Cold Case: the Lost MNIST Digits

Chhavi Yadav Léon Bottou
New York University Facebook Al Research
New York, NY and New York University
chhavi@nyu.edu New York, NY

leon@bottou.org

Abstract

Although the popular MNIST dataset [LeCun et al., [1994] is derived from the
NIST database [Grother and Hanaoka, [1995], the precise processing steps for
this derivation have been lost to time. We propose a reconstruction that is ac-
curate enough to serve as a replacement for the MNIST dataset, with insignificant
changes in accuracy. We trace each MNIST digit to its NIST source and its rich
metadata such as writer identifier, partition identifier, etc. We also reconstruct
the complete MNIST test set with 60,000 samples instead of the usual 10,000.
Since the balance 50,000 were never distributed, they can be used to investigate
the impact of twenty-five years of MNIST experiments on the reported testing
performances. Our limited results unambiguously confirm the trends observed
by [Recht et al.|[2018] 2019]: although the misclassification rates are slightly off,
classifier ordering and model selection remain broadly reliable. We attribute this
phenomenon to the pairing benefits of comparing classifiers on the same digits.

1 Introduction

The MNIST dataset [LeCun et al., {1994, Bottou et al., |1994]] has been used as a standard machine
learning benchmark for more than twenty years. During the last decade, many researchers have
expressed the opinion that this dataset has been overused. In particular, the small size of its test
set, merely 10,000 samples, has been a cause of concern. Hundreds of publications report increas-
ingly good performance on this same test set. Did they overfit the test set? Can we trust any new
conclusion drawn on this dataset? How quickly do machine learning datasets become useless?

The first partitions of the large NIST handwritten character collection [[Grother and Hanaoka, |1995]
had been released one year earlier, with a training set written by 2000 Census Bureau employees and
a substantially more challenging test set written by 500 high school students. One of the objectives
of LeCun, Cortes, and Burges was to create a dataset with similarly distributed training and test sets.
The process they describe produces two sets of 60,000 samples. The test set was then downsampled
to only 10,000 samples, possibly because manipulating such a dataset with the computers of the
times could be annoyingly slow. The remaining 50,000 test samples have since been lost.

The initial purpose of this work was to recreate the MNIST preprocessing algorithms in order to
trace back each MNIST digit to its original writer in NIST. This reconstruction was first based on the
available information and then considerably improved by iterative refinements. Section [2|describes
this process and measures how closely our reconstructed samples match the official MNIST samples.
The reconstructed training set contains 60,000 images matching each of the MNIST training images.
Similarly, the first 10,000 images of the reconstructed test set match each of the MNIST test set
images. The next 50,000 images are a reconstruction of the 50,000 lost MNIST test images

'Code and data are available at https://github.com/facebookresearch/qmnist,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/facebookresearch/qmnist

The original NIST test contains 58,527 digit images written by 500 dif-
ferent writers. In contrast to the training set, where blocks of data from
each writer appeared in sequence, the data in the NIST test set is scram-
bled. Writer identities for the test set is available and we used this infor-
mation to unscramble the writers. We then split this NIST test set in two:
characters written by the first 250 writers went into our new training set.
The remaining 250 writers were placed in our test set. Thus we had two
sets with nearly 30,000 examples each.

The new training set was completed with enough samples from the
old NIST training set, starting at pattern #0, to make a full set of 60,000
training patterns. Similarly, the new test set was completed with old
training examples starting at pattern #35,000 to make a full set with
60,000 test patterns. All the images were size normalized to fit in a 20
x 20 pixel box, and were then centered to fit in a 28 x 28 image using
center of gravity. Grayscale pixel values were used to reduce the effects
of aliasing. These are the training and test sets used in the benchmarks
described in this paper. In this paper, we will call them the MNIST data.

Figure 1: The two paragraphs of [Bottou et al. [1994] describing the MNIST preprocessing. The
hsf4 partition of the NIST dataset, that is, the original test set, contains in fact 58,646 digits.

In the same spirit as [Recht et al, 2018 2019], the rediscovery of the 50,000 lost MNIST test
digits provides an opportunity to quantify the degradation of the official MNIST test set over a
quarter-century of experimental research. Section [3] compares and discusses the performances of
well known algorithms measured on the original MNIST test samples, on their reconstructions,
and on the reconstructions of the 50,000 lost test samples. Our results provide a well controlled

confirmation of the trends identified by [Recht et al. [2018]2019] on a different dataset.

2 Recreating MNIST

Recreating the algorithms that were used to construct the MNIST dataset is a challenging task.
Figure [T|shows the two paragraphs that describe this process in [Bottou et al.,[1994]). Although this
was the first paper mentioning MNIST, the creation of the dataset predates this benchmarking effort
by several months Curiously, this description incorrectly reports that the number of digits in the
hsf4 partition, that is, the original NIST testing set, as 58,527 instead of 58,646

These two paragraphs give a relatively precise recipe for selecting the 60,000 digits that compose the
MNIST training set. Alas, applying this recipe produces a set that contains one more zero and one
less eight than the actual MNIST training set. Although they do not match, these class distributions
are too close to make it plausible that 119 digits were really missing from the hsf4 partition.

The description of the image processing steps is much less precise. How are the 128x128 binary
NIST images cropped? Which heuristics, if any, are used to disregard noisy pixels that do not
belong to the digits themselves? How are rectangular crops centered in a square image? How are
these square images resampled to 20x20 gray level images? How are the coordinates of the center
of gravity rounded for the final centering step?

2.1 An iterative process

Our initial reconstruction algorithms were informed by the existing description and, crucially, by
our knowledge of a mysterious resampling algorithm found in ancient parts of the Lush codebase:
instead of using a bilinear or bicubic interpolation, this code computes the exact overlap of the input
and output image pixelsﬂ

>When LB joined this effort during the summer 1994, the MNIST dataset was already ready.

3The same description also appears in []LeCun et al., |1994l |Le Cun et al.L |1998|]. These more recent texts
incorrectly use the names SD1 and SD3 to denote the original NIST test and training sets. And additional
sentence explains that only a subset of 10,000 test images was used or made available, “5000 from SDI and
5000 from SD3.”

4Seehttps://tinyurl.com/y5z7qtcg.

https://tinyurl.com/y5z7qtcg

MNIST#O NIST#229421
L2=0.04

>3

MNIST#4 NIST#231107
L2=0.038

14

MNIST#8 NIST#225980
L2=0.027

|

MNIST#IZ NIST#243571
L2=0.047

33

MNIST#1 NIST#O
L2=0.036!

o0

MNIST#5 NIST#Z
L2=0.044

A 2

MNIST#9 NIST#4
L2=0.033!

¥ 4

MNIST#13 NIST#6
L2=0.034!

6 6

MNIST#Z NIST#238481

MNIST#IO NIST#246832

MNIST#14 NIST#243526

MNIST#6 NIST#224149
0.

A

MNIST#7 NIST#3

33

L2=0.04 L2=0.02

331 1

MNIST#]S NIST#7
L2=0.02

77

L2=0.03

H

MNIST#3 NIST#l
L2=0.025'

[/

MNIST#ll NIST#5
=0.02

S S

Magnification:
MNIST #0
NIST #229421

Figure 2: Side-by-side display of the first sixteen digits in the MNIST and QMNIST training set.
The magnified view of the first one illustrates the correct reconstruction of the antialiased pixels.

Although our first reconstructed dataset, dubbed QMNISTv1, behaves very much like MNIST in
machine learning experiments, its digit images could not be reliably matched to the actual MNIST
digits. In fact, because many digits have similar shapes, we must rely on subtler details such as
the anti-aliasing pixel patterns. It was however possible to identify a few matches. For instance
we found that the lightest zero in the QMNIST training set matches the lightest zero in the MNIST
training set. We were able to reproduce their antialiasing patterns by fine-tuning the initial centering
and resampling algorithms, leading to QMNISTVv2.

We then found that the smallest L, distance between MNIST digits and jittered QMNIST digits was
a reliable match indicator. Running the Hungarian assignment algorithm on the two training sets
gave good matches for most digits. A careful inspection of the worst matches allowed us to further
tune the cropping algorithms, and to discover, for instance, that the extra zero in the reconstructed
training set was in fact a duplicate digit that the MNIST creators had identified and removed. The
ability to obtain reliable matches allowed us to iterate much faster and explore more aspects the
image processing algorithm space, leading to QMNISTV3, v4, and v5. Note that all this tuning was
achieved by matching training set images only.

This seemingly pointless quest for an exact reconstruction was surprisingly addictive. Supposedly
urgent tasks could be indefinitely delayed with this important procrastination pretext. Since all good
things must come to an end, we eventually had to freeze one of these datasets and call it QMNIST.

2.2 Evaluating the reconstruction quality

Although the QMNIST reconstructions are closer to the MNIST images than we had envisioned,
they remain imperfect.

Table [2| indicates that about 0.25% of the QMNIST training set images are shifted by one pixel
relative to their MNIST counterpart. This occurs when the center of gravity computed during the
last centering step (see Figure[I]) is very close to a pixel boundary. Because the image reconstruction
is imperfect, the reconstructed center of gravity sometimes lands on the other side of the pixel
boundary, and the alignment code shifts the image by a whole pixel.

Table 1: Quartiles of the jittered distances between matching MNIST and QMNIST training digit
images with pixels in range 0...255. A Lo distance of 255 would indicate a one pixel difference.
The L, distance represents the largest absolute difference between image pixels.

Min 25% Med 75% Max

Jittered Lo distance 0 7.1 8.7 10.5 17.3
Jittered L, distance 0 1 1 1 3

Table 2: Count of training samples for which the MNIST and QMNIST images align best without
translation or with a 4-1 pixel translation.

Jitter 0 pixels +1 pixels
Number of matches 59853 147

Table 3: Misclassification rates of a Lenet5 convolutional network trained on both the MNIST and
QMNIST training sets and tested on the MNIST test set, on the 10K QMNIST testing examples
matching the MNIST testing set, and on the 50k remaining QMNIST testing examples.

Test on MNIST QMNIST1I0K QMNISTS0K

Train on MNIST 0.82% (£0.2%) 0.81% (£0.2%) 1.08% (+0.1%)
Train on QMNIST 0.81% (£0.2%) 0.80% (£0.2%) 1.08% (£0.1%)

Table|1| gives the quartiles of the Lo distance and L., distances between the MNIST and QMNIST
images, after accounting for these occasional single pixel shifts. An Lo distance of 255 would
indicate a full pixel of difference. The L., distance represents the largest difference between image
pixels, expressed as integers in range 0. . . 255.

In order to further verify the reconstruction quality, we trained a variant of the Lenet5 network
described by|Le Cun et al.|[[1998]. Its original implementation is still available as a demonstration in
the Lush codebase. Lush [Bottou and LeCun,|[2001]] descends from the SN neural network software
[Bottou and Le Cun,|1988]] and from its AT&T Bell Laboratories variants developped in the nineties.
This particular variant of Lenet5 omits the final Euclidean layer described in [Le Cun et al.| [1998]
without incurring a performance penalty. Following the pattern set by the original implementation,
the training protocol consists of three sets of 10 epochs with global stepsizes 10~4, 1075, and 10~°.
Each set starts with estimating the diagonal of the Hessian. Per-weight stepsizes are then computed
by dividing the global stepsize by the estimated curvature plus 0.02. Table [3| reports insignificant
differences when one trains with the MNIST or QMNIST training set or test with MNIST test set
or the matching part of the QMNIST test set. On the other hand, we observe a more substantial
difference when testing on the remaining part of the QMNIST test set, that is, the reconstructions of
the lost MNIST test digits. Such discrepancies will be discussed more precisely in Section

2.3 MNIST trivia
The reconstruction effort allowed us to uncover a lot of previously unreported facts about MNIST.

1. There are exactly three duplicate digits in the entire NIST handwritten character collection.
Only one of them falls in the segments used to generate MNIST but was removed by the
MNIST authors.

2. The first 5001 images of the MNIST test set seem randomly picked from those written by
writers #2350-#2599, all high school students. The next 4999 images are the consecutive
NIST images #35,000-#39,998, in this order, written by only 48 Census Bureau employees,
writers #326-#373, as shown in Figure[5} Although this small number could make us fear
for statistical significance, these comparatively very clean images contribute little to the
total test error.

3. Even-numbered images among the 58,100 first MNIST training set samples exactly match
the digits written by writers #2100-#2349, all high school students, in random order. The
remaining images are the NIST images #0 to #30949 in that order. The beginning of this
sequence is visible in Figure 2] Therefore, half of the images found in a typical minibatch
of consecutive MNIST training images are likely to have been written by the same writer.
We can only recommend shuffling the training set before assembling the minibatches.

4. There is a rounding error in the final centering of the 28x28 MNIST images. The average
center of mass of a MNIST digits is in fact located half a pixel away from the geometrical
center of the image. This is important because training on correctly centered images yields
substantially worse performance on the standard MNIST testing set.

5. A slight defect in the MNIST resampling code generates low amplitude periodic patterns
in the dark areas of thick characters. These patterns, illustrated in Figure |3} can be traced
to a 0.99 fudge factor that is still visible in the Lush legacy code Since the period of these
patterns depend on the sizes of the input images passed to the resampling code, we were
able to determine that the small NIST images were not upsampled by directly calling the
resampling code, but by first doubling their resolution, then downsampling to size 20x20.

6. Converting the continuous-valued pixels of the subsampled images into integer-valued pix-
els is delicate. Our code linearly maps the range observed in each image to the interval
[0.0,255.0], rounding to the closest integer. Comparing the pixel histograms (see Figure {)
reveals that MNIST has substantially more pixels with value 128 and less pixels with value
255. We could not think of a plausibly simple algorithm compatible with this observation.

3 Generalization Experiments

This section takes advantage of the reconstruction of the lost 50,000 testing samples to revisit some
MNIST performance results reported during the last twenty-five years. |Recht et al.|[2018] [2019]]
perform a similar study on the CIFAR10 and ImageNet datasets and identify very interesting trends.
However they also explain that they cannot fully ascertain how closely the distribution of the re-
constructed dataset matches the distribution of the original dataset, raising the possibility of the
reconstructed dataset being substantially harder than the original. Because the published MNIST
test set was subsampled from a larger set, we have a much tighter control of the data distribution and
can confidently confirm their findings.

Because the MNIST testing error rates are usually low, we start with a careful discussion of the com-
putation of confidence intervals and of the statistical significance of error comparisons in the context
of repeated experiments. We then report on MNIST results for several methods: k-nearest neight-
bors (KNN), support vector machines (SVM), multilayer perceptrons (MLP), and several flavors of
convolutional networks (CNN).

3.1 About confidence intervals

Since we want to know whether the actual performance of a learning system differs from the per-
formance estimated using an overused testing set with run-of-the-mill confidence intervals, all con-
fidence intervals reported in this work were obtained using the classic Wald method: when we
observe n; misclassifications out of n independent samples, the error rate ¥ = ny /n is reported
with confidence 1—n as

v+ z M , (D

n

where z = /2 erfcﬁl(n) is approximately equal to 2 for a 95% confidence interval. For instance, an
error rate close to 1.0% measured on the usual 10,000 test example is reported as a 1% =+ 0.2% error
rate, that is, 100 4 20 misclassifications. This approach is widely used despite the fact that it only
holds for a single use of the testing set and that it relies on an imperfect central limit approximation.

The simplest way to account for repeated uses of the testing set is the Bonferroni correction [Bon-
ferroni, |1936], that is, dividing n by the number K of potential experiments, simultaneously defined

SSeehttps://tinyurl.com/y5z7abyt

https://tinyurl.com/y5z7abyt

MNIST#41358 NIST#236103 MNIST#41358 NIST#236103 MNIST#41358 NIST#236103
PIX RANGE [0,255] PIX RANGE [240,255] PIX RANGE [250,255]
] p
1L =L
l 1
I I

Figure 3: We have reproduced a defect of the original resampling code that creates low amplitude
periodic patterns in the dark areas of thick characters.

0.05

0.01
0.005

0.001
0.0005

0.0001

50 100 150 200 250

Figure 4: Histogram of pixel values in range 1-255 in the MNIST (red dots) and QMNIST (blue
line) training set. Logarithmic scale.

Number of digits vs Writer ID

120 4

100

80

60

Count of digits

401

500
1000
1500 4
2000
2500

Writer ID

Figure 5: Histogram of Writer IDs and Number of digits written by the writer in MNIST Train,
MNIST Test 10K and QMNIST Test 50K sets.

before performing any measurement. Although relaxing this simultaneity constraint progressively
requires all the apparatus of statistical learning theory [[Vapnik, 1982, §6.3], the correction still takes
the form of a divisor K applied to confidence level 7. Because of the asymptotic properties of the
erfc function, the width of the actual confidence intervals essentially grows like log(K).

In order to complete this picture, one also needs to take into account the benefits of using the same
testing set. Ordinary confidence intervals are overly pessimistic when we merely want to know
whether a first classifier with error rate 141 = nj/n is worse than a second classifier with error rate
vy = na/n. Because these error rates are measured on the same test samples, we can instead rely
on a pairing argument: the first classifier can be considered worse with confidence 1—7 when

v — vy = ni2 — N2 > Z\/n12 + N2y ,)
n n

where n15 represents the count of examples misclassified by the first classifier but not the second
classifier, n9; is the converse, and z = /2 erfcﬁl(2n) is approximately 1.7 for a 95% confidence.
For instance, four additional misclassifications out of 10,000 examples is sufficient to make such a
determination. This correspond to a difference in error rate of 0.04%, roughly ten times smaller than
what would be needed to observe disjoint error bars (I)). This advantage becomes very significant
when combined with a Bonferroni-style correction: K pairwise comparisons remain simultaneously

valid with confidence 1—1 if all comparisons satisfy

(2
nia —nar > V2 erfe 1(}7(7) Vg + nap

For instance, in the realistic situation
n = 10000, ny = 200, ni12 :407 Nno1 = 10, Ng =N1 — Ni2 + Nop = 170,

the conclusion that classifier 1 is worse than classifier 2 remains valid with confidence 95% as long as
it is part of a series of K <4545 pairwise comparisons. In contrast, after merely K =50 experiments,
the 95% confidence interval for the absolute error rate of classifier 1 is already 2% =+ 0.5%, too large
to distinguish it from the error rate of classifier 2. We should therefore expect that repeated model
selection on the same test set leads to decisions that remain valid far longer than the corresponding
absolute error rates[]

3.2 Results

We report results using two training sets, namely the MNIST training set and the QMNIST recon-
structions of the MNIST training digits, and three testing sets, namely the official MNIST testing
set with 10,000 samples (MNIST), the reconstruction of the official MNIST testing digits (QM-
NIST10K), and the reconstruction of the lost 50,000 testing samples (QMNISTS0K). We use the
names TMTM, TMTQ10, TMTQS50 to identify results measured on these three testing sets after
training on the MNIST training set. Similarly we use the names TQTM, TQTQ10, and TQTQS50,
for results obtained after training on the QMNIST training set and testing on the three test sets.
None of these results involves data augmentation or preprocessing steps such as deskewing, noise
removal, blurring, jittering, elastic deformations, etc.

Figure [6] (left plot) reports the testing error rates obtained with KNN for various values of the pa-
rameter k using the MNIST training set as reference points. The QMNIST50K results are slightly
worse but within the confidence intervals. The best k& determined on MNIST is also the best k for
QMNISTS50K. Figure 6] (right plot) reports similar results and conclusions when using the QMNIST
training set as a reference point.

Figure [7] reports testing error rates obtained with RBF kernel SVMs after training on the MNIST
training set with various values of the hyperparameters C' and g. The QMNISTS50 results are
consistently higher but still fall within the confidence intervals except maybe for mis-regularized
models. Again the hyperparameters achieving the best MNIST performance also achieve the best
QMNIST50K performance.

Figure [8] (left plot) provides similar results for a single hidden layer multilayer network with vari-
ous hidden layer sizes, averaged over five runs. The QMNIST50K results again appear consistently
worse than the MNIST test set results. On the one hand, the best QMNISTS50K performance is
achieved for a network with 1100 hidden units whereas the best MNIST testing error is achieved by
a network with 700 hidden units. On the other hand, all networks with 300 to 1100 hidden units per-
form very similarly on both MNIST and QMNISTS50, as can be seen in the plot. A 95% confidence
interval paired test on representative runs reveals no statistically significant differences between the
MNIST test performances of these networks. Each point in figure [§] (right plot) gives the MNIST
and QMNISTS50K testing error rates of one MLP experiment. This plot includes experiments with
several hidden layer sizes and also several minibatch sizes and learning rates. We were only able to
replicate the reported 1.6% error rate|Le Cun et al. [[1998] using minibatches of five or less examples.

Finally, Figure 9] summarizes all the experiments reported above. It also includes several flavors
of convolutional networks: the Lenet5 results were already presented in Table 3] the VGG-11 [Si-
monyan and Zisserman, 2014] and ResNet-18 [He et al., [2016] results are representative of the
modern CNN architectures currently popular in computer vision. We also report results obtained
using four models from the TF-KR MNIST challenge Model TFKR— is an ensemble two VGG-
and one ResNet-like models trained with an augmented version of the MNIST training set. Models

See [Feldman et al.,2019] for a different perspective on this issue.
"nttps://github.com/hwalsuklee/how-far-can-we—go-with-MNIST
8TFKR-a: https://github.com/khanrc/mnist

https://github.com/hwalsuklee/how-far-can-we-go-with-MNIST
https://github.com/khanrc/mnist

TM* for different k

TQ* for different k

3.8 o MM —o— TQT™M
—— TMTQ10 —A— TQTQ10
—&— TMTQS0 —*— TQTQ50
3.6 Best K TMTM 3.6 Best KTQTM
. Best K TMTQ10 Best K TQTQ10
Best K TMTQ50 Best K TQTQS0
3.41 3.4+
X R
) s
= 3.2 =329
o o
wn wn
] L}
= 3.0 = 3.0
2.8 2.8
2.6 2.6
k=1 k=3 k=5 k=7 k=9 k=1 k=3 k=5 k=7 k=9

Figure 6: KNN error rates for various values of £ using either the MNIST (left plot) or QMNIST
(right plot) training sets. Red circles: testing on MNIST. Blue triangles: testing on its QMNIST
counterpart. Green stars: testing on the 50,000 new QMNIST testing examples.

TM* for g=0.02 & different C TM* for C=10 & different g

8 —o— TMTM
}’ —A&— TMTQ10 %
| —— TMTQ50 51
7 Best C TMTM
Best C TMTQ10 ’[’

6 Best C TMTQ50
S 24
55 S
= =
w w
: e :

3] —o— TMTM
—— TMTQ10
* I —*— TMTQ50
21 * { Best g TMTM
*} §}1’ 1 1 + [[Best g TMTQ10
1 Best g TMTQ50
9=0.001 9=0.01

¢=0.01 c=0.1 c=1 c=10 ¢=100 9=0.02 9=0.1

Figure 7: SVM error rates for various values of the regularization parameter C' (left plot) and the
RBF kernel parameter g (right plot) after training on the MNIST training set, using the same color
and symbols as figure [6]

28 TM* for different hidden units All MLP Experiments
’ —e— TMTM 3.0 °
—— TMTQ10 . _e”
261 —+— TMTQ50 e _-
Best Hidden Unit TMTM 2.8 °, -
2.44 Best Hidden Unit TMTQ10 X P
Best Hidden Unit TMTQ50 5 2.6 @ _
e - -
5 2.4+ .~ -
£ ‘q‘"__: ° g 2 oe s
52 g o | Pras
4 22 S -
-) g %0 ©® -
& 32 -
1 -
1.8 E 2.0 g .-
= -
-
1.6 1.8 -7
-
- - .
1.4 16 Pis Best fit

2.0 22 2.4 26

TMTM Test Error %

500 600 700 800 900 1000 1100 18
hidden units

Figure 8: Left plot: MLP error rates for various hidden layer sizes after training on MNIST, using the
same color and symbols as figure[6] Right plot: scatter plot comparing the MNIST and QMNIST50K

testing errors for all our MLP experiments.

All Experiments

5 [J
2 ° .
T i
© 41 L7
(AN} ’/

2 X red
231 e -
ks «® - o MLP
x }‘ -7 e SVM
10 21 ot e KNN
7
2 e ® LeNets5
% 14 b/// ® ResNet-18
Q- ® VGG-11
o~ o TF-KR
0+ ; ; ; ;
0 1 2 3 4

MNIST Testing Error %

Figure 9: Scatter plot comparing the MNIST and QMNISTS50K testing performance of all the models
trained on MNIST during the course of this study.

TFKR-lfL TFKR- and TFKR- are single CNN models with varied architectures. This scatter
plot shows that the QMNISTS50 error rates are consistently slightly higher than the MNIST testing
errors. However, the plot also shows that comparing the MNIST testing set performances of var-
ious models provides a near perfect ranking of the corresponding QMNISTS0K performances. In
particular, the best performing model on MNIST, TFKR-a, remains the best performing model on
QMNISTS0K.

4 Conclusion

We have recreated a close approximation of the MNIST preprocessing chain. Not only did we
track each MNIST digit to its NIST source image and associated metadata, but also recreated the
original MNIST test set, including the 50,000 samples that were never distributed. These fresh
testing samples allow us to investigate how the results reported on a standard testing set suffer
from repeated experimentation. Our results confirm the trends observed by Recht et al. [2018|
2019], albeit on a different dataset and in a substantially more controlled setup. All these results
essentially show that the “testing set rot” problem exists but is far less severe than feared. Although
the repeated usage of the same testing set impacts absolute performance numbers, it also delivers
pairing advantages that help model selection in the long run. In practice, this suggests that a shifting
data distribution is far more dangerous than overusing an adequately distributed testing set.

TFKR-b: https://github.com/bart99/tensorflow/tree/master/mnist
OTEKR-c: https://github.com/chaeso/dnn-study
HTFKR-d: https://github.com/ByeongkiJeong/MostAccurableMNIST keras

https://github.com/bart99/tensorflow/tree/master/mnist
https://github.com/chaeso/dnn-study
https://github.com/ByeongkiJeong/MostAccurableMNIST_keras

Acknowledgments

We thank Chris Burges, Corinna Cortes, and Yann LeCun for the precious information they were
able to share with us about the birth of MNIST. We thank Larry Jackel for instigating the whole
MNIST project and for commenting on this "cold case". We thank Maithra Raghu for pointing out
how QMNIST could be used to corroborate the results of [Recht et al. [2019]. We thank Ben Recht,
Ludwig Schmidt and Roman Werpachowski for their constructive comments.

References

Carlo E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R.
Istituto superiore di scienze economiche e commerciali di Firenze. Libreria internazionale Seeber,
1936.

Léon Bottou and Yann Le Cun. SN: A simulator for connectionist models. In Proceedings of
NeuroNimes 88, pages 371-382, Nimes, France, 1988.

Léon Bottou and Yann LeCun. Lush Reference Manual. http://lush.sf.net/doc, 2001.

Léon Bottou, Corinna Cortes, John S. Denker, Harris Drucker, Isabelle Guyon, Lawrence D. Jackel,
Yann Le Cun, Urs A. Muller, Eduard Séckinger, Patrice Simard, and Vladimir Vapnik. Compar-
ison of classifier methods: a case study in handwritten digit recognition. In Proceedings of the
12th IAPR International Conference on Pattern Recognition, Conference B: Computer Vision &
Image Processing., volume 2, pages 77-82, Jerusalem, October 1994. IEEE.

Vitaly Feldman, Roy Frostig, and Moritz Hardt. The advantages of multiple classes for reducing
overfitting from test set reuse. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 1892—1900. PMLR, 2019.

Patrick J. Grother and Kayee K. Hanaoka. NIST Special Database 19: Handprinted forms and
characters database. https://www.nist.gov/srd/nist—-special-database-19,
1995. SD1 was released in 1990, SD3 and SD7 in 1992, SD19 in 1995, SD19 2nd edition in
2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770-778, 2016.

Yann Le Cun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient based learning applied
to document recognition. Proceedings of IEEE, 86(11):2278-2324, 1998.

Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist/, 1994. MNIST was created in 1994 and
released in 1998.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do CIFAR-10 classi-
fiers generalize to CIFAR-10? arXiv preprint arXiv:1806.00451, 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet classi-
fiers generalize to ImageNet? In Proceedings of the 36th International Conference on Machine
Learning. PMLR, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

V. N. Vapnik. Estimation of dependences based on empirical data. Springer Series in Statistics.
Springer Verlag, Berlin, New York, 1982.

10

http://lush.sf.net/doc
https://www.nist.gov/srd/nist-special-database-19
http://yann.lecun.com/exdb/mnist/

	Introduction
	Recreating MNIST
	An iterative process
	Evaluating the reconstruction quality
	MNIST trivia

	Generalization Experiments
	About confidence intervals
	Results

	Conclusion

