2(k) Vg L( A, Ok, dr) &)
Aer1 = Da[Ae — 03 (k) VAL Ak, Ok, O] (10)

where I’y is a projection operator, which
keeps the stability as the parameters are
updated within a trust region; I projects
A into the range [0, Amax]-

Algorithm 1 Reward Constrained Recommendation

Input: constraint C(-), threshold «, learning rates
m(k) > n2(k) > n3(k)

We denote a three-timescale Reward Con-
strained Recommendation process, i.e., the
three parts are updated with different fre-
quency and step sizes: the recommender
aims to maximize the expected reward with
less violations following (8). As described

Initialize recommender and discriminator parameters
with pretrained ones, Lagrange multipliers \y = 0
repeat
fort=0,1,....,7T —1do
Sample action a; ~ 7, observe next state s;1,
reward 7; and penalties c;

in the Algorithm 1, the discriminator is Ry =1 — \iee
updated following (9) to detect new vio- Recommender update with (8)
lations, and A is updated following (10). end for

Discriminator update with (9)
Lagrange multiplier update with (10)
until Model converges
return recommender (policy) parameters 6

3.2 Model Details

We discuss details on model design when
applying the proposed framework in a text-
based recommender system.

Feature Extractor Our feature extractor consists of the encoders of text and visual inputs. Similar
to [20], we consider the case where the visual attributes are available. We encode the raw images of
the items by ResNet50 [21] and an attribute network, i.e., the visual feature cfis of the item a; is
the concatenation of ResNet(a;) and AttrNet(a;). The input of the attribute network is an item’s
encoding by ResNet50 and the attribute network outputs this items’ attribute values. We further
encode the user comments in texts by an embedding layer, a LSTM and a linear mapping. Given
a user comment x, the final output of textual context is denoted as ct**. The encoded image and
comment are further concatenated as the input to an MLP, and then the recommender component.
Recommender With the visual feature ¢/** and textual feature ci*?, the recommender perceives
the state in an auto-regressive manner. At time ¢, the state is s; = f(g([c?®®, ¢®!]), s;_1), where g is
an MLP for textual and visual matching, and f is the LSTM unit [23]. Since our goal in each user
session is to find items with a set of desired attribute values, we use the policy 7y with multi-discrete
action spaces [22, 12]. For each attribute, the desired attribute value by the user is sampled from a
categorical distribution. Given the state sy, the probability of choosing a particular attribute value
is output by a three-layer fully connected neural network with a softmax activation function. The
recommender samples the values of different attributes from 7g. If K items are recommended at
each time, we select the items that are top K closest to the sampled attribute values under Euclidean
distance in the visual attribute space.



Discriminator The discriminator is designed to discriminate whether a recommended item at time
t violates previous user comments in the current session. That is, given the visual feature of current
image c}**, and textual features {cg?” ;;11, the discriminator outputs whether the image violates the
user comment. In practice, this discriminator is a three-layer fully connected neural network and
trained on-the-fly to incrementally learn the multimodal matching between the user comments and
item visual features. Following Algorithm 1, we update the discriminator after each user session,
where a user interacts with the system for several time steps, or quits. To further enhance the results,
when making recommendations, we reject some items based on this discriminator. If an item a,
sampled by the recommender has high probability of violating the previous comments {wi}ﬁ;}, we

ignore this item and sample another item to recommend.
3.3 Extension to Constrained Text Generation

In this section, we describe how to extend our framework for constrained text generation.

We consider text generation with specific con- BEailEes
straints. Specifically, we consider the scenario of (Constraint)

[:(l(i
controlling for negative sentiments. For example, a '/ \ T
generator may generate some offensive or negative X—» . %
words, which will affect the user experience in some l

situations, such as with an online chatbot for help- e iE s
ing consumers. To alleviate this issue, we applied (General)
the proposed RCR methods for text generation. Figure 3: Overview of the constrained text-

We assume each sentence is generated from a la- generation model: 4ae is thff r.econstruction
tent vector z ~ p(z), where p(z) is the distribution ~term from the VAE in pretraining. The con-
of a latent code. Text generation is then formu- straint will give a penalty when generated text
lated as the learning of a distribution: p(X) = Violates the constraint discriminator.

fzw p(X|z4)q(z.| X)dz,., where p corresponds to a decoder and ¢ to an encoder model, within the
encoder-decoder framework; z is the latent code containing content information. The generator
learns a policy 7y to generate a sequence Y = (y1,...,yr) of length T'. Here each y; is a token
from vocabulary 4. The objective is to maximize the expected reward with less constraint violations,

defined as: )
£(0,%,¢) = minmax By wr, [r(Y) = AMCy(Y) — a)], (11)

where r is the reward function, that can be a metric reward (e.g., BLEU) or a learned reward function
with general discriminator [52]; Cy(-) is the constraint discriminator for the generation. In practice,
we pretrain our generator my with a variational autoencoder (VAE) [25], and we only use the decoder
as our generator. More details about the pretrained model are provided in Appendix A.1. There is a
constraint for the generation, and the framework is illustrated in Figure 3. The general discriminator
can be a language model [48], and the constraint is a learned function parameterized by a neural
network. During inference, the model generates text based on draws from an isotropic Gaussian
distribution, ie., z ~ N (0,I). Here we only consider the static constraint with non-zero final
deterministic reward.

4 Related Work

Constrained Policy Optimization Constrained Markov Decision Processes [3] are employed in a
wide range of applications, including analysis of electric grids [26] and in robotics [8, 17]. Lagrange
multipliers are widely used to solve the CMDP problem [43, 5], as adopted in our proposed framework.
Other solutions of CMDP include use of a trust region [1], and integrating prior knowledge [11].
Additionally, some previous work manually selects the penalty coefficient [13, 31, 37]. In contrast
with standard methods, our constraint functions are: (i) sequentially added via natural-language
feedback; (if) parameterized by a dynamically updated neural network with better generalization.

Text-Based Recommender System Communications between a user and recommendation system
have been leveraged to understand user preference and provide recommendations. Entropy-based
methods and bandits have been studied in question selection [34, 10]. Deep learning and reinforcement
learning models have been proposed to understand user conversations and make recommendations
[2,9, 16, 41, 30, 53, 56]. Similar to [10, 41, 30, 53], the items are associated with a set of attributes
in our recommendation setting. In the existing works, the content of the conversation serves as the



constraint when a system makes recommendations. However, in most existing works, constraints from
the conversations are not explicitly modeled. By contrast, this paper proposes a novel constrained
reinforcement learning framework to emphasize the constraints when making recommendations.

Interactive Image Retrieval Leveraging user feedback on images to improve image retrieval has
been studied extensively [45]. Depending on the feedback format, previous works can be categorized
into relevance feedback [39, 47] and relative-attributes feedback [27, 36, 49]. In these works, the
attributes to describe the images are pre-defined and fixed. To achieve more flexible and precise
representation of the image attributes, Guo, et al. [19] proposes an end-to-end approach, without
pre-defining a set of attributes. Their goal is to improve the ranking of the target item, while we
focus on recommending items that do not violate the users’ previous comments in the iterative
recommendation. Thus, we develop a different evaluation simulator as detailed in Section 5.1. In [53],
it is assumed that an accurate discriminator pretrained on huge-amount offline data is available at the
beginning, which is usually impractical. Instead, our novel RCR framework learns the discriminator
from scratch and dynamically updates the model ¢ and its weight A by (9) and (10) online.

Constrained Text Generation Adversarial text generation [52, 7, 33, 14, 54, 35] use reinforcement
learning (RL) algorithms for text generation. They use the REINFORCE algorithm to provide an
unbiased gradient estimator for the generator, and apply the roll-out policy to obtain the reward from
the discriminator. LeakGAN [18] adopts a hierarchical RL framework to improve text generation.
GSGAN [28] and TextGAN [55, 24] use the Gumbel-softmax and soft-argmax representation,
respectively, to deal with discrete data. Wang, et al. [46] put topic-aware priors on the latent codes to
generate text on specific topics. All these works consider generating sentences with better quality and
diversity, without explicit constraints.

5 Experiments

We apply the proposed methods in two applications: text-based interactive recommendation and
constrained text generation, to demonstrate the effectiveness of our proposed RCR framework.

5.1 Text-Based Interactive Recommendation

Dataset and Setup Our approaches are evaluated on the UT-Zappos50K dataset [50, 51]. UT-
Zappos50K is a shoe dataset consisting of 50,025 shoe images. This dataset provides rich attribute
data and we focus on shoes category, shoes subcategory, heel height, closure, gender and toe style
in our evaluation. Among all the images, 40,020 images are randomly sampled as training data and
the rest are used as test data. To validate the generalization ability of our approach, we compare
the performance on seen items and unseen items. The seen items are the items in the training data
where the item visual attributes are carefully labeled. The unseen items are the items in the test data.
We assume the unseen items are newly collected and have no labeled visual attributes. We train the
attribute network on the training data, under the cross-entropy loss. The ResNet50 is pretrained on
ImageNet and is fixed subsequently. When we report the results on seen and unseen items, their
attribute values are predicted by the attribute network. We pretrain the textual encoder, where the
labels are the described attribute values, under the cross-entropy loss. The training data consists of
the comments collected by annotators as detailed later in this section. In reinforcement learning, we
use Adam [25] as the optimizer. We set a = 0.5 and Apax = 1.

We define the reward as the visual similarity between the recommended and desired items. Similar
to [20], in our task both images and their visual attributes are available to measure the similarity.
It is desired that the recommended item becomes more similar to the desired item with more
user interactions. Thus, at time ¢, given the recommended item a; and the desired item a*, we
want to minimize their visual difference. In detail, we maximize the following visual reward
r; = —||ResNet(a;) — ResNet(a*)||2 — Aust||AttrNet(a;) — AttrNet(a*)||o, where || - ||2 is the
Lo norm, || - ||o is the Lo norm, and we set A\,¢x = 0.5 to ensure the scales of the two distances are
similar. If the system is not able to find the desired item before 50 interactions, we will terminate this
user session and the system will receive an extra reward —3 (i.e., a penalty).

Online Evaluation We cannot directly detect the violations with existing text-based interactive
recommendation dataset [19], since there are no attribute labels for the images. A recent relevant
fashion dataset provides the attribute labels * derived from the text metadata [20]. Unfortunately, we

3 Available at https://github.com/hongwang600/image_tag_dataset/tree/master/tags.



2
- RCR 40 - RCR
5 =~ RL 20 =+ RL 20 00

0 10000 20000 30000 40000 0 10000 20000 30000 40000 o 10000 20000 30000 40000 0 2000 4000 6000 8000 10000
Training iterations Training iterations Training iterations Number of Samples

Figure 4: Number of Interactions (NI), Number of Violations (N'V), Success Rate @30 (SR@30) with
respect to training iterations and the values of A in RCR with respect to number of samples. The RL
method converges much slower than the RCR.

SR@101 SR@201 SR@30 1 NI NV |
RL (Unseen) 19% 44% 63% 26.75+£1.67 70.02+6.20
RL + Naive (Unseen) 52% 83% 94% 12.72+£0.93 16.47+2.75
RCR (Unseen) 74% 86% 94% 1091 4+1.06 11.3241.98
RCR (Seen) 8% 91% 92% 10.34+£1.18 12.25+2.99

Table 1: Comparisons between different approaches. Except the row of RCR (seen) reporting results
on training data, all the results are on the test data with unseen items.

observe that the user’s comments are usually unrelated to the attribute labels. Therefore, we need to
collect the user’s comments relevant to attributes with groundtruth, for our evaluation purpose.

Further, evaluating the proposed system requires the ability to get access to all user reactions to any
possible items at each time step. For the evaluation on the UT-Zappos50K dataset, we use a similar
simulator to Guo, et al. [19]. This simulator acts as a surrogate for real human users by generating
their comments in natural language. The generated comments describe the prominent visual attribute
differences between any pair of desired and candidate items.

To achieve this, we collect user comments relevant to the attributes with groundtruth and train a user
simulator. A training dataset is collected for 10,000 pairs of images with visual attributes. These
pairs are prepared such that in each pair there is a recommended item and a desired item. Given
a pair of images, one user comment is collected. The data are collected in a scenario in which
the customer talks with the shopping assistant to get the desired items. The annotators act as the
customers to express the desired attribute values of items. For the evaluation purpose, we adopt a
simplified setting and instruct the annotators to describe the comments related to a fixed set of visual
attributes. Thus, the comments in our evaluation are relatively simpler compared to the real-world
sentences. Considering this, we further augment the collected user comment data as follows. From
the real-world sentences collected from annotators, we derive several sentence templates. Then, we
generate 20,000 labeled sentences by filling these templates with the groundtruth attribute label. On
the augmented user comment data, we train the user simulator.

Our user simulator is implemented via a sequence-to-sequence model. The inputs of the user simulator
are the differences on one attribute value between the candidate and desired items. Given the inputs,
the user simulator generates a sentence describing the visual attribute difference between the candidate
item and the desired item. We use two LSTMs as the encoder and decoder. The dimensionality of
the latent code is set as 256. We use Adam as the optimizer, where the initial learning is set as 0.001
with batch size of 64. Note that for evaluating how the current recommended item’s visual attributes
satisfy the user’s previous feedback, our user simulator on UT-Zappos50K only generates simple
comments on the visual attribute difference between the candidate image and the desired image: we
can calculate how many attributes violate the users’ previous feedback based on the visual attribute
groundtruth available in UT-Zappos50K.

We define four evaluation metrics: i) task success rate (SR@ K), which is the success rate after
after K interactions; ii) number of user interactions before success (NI); and iii) number of violated
attributes (NV). In each user session, we assume the user aims to find items with a set of desired
attribute values sampled from the dataset. We report results averaged over 100 sessions with standard
error. We develop an RL baseline approach by ignoring the constraints (i.e., discriminator) in RCR.
A major difference between our RL baseline approach and Guo, et al. [19] is that we consider the
attributes in the model learning, while the attributes are ignored in [19]. We compare RCR with
the RL without constraints, as well as RL methods with naive constraints, i.e., naively using hard
constraints. That is, we track all the visual attributes previously described by the user in this session,
and make further recommendations based on the matching between them and the items in dataset.



Analysis  All models are trained for 100,000
iterations (user sessions), and the results with
standard errors under different metrics are
shown in Table 1. The proposed RCR frame-
work shows consistent improvements on most
metrics, compared with the baselines. The gap
between RL with naive constraints and RCR
demonstrate the learned constraint (discrimina-
tor) has better generalization. Figure 4 shows
the metrics with standard errors of RL and the
proposed RCR in the first 40,000 iterations.
RCR shows much faster convergence than RL.
The last subfigure shows the values of A with
different number of samples. It is interesting to
see that ) increases at the initial stage because
of too many violations. Then, with less viola-
tions, A decreases to a relatively small value as

Round 1 Round 2 Round 3 Round 4

R R

Show me more
shoes with round toe.

| prefer elastic
gore.

ey

I want boots.

| prefer shoes for
women.

Jy-1

Show me shoes
with round toe.

| prefer ankle.

(fail to meet the
constraint of ankle)

Figure 5: Three use cases, from logged experimen-
tal results. (a) and (b) are successful use cases by
RCR. (c) is not successful by RL, which demon-
strate the common challenge of failing to meet the
constraint in recommendation.

Good!

| prefer knee
high.

(C,#-»J-»

| prefer ankle.

Good!

| want the shoes
with pull-on closure.

| prefer the ones
for women.

A = 0.04 and then remains stable, which is the automatically learned weight of the discriminator.
Some examples in Figure 5 show how the constraint improves the recommendation.

5.2 Constrained Text Generation

Experimental Setup We use the Yelp review dataset [40] to validate the proposed methods. We
split the data as 444,000, 63,500, and 127,000 sentences in the training, validation and test sets,
respectively. The generator is trained on the Yelp dataset to generate reviews without sentiment labels.
We define the reward of the generated sentence as the probability of being real and the constraint is to
generate positive reviews, i.e., the generator will receive a penalty if it generates negative reviews.
The constraint is a neural network with a classification accuracy of 97.4% on the validation set,
trained on sentences with the sentiment labels. We follow the strategy in [52, 18] and adopt the BLEU
score, referenced by test set with only positive reviews (test-BLEU) and themselves (self-BLEU) to
evaluate the quality of generated samples. We also report the violation rate (VR), the percentage of
generated negative reviews violating the constraint.

Test-BLEU-2 3 4 5 Self-BLEU-2 3 4 VR
RL 0.807 0.622 0.469 0.376 0.658 0.315 0.098 40.36%
RCR (ours) 0.840 0.651 0492 0.392 0.683 0.348 0.151 10.49%

Table 2: Comparison between RCR and standard RL for constrained text generation on Yelp.

Analysis As illustrated in Table 2, RCR achieves better test-BLEU scores than standard RL,
demonstrating high-quality generated sentences. Further, RCR shows a little higher but reasonable
self-BLEU scores, since we only generate sentences with positive sentiments, leading to lower
diversity. Our proposed method shows much lower violation rate, demonstrating the effectiveness of
RCR. Some randomly generated examples are shown in Table 3.

RL without Constraints RCR

every dish was so absolutely delicious and seasoned perfectly .

he is the most compassionate vet i have ever met .

compared to other us cities , this place ranks very generous in my book .
then you already know what this tastes like .

thank you my friends for letting us know this finest dining place in lv .
great service and the food was excellent .

the lines can get out of hand sometimes but it goes pretty quick .

the ceiling is low , the place smells awful , gambling sucked .

i have been here a few times and each time has been great !

bad food , bad service , takes too much time .

food was good , but overall it was a very bad dining experience .
my entree was a sea bass which was well prepared and tasty .
the food is delicious and very consistently so .

the waitress was horrible and came by maybe once every hour .

Table 3: Randomly selected examples of text generation by two methods.

6 Conclusions

Motivated by potential constraints in real-world tasks with RL training, and inspired by constrained
policy optimization, we propose the RCR framework, where a neural network is parameterized and
dynamically updated to represent constraints for RL training. By applying this new framework to
constrained interactive recommendation and text generation, we demonstrate that our proposed model
outperforms several baselines. The proposed method is a general framework, and can be extended to
other applications, such as vision-and-dialog navigation [44]. Future work also includes incorporating
user historical information into the recommendation.



References

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.
In ICML, 2017.

[2] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W Bruce Croft. Asking clarifying
questions in open-domain information-seeking conversations. In SIGIR, pages 475-484, 2019.

[3] Eitan Altman. Constrained Markov decision processes. CRC Press, 1999.

[4] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society,
1997.

[5] Vivek S Borkar. An actor-critic algorithm for constrained markov decision processes. Systems
& control letters, 2005.

[6] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances
in neural information processing systems, pages 2249-2257, 2011.

[7] Tong Che, Yanran Li, Ruixiang Zhang, R. Devon Hjelm, Wenjie Li, Yangqiu Song, and Yoshua
Bengio. Maximum-likelihood augmented discrete generative adversarial networks. In CoRR,
2017.

[8] Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-
making: a cvar optimization approach. In NIPS, 2015.

[9] Konstantina Christakopoulou, Alex Beutel, Rui Li, Sagar Jain, and Ed H Chi. Q&r: A two-stage
approach toward interactive recommendation. In KDD, pages 139-148. ACM, 2018.

[10] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. Towards conversational
recommender systems. In KDD, pages 815-824. ACM, 2016.

[11] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[12] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[13] Dotan Di Castro, Aviv Tamar, and Shie Mannor. Policy gradients with variance related risk
criteria. arXiv preprint arXiv:1206.6404, 2012.

[14] William Fedus, Ian Goodfellow, and Andrew M Dai. Maskgan: Better text generation via filling
in the _. ICLR, 2018.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

[16] Claudio Greco, Alessandro Suglia, Pierpaolo Basile, and Giovanni Semeraro. Converse-et-
impera: Exploiting deep learning and hierarchical reinforcement learning for conversational
recommender systems. In Conference of the Italian Association for Artificial Intelligence, pages
372-386. Springer, 2017.

[17] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In ICRA, 2017.

[18] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation
via adversarial training with leaked information. In AAAI, 2017.

[19] Xiaoxiao Guo, Hui Wu, Yu Cheng, Steven Rennie, Gerald Tesauro, and Rogerio Feris. Dialog-
based interactive image retrieval. In NIPS, pages 676—-686. 2018.

[20] Xiaoxiao Guo, Hui Wu, Yupeng Gao, Steven Rennie, and Rogerio Feris. The fashion iq dataset:
Retrieving images by combining side information and relative natural language feedback.
arXiv:1905.12794, 2019.



[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770-778, 2016.

[22] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https:
//github.com/hill-a/stable-baselines, 2018.

[23] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

[24] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. Toward
controlled generation of text. In ICML, 2017.

[25] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /CLR, 2014.

[26] Tordanis Koutsopoulos and Leandros Tassiulas. Control and optimization meet the smart power
grid: Scheduling of power demands for optimal energy management. In ICECN, 2011.

[27] Adriana Kovashka, Devi Parikh, and Kristen Grauman. Whittlesearch: Image search with
relative attribute feedback. In CVPR, pages 2973-2980. IEEE, 2012.

[28] Matt J Kusner, Herndndez-Lobato, and José Miguel. Gans for sequences of discrete elements
with the gumbel-softmax distribution. arXiv preprint arXiv:1611.04051, 2016.

[29] Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. Cascading bandits:
Learning to rank in the cascade model. In ICML, pages 767-776, 2015.

[30] Wengiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, Min-Yen Kan, and
Tat-Seng Chua. Estimation—action-reflection: Towards deep interaction between conversational
and recommender systems. In WSDM, volume 20.

[31] Sergey Levine and Vladlen Koltun. Guided policy search. In /ICML, 2013.

[32] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In WWW, pages 661-670. ACM, 2010.

[33] Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. Adversarial ranking
for language generation. In NIPS, 2017.

[34] Nader Mirzadeh, Francesco Ricci, and Mukesh Bansal. Feature selection methods for conversa-
tional recommender systems. In IEEE International Conference on e-Technology, e-Commerce
and e-Service, pages 772-777. IEEE, 2005.

[35] Weili Nie, Nina Narodytska, and Ankit Patel. Relgan: Relational generative adversarial networks
for text generation. In /ICLR, 2018.

[36] Devi Parikh and Kristen Grauman. Relative attributes. In ICCV, pages 503-510. IEEE, 2011.

[37] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions on
Graphics (TOG), 2018.

[38] Martin L Puterman. Markov Decision Processes.: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, 2014.

[39] Yong Rui, Thomas S Huang, Michael Ortega, and Sharad Mehrotra. Relevance feedback: a
power tool for interactive content-based image retrieval. IEEE Transactions on circuits and
systems for video technology, 8(5):644-655, 1998.

[40] Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Style transfer from non-parallel
text by cross-alignment. In NIPS, 2017.

[41] Yueming Sun and Yi Zhang. Conversational recommender system. In SIGIR, SIGIR 18, pages
235-244, 2018.

10



[42] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[43] Chen Tessler, Daniel ] Mankowitz, and Shie Mannor. Reward constrained policy optimization.
In ICLR, 2019.

[44] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. Vision-and-dialog
navigation. 2019.

[45] Bart Thomee and Michael S Lew. Interactive search in image retrieval: a survey. International
Journal of Multimedia Information Retrieval, 1(2):71-86, 2012.

[46] Wenlin Wang, Zhe Gan, Hongteng Xu, Ruiyi Zhang, Guoyin Wang, Dinghan Shen, Changyou
Chen, and Lawrence Carin. Topic-guided variational autoencoders for text generation. In
NAACL, 2019.

[47] Hong Wu, Hanqging Lu, and Songde Ma. Willhunter: interactive image retrieval with multilevel
relevance. In ICPR, volume 2, pages 1009-1012. IEEE, 2004.

[48] Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and Taylor Berg-Kirkpatrick. Unsupervised
text style transfer using language models as discriminators. In NeurIPS, 2018.

[49] Aron Yu and Kristen Grauman. Fine-grained comparisons with attributes. In Visual Attributes,
pages 119-154. Springer, 2017.

[50] Grauman K. Yu, A. Fine-grained visual comparisons with local learning. In CVPR, 2014.

[51] Grauman K. Yu, A. Semantic jitter: Dense supervision for visual comparisons via synthetic
images. In ICCV, 2014.

[52] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial
nets with policy gradient. In AAAI 2017.

[53] Tong Yu, Yilin Shen, Ruiyi Zhang, Xiangyu Zeng, and Hongxia Jin. Vision-language recom-
mendation via attribute augmented multimodal reinforcement learning. In ACM Multimedia,
2019.

[54] Ruiyi Zhang, Changyou Chen, Zhe Gan, Wenlin Wang, Liqun Chen, Dinghan Shen, Guoyin
Wang, and Lawrence Carin. Improving rl-based sequence generation by modeling the distant
future. In RSDM, ICML, 2019.

[55] Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence Carin.
Adversarial feature matching for text generation. In ICML, 2017.

[56] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng Cai. What to
do next: Modeling user behaviors by time-Istm. In ZJCAI, 2017.

11



