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Abstract

This paper considers the problem of estimating the distribution of returns in rein-
forcement learning, i.e., distributional RL problem. It presents a new representa-
tional framework to maintain the uncertainty of returns and provides mathematical
tools to compute it. We show that instead of representing a probability distribution
function of returns, one can represent their characteristic function, the Fourier
transform of their distribution. We call the new representation Characteristic Value
Function (CVF). The CVF satisfies a Bellman-like equation, and its corresponding
Bellman operator is contraction with respect to certain metrics. The contraction
property allows us to devise an iterative procedure to compute the CVF, which
we call Characteristic Value Iteration (CVI). We analyze CVI and its approximate
variant and show how approximation errors affect the quality of the computed
CVE

1 Introduction

The object of focus of the conventional RL is the expected return of following a policy, i.e., the value
function [Sutton and Barto, 2019]. The goal is to find a policy that maximizes that expectation over
all states, i.e., the optimal policy. This leads to agents that do not consider the distribution of returns
in their decision making, but only its first moment. This might be of concern in scenarios where the
risk is of paramount importance. Estimating the distribution of the return facilitates designing agents
that consider objectives more general than maximizing the expected return, such as various notions
of risk [Tamar et al., 2012, Prashanth and Ghavamzadeh, 2013, Garcia and Fernandez, 2015, Chow
et al., 2018].

The Distributional RL (DistRL) literature [Engel et al., 2005, Morimura et al., 2010b, Bellemare
et al., 2017, Barth-Maron et al., 2018, Lyle et al., 2019], on the other hand, moves away from
the conventional goal of estimating the expectation of return and attempts to estimate a richer
representation of the return, such as the distribution itself [Morimura et al., 2010b,a] or some
statistical functional of it [Rowland et al., 2018, Dabney et al., 2018, Rowland et al., 2019]. It is
notable that so far the focus of the DistRL literature has mostly been on designing better performing
agents according to the expected return, and not any risk-related performance measure, but it is
conceivable that those methods can be be used for designing risk-aware agents too.

This paper develops a new framework for maintaining the information available in the distribution of
returns. Instead of estimating the distribution function itself, we maintain the Characteristic Function
(CF) of the returns. The CF of a random variable (r.v.) is the Fourier transform of its probability
distribution function (PDF). Similar to PDF, the CF of a r.v. contains all the information available
about the distribution of that r.v., i.e., CF and PDF have a bijection relationship. They are nonetheless
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different representations of the uncertainty of a r.v., hence they allow different types of manipulations
and processing. The benefit of a new representation is that it opens up the possibility of designing
new algorithms. An example from the field of control theory is that we have both time and frequency
domain representations of a dynamical system. Although they are equivalent in many cases, designing
a controller in the frequency domain is sometimes easier and may provide better insights. This work
brings the frequency-based representation of uncertainty to DistRL.

The estimation procedures based on CF are not novel. Methods based on the Empirical Characteristic
Function (ECF) have a long history in the statistics and econometrics literature [Feuerverger and
Mureika, 1977, Feuerverger and McDunnough, 1981, Feuerverger, 1990, Knight and Yu, 2002, Yu,
2004]. These methods are considered as alternatives to the maximum likelihood estimation (MLE),
because as opposed to MLE, whose computation might be infeasible for some distributions, one can
always define and compute the ECF. This paper is inspired from that literature and develops similar
tools for RL and approximate dynamic programming.

The main idea of this work is that by transforming the return, which is a r.v., to the frequency
domain through the Fourier transform, we can define Characteristic Value Function (CVF), which
essentially captures all information about the distribution of the return. A contribution of this work
is that we prove that CVF indeed satisfies a Bellman-like equation 77V = V (Section 3). The
corresponding Bellman operator, however, is different from the conventional ones or those in the
DistRL literature. Instead of having an additive form, it is multiplicative, i.e., (T™V)(w;z) =
R(w;z) [ P™(dy|z)V (yw;y) with w being the frequency variable, a being the state variable, and
R being the Fourier transform of the immediate reward distribution (we will define these quantities
later). We also prove that the new Bellman operator is contraction with respect to (w.r.t.) some
specific metrics defined in the frequency domain (Section 3.1). The contraction property suggests
that one might find the CVF through an iterative procedure similar to value iteration, which we call
the Characteristic Value Iteration (CVI) algorithm (Section 4). This is the algorithmic contribution of
this work.

Any procedure that implements CVI, however, may not perform it exactly, for example because we
only have data as opposed to the actual transition probability distribution or because the state space is
very large and we need to use function approximation. In case we can only approximately perform
CVI, which we call Approximate CVI (ACVI), we inevitably have some errors. To understand the
effect of using function approximation on these errors better, we consider a class of band-limited
(in the frequency domain) functions, and study their function approximation and covering number
properties (in the extended version of the paper). Another contribution of this work is the analysis
of how the errors caused at each iteration of ACVI propagate throughout iterations and affect
the quality of the outcome CVF (Section 5). We show that the errors in earlier iterations decay
exponentially fast, i.e., the past errors are forgotten quickly. This is the same phenomenon observed
in the conventional approximate value iteration. Finally, we show how to convert the error of CVF in
the frequency domain to an error in distributions, measured according to the p-smooth Wasserstein
distance (Section 6).

2 Distributional Bellman equation

We consider a discounted Markov Decision Process (MDP) (X, A, R, P,~) [Szepesvari, 2010].
Here X is the state space, A is the action space, P : X x A — M(X) is the transition probability
kernel, R : X x A — M(R) is the immediate reward distribution, and 0 < 7 < 1 is the discount
factor.” The (Markov stationary) policy 7 : X — M .A) induces the transition probability kernel
PT . X — M(X) and the immediate reward distribution for the policy R”™ : X — M(R).

An MDP together with an initial state distribution p € M (X) encode the laws governing the temporal
evolution of a discrete-time stochastic process controlled by an agent as follows: The controlled
process starts at time ¢ = 0 with random initial state Xy drawn from p, i.e., Xo ~ p. The agent
following a policy 7 chooses action A; € A according to A; ~ m(-|X;) (stochastic policy) or

“Here M () refers to the space of all probability distributions on an appropriately defined o-algebra of €,
e.g., the Borel o-algebra on R. We do not deal with the measure theoretic considerations in this work. Refer to
Appendix C of Bertsekas [2013] or Chapter 7 of Bertsekas and Shreve [1978]. We occasionally use X to denote
the probability distribution x4 of the r.v. X.



A; = m(X¢) (deterministic policy). In response, the next state is X; 1 ~ P(:| X}, A¢) and the agent
receives reward Ry ~ R(-| X, A;). This process repeats. We may occasionally use R(z,a) or R™ ()
to denote to the r.v. that is drawn from R(-|z,a) or R”(:|z). Also we may use z = (z,a) as a
shorthand. When we refer to ar.v. Z = (X, A), this should be interpreted as a r.v. defined with
A ~ m(-|X), where the policy should be clear from the context.

The return of the agent starting from a state x € X" and following a policy 7 is the following random
variable:

G™(z) = Z V' R;.

i>0

The (conventional) value function V'™ is the first moment of this r.v., i.e.,
V”(a:) =E [Gﬂ(Xo)lXo = .T] .

Likewise, one may define the return G™(x, a) for starting from state x, choosing action a, and
following policy 7 afterwards. The corresponding first moment of G™(x, a) would be the action-
value function Q7 (z, a).

From G™(z) = Ro+7 Y ;507 Ri+1, we see that G™ () is the addition of two r.v. Ry and yG™(X)

with X1 ~ P7(-| X = x). Therefore, the law (probability distribution) of G™(z) is the same as the
law of Ry +7G™(X1), i.e.,

G™(z) 2 Ry +4G™(X1). (1)

Here we use the symbol 2 t0 emphasize that we are comparing two probability distributions. This is
the Bellman-like distributional equation in the conventional DistRL.

We can also have a similar equation that relates G™ (the distribution of the r.v. G™) and R(z) =
R™(:|z) (the distribution of the r.v. R”(x)) [Rowland et al., 2018]. To define it, we recall the
definition of the pushforward measure: Given a probability distribution v € M(R) and a measurable
function f : R — R, the pushforward measure f4v € M(R) is defined as (f4v)(A) = v(f~1(A))
for all Borel sets A C R.

The Bellman operator 77 : M(X) — M (X) between distributions is defined as
TG @) 2 [ (+99) CWR™Arlo)P™(dylo), Vo€ .

With this notation, the distributional Bellman equation is
G™(z) = (T"G™)(x), Vo € X. )

The distributional Bellman equation represents the intrinsic uncertainty of the return due to the
randomness of the dynamics and policy. We may occasionally use V™ to refer to G™, to show its
close relation to the conventional value function.

3 Characteristic value function

The conventional approach to representing the uncertainty of a r.v. is through its probability distribu-
tion function. This is not the only way to characterize a r.v. though. An alternative is to characterize
the r.v. through the Fourier transform of its distribution function. This is known as the Characteristic
Function (CF) of the random variable [Williams, 1991].

In this section we show that the instead of representing the distribution function of the return G™,
we may represents its characteristic function. Interestingly, the CF of return satisfies a Bellman-like
equation, which is quite different from the conventional ones (1) and (2) that we have encountered so
far.

Let us briefly recall the definition of a CF of a random variable. Given a real-valued r.v. X with the
probability distribution 1 € M(R), its corresponding CF cx : R — C is the function defined as’

cx(w) = E [ejx‘”] = /exp(j:cw),u(dz)7 weR 3)

3Here X is a generic r.v. and does not refer to the state. The particular r.v. will be clear from the context.



where j = \/—1 is the imaginary unit. The CF of a probability distribution is closely related to
the Fourier transform of its distribution function. If the probability density function is well-defined,
CF is its Fourier transform, though CF exists even if the density does not. Several properties of CF
are summarized in an appendix of the extended version of the paper. Thinking in the terms of the
spatial-frequency duality common in the Fourier analysis, the probability distribution function is the
spatial representation of a r.v. (with the magnitude of the r.v. corresponding to the space dimension),
and the CF is its frequency representation.

Consider the recursive relation G™(z) = R™(z) + yG™(X'), with X’ ~ P7(-|z), between the
return G™ (x) (ar.v.) and the random reward R™ (z) and the return at the next step G™(X'). By the
distributional equality of both sides (cf. (1)), we have

cGr(z)(w) = E [exp (jwG™(2))] = E [exp (jw (R™ (z) +1G™(X"))],  VweR. (4
The right-hand side (RHS) of (4) is
E [exp (jw (R™ (z) +7G™(X")))] = E [E [exp (jw (R™(z) + 7G™(X"))) | X =z, A]]
=E[E [exp (jwR"(z)) | X = @, A|E [exp (juyG™ (X)) | X =z, A]]
= cpr(z) (W) E[E [exp (jwyG™ (X)) | X =z, A]]
= CRr(z)(w) E [exp (jwyG™ (X)) | X = ], (5)

where A is a r.v. drawn from 7 (-|x). Here we benefitted from the fact that the r.v. R™(z) and G™(X")
are conditionally independent given X = x and A.

Let us consider the CF of G™(X”) conditioned on X = x:
E[exp (jwG™(X")) | X = z] = E[E [exp (jwG™ (X)) | X'] | X = 2]

= /P“(dx’\m)lE [exp (jwG™ (2))]

=E[cgrxn(w) | X = 2], (6)
where we conditioned the inner expectation on the next-state X’ (so its randomness comes from the
return from that point onward), and used the definition of CF.

Plugging (6) in (5) gives the RHS of (4). So we get
car(2) (W) = CRrr () (W) E fexp (juyG™ (X)) | X = ]
= cpr(x)(W)E [cyem(x) (W) | X = 7]

= Cpr(a)(W)E [cGw(X/)('yoJ) | X = x] = CR(a) (W) /’P”(dy\x)ccn(y)('wa @)
where the penultimate equality is because of the scaling property of CF (refer to the extended version
of the paper for more information).
We denote the CF of the reward cgr(,)(w) by R(w; z), and the CF of the return cGr(z)(w) by

v (w;z) forall z € X and w € R. Here the symbol ~ is used to remind us that we are referring to a
CF of a random variable. With these notations, we can write (7) in more compact form of

V™ (w;x) = R(w; x) /P’T(dy\x)f/”('yw;y). (8)

This is the Bellman-like equation between the CF of return and the reward. The function
V™ . Rx X — C; (where C; is the area within the unit circle in the complex plane, i.e.,

C; = {z€C: |2/ <1})is the CF of the G™(z) for all z € X. We call V™ the Characteris-
tic Value Function (CVF).

We also define the Bellman operator between the CF functions:
(V) wiz) 2 Rwio) [ P7(ylo)V (i),
With this notation, the Bellman equation can be written more compactly as
VT =T"V".

It is worth mentioning that for any fixed z € X, w > V7™ (w; ) is a CF. A CF is continuous function
of w and its magnitude is bounded by 1 (refer to the extended version of the paper).



3.1 Bellman operator is contraction

We show that the Bellman operator TT™ is a contraction wW.r.t. certain metrics, to be specified. This
allows us to devise a value iteration-like procedure that converges to the CVF V™ of a policy 7.

We first define some distance metrics between CFs. Given two CF ¢1,co : R — C,and p > 1, we

define
) dl,p(claCQ) = /

We also define similar metrics for functions such as R and V™. Given Vl, ‘72 Rx X — R, we
define

c1(w) — ca(w)

c1(w) — c2(w)

= dw. (9

doo,p(cla 02) é sup
w€ER

Here we use the convention that % =04

Vi(w;z) — Va(w; 2)

wP

Vi(w;z) — Va(w; 2)

wP

dw.

) dl,p(%v%) é Sup/
zeX

doo p(Vi, Va) & sup sup
reX weR

(10)

There are similar to the distances for comparing two CFs, with the difference that we take the
supremum over all states x € X. To be more precise about how the distances are calculated (e.g., sup
over X, etc.), we could use dx (o) w(oo,p) (V1, V2) instead of doe ,(V1, V2). To simplify the notations,
however, we use the overloaded symbols d ,, and d; , instead.

Based on these distances, we define the following norms for a function V:RxX >R

—doep(7,0), V] =di,(70),

1,p

Hoo,p

where 0 is a constant function (w; z) — 0. We sometimes refer to the supremum w.r.t. z € X of 14
by ||V (w;-)||oc = sup,ecx |V (w;x)|. This should not be confused with ||V||,, Whose supremum
is over both w and x, and the w variable is weighted by w™P.

Several properties of d.. , and d; , are presented in an appendix of the extended version of the
paper. Briefly, we show that d; ,, and d;, are metrics. We also show that the space of VCFs

V={V:RxAX — Cy:V(0;x) = 1}, which is a superset of the space of all feasible VCFs,
endowed with d ;, is complete.

The following result shows that the Bellman operator for VCF is a contraction operator w.r.t. di ,
and d . This is the main result of this section.

Lemma 1. Let 0 < v < 1. The operator T™ is a yP-contraction in ds , (for p > 0) and vP~1-
contraction in dy ,, (for p > 1). That is, for any V1, Vs : R x X — C with dso ,(V1, V2) < 00 or
di p(V1, V2) < 00, we have

doo,p(j%ﬂ—f/laj;ﬂ—%) S ’Ypdoo,p(vl; ‘72)7
dy p(T™V1, T™V5) < AP~y (V1 V).

For the contraction to be non-trivial, and avoid having a trivial inequality such as co < vPoo, we

require the boundedness of dooyp(ffl, ‘72) or dlyp(ffl, V>). This is a condition that should be verified,
and as we shall soon see holds under certain conditions.

We briefly remark that the Bellman operator T™ is not a contraction w.r.t. the supremum norm
IV loo = SUPLex SUP,er |V (w; )| This is shown in the extended version of the paper.

The importance of showing that the Bellman operator for VCF is a contraction is that we can then
apply the Banach fixed point theorem (e.g., Theorem 3.2 of Hunter and Nachtergaele [2001]) to
show the uniqueness of the fixed point V™ (we also require the completeness of the space, which is
shown for d, ;). Moreover, it suggests that we can find the fixed point by iterative application of the
operator. This is the path we pursue in the next section.

“The metric doo,p has been studied under the name of Fourier-based metric Carrillo and Toscani [2007], and
is called Toscani distance by Villani [2008].



4 Characteristic value iteration

The contraction property of the Bellman operator 7™ (Lemma 1) suggests that we can find v by an
iterative procedure, similar to the conventional value iteration. The procedure is

‘71 < R,
VkJr]_ < TW‘N/;C = RPﬂVk. (k > 1) (11D
We call this procedure Characteristic Value Iteration (CVI).

CVI converges under certain conditions. To see this, notice that VT = T™V™ soforp > 1 by
Lemma 1 we have

Ao p(T™Vie, V) = do p (T™ Vi, T"V™) < 4P p(Vie, VT,

under the condition that du,,(Vi, V™) < oco. Similarly, we have d;,(T"V;, V™) <
vP~tdy ,(Vk, V™) (for p > 1). By the iterative application of this upper bound, assuming that
doo p(R, V™) < 00, we get that

doo,p(f/k+1> Vﬂ) S ’Ypdoo,p(vka Vﬂ—) S e S ('Yp)kdoo,p(‘;vh f/ﬂ—) = <7p)kdoo,p(Rv f/w) (12)
Likewise, assuming that dlﬁp(f%, f/”) < 00, we obtain

dl,P(VkJrlvVﬂ) < (’Yp_l)deP(R’ Vﬂ) (13)

Aslong as deo (R, V™) (or di p(R, V™)) is finite for some p > 1 (p > 1), CVI converges geometri-
cally fast. A result in an appendix of the extended version of the paper specifies the condition when
the d , distance of two CF would be finite. For p = 1, it is sufficient that the immediate reward
R™(z) ~ R(-;x) and the return G™(+; ) be integrable, i.e., E[|R™ ()] ,E[|G™(; z)|] < oo for all
states « € X. Since we deal with discounted MDP, the integrability of R™(z) (uniformly over X)
entails the integrability of G™(+; z). Therefore under very mild conditions, CVI is convergent w.r.t.
doo,1-

For integer valued p > 2, the condition becomes more restrictive. The first requirement is that
E[|R™(z)[?] and E [|G™(+; x)|P] are finite. This is not restrictive, and holds for many problems. The
restrictive condition is that the first k = 1,...,p — 1 moments of the reward and the return should
match, i.e., E [R™(2)*] = E [G™(x)¥] for all z € X. This does not seem realistic, perhaps except
for p = 2 when problems with zero expected immediate reward for all states but with varying variance
are imaginable.

One can show that the fixed point of T is unique. The result is formally stated in the extended
version of the paper.

4.1 Approximate characteristic value iteration

Performing CVI (11) exactly may not be practical, for at least two reasons. First, for problems with

large state space, we cannot represent V™ exactly and we need to rely on function approximation.
Second, for learning scenario where we do not have access to the model P™, but only observe data

from interacting with the environment, we cannot apply the Bellman operator ™ exactly either.

We can extend CVI to Approximate CVI (ACVI) similar to how exact VI can be extended to
Approximate Value Iteration, also known as Fitted Value Iteration or Fitted Q-Iteration. Various
variants of AVI have been empirically and theoretically studied in the literature [Ernst et al., 2005,
Munos and Szepesvari, 2008, Farahmand et al., 2009, Silver et al., 2016, Tosatto et al., 2017, Chen
and Jiang, 2019]. We would like to build the same general framework for CVF and CVI.

Suppose that for whatever reason we perform each iteration of CVI only approximately, that is,
Vi+1 = T7™Vj. The resulting procedure can be described as

‘71 < R+51,
Vi1 T Vie+Epp1. (E>1) (14)



Here £, : R x X — C is the error in the frequency-state space. Recall that the value of a valid CF
at frequency w = 0 is equal to one, i.e., ¢(0) = 1. To ensure that V,(-;z) is a CF for all z € X,
we must have V4 (0;2) = 1. This is satisfied if we require that &, (0;2) = 0 forall k = 1,2, ...
and x € X. We can interpret this requirement by noticing that the condition ¢(0) = 1 is simply a
requirement that ¢(0) = E [¢/*°] = E[1] = [ u(dxz) be equal to 1. So we are essentially requiring
that we do not lose or add probability mass at each iteration of ACVI.

Performing ACVI can be quite similar to the conventional AVI. Suppose that we are given a dataset
D, = {(X;, Ri, X))}, with X; ~ p, X! ~ P7(-|X;) and R; ~ R7(:|X;). Given this dataset
and a CVF V, we define the empirical Bellman operator as the following mapping:

(f”V)(w;Xi) £ RV (qw; X7, VweR,Vi=1,...,n.

For any fixed function V and at any fixed state X;, with ar.v. A; ~ m(-|X;), we have
E[(T"V)(w; X) | X = X,] = B[RV (0 X)) | X = X,

— R(w: X;) / Py XV (ywsy) = (F7V) (w; X0).

This shows that the random process (f‘“V)(w; X;) is an unbiased estimate of (77V)(w; X;). In

other words, (7T7V)(w; X;) is the conditional mean of (T"V)(w; X;). Finding the conditional
mean of a r.v. is the regression problem (i.e., estimating m(z) = E[Y|X = z] by () using a
dataset of {(X;,Y;)} ), which has been extensively studied in the statistics and machine learning
literature [Gyorfi et al., 2002, Wasserman, 2007, Hastie et al., 2009, Goodfellow et al., 2016]. A
powerful estimator that generalizes well across states and w allows us to approximately perform one
step of ACVL

One approach to finding a regression estimator is to solve an empirical risk minimization problem:

n

N 1 & - ) - 2
Vi1 < argmin — Z/ ’V(w; X;) — 2BV (yw; X1) | w(w)dw, (15)
VeF i=1

where F C V is a space of functions from R x X to C;, which can be represented by various types
of function approximators (including decision trees, kernel-based ones, and neural networks), and
w : R — R is a weighting function that indicates the importance of different frequencies w. This is
similar to the usual Fitted Value Iteration procedure [Ernst et al., 2005, Munos and Szepesvari, 2008,
Farahmand et al., 2009, Silver et al., 2016, Tosatto et al., 2017, Chen and Jiang, 2019], which solves

1
Viss  argmin =3 | |V(X:) - (i + ACH) (16)
€ i=1

with appropriately chosen function space F (and similar for Fitted Q Iteration and the action-value
function Q). One clear difference between (15) and (16) is that we have an integral over the frequency
domain in the former. This one-dimensional integral can be numerically integrated, for example,
by discretizing the low-frequency domain [—b, +b] (with b > 0) with resolution ;.. This incurs
some controlled numerical error that is a function of ¢j,,. For some function approximators, such as
a decision tree, one might be able to calculate the integral more efficiently by benefitting from the
constancy of values within a leaf.

The quality of approximating 7™V}, by Vi1 determines the error £;. The error depends on the
regression method being used, as well as the number of data points available, capacity and express-
ibility of the function space F, etc. We do not analyze this regression problem in this paper. We are
nevertheless interested in knowing whether one can hope to have a small error with a reasonably
selected F. Two relevant questions are whether one can approximate 7™ V), within F well enough
(function approximation error), and whether F has enough regularity to allow reasonable convergence
rate for the estimation error. We study these questions in detail in the appendices of the extended
version of the paper. We only briefly mention that if the reward distribution is smooth in a certain
sense, a band-limited function class 7, = {V : Rx X — C; : V(0;z) = 1, V(w; x) = 0 V|w| > b}



provides an approximation error that goes to zero as the bandwidth b increases. More specifically,

the do 1 distance-based norm of the approximation error behaves like O(b™ fﬁ) with /3 being the
smoothness parameter. Furthermore, if the first s absolute moments of the reward distribution are fi-
nite, the CVF V (-; z) belongs to the smoothness class C*([—b, b]) N Fy,. This leads to a well-behaving
covering number, which can be used to obtain a convergence rate for the estimation error. A side
benefit of working with a band-limited function space is that the integral in (15) can be converted to a
definite integral, which is easier to integrate numerically.

Next we analyze how these errors, however generated, affect the quality of the outcome Vi after
performing K steps of ACVI.

5 Error propagation analysis

We analyze how the errors in the ACVI procedure (14) propagate throughout the iterations and affect
the quality of the outcome CVF Vi, where K is the number of times the iteration is performed.

We skip all the intermediate steps required to prove the main result of this section. They can be found
in the same section of the extended version of the paper.

Theorem 2. Consider the ACVI procedure (14) after K > 1 iterations. Assume that €, (0;x) = 0
forallz €e Xandk=1,..., K + 1. We have

doop(Vic 11, V7™ M) Eri1-illoo, + () doo o (R VT),  (p21)

|
dyp(Vic 1, V™ ek a-ill, + (P Rdi(RVT). (p>1)

K
)< (v
i=0
K
) <> (7P
i=0
This result shows how the errors €;, in the ACVI procedure propagate throughout iterations and
affect the quality of the approximation of V™ by Vi ;. The error is measured according to the
distances d; , and d . The upper bounds show that errors in the earlier iterations are geometrically
decayed. This entails that if the resources are limited, it is better to ensure the smallness of errors

in later iterations. This phenomenon is similar to what we have observed in the conventional value
iteration [Farahmand et al., 2010].

As discussed in Section 4, the condition that doo,p(]:?, V™) is finite might be very restrictive for p > 2
and even for p = 2, it might hold only in special problems. But the finiteness of d 1 requires mild

conditions. For the finiteness of do 1 (1?, f/”) in the upper bound, the finiteness of the first absolute
moment of the reward function is sufficient, as discussed after (13). For the finiteness of ;||

terms, it is sufficient that £;(0; x) = 0 and that its first derivative w.r.t. w is bounded for all states
r € X, ie., | (w;z)| < co. Based on these, so from now on we focus on p = 1.

6 From error in frequency domain to error in probability distributions

Theorem 2 in the previous section relates the errors at each iteration of ACVI to the quality of the
obtained approximation of V™. The error is measured according to the metrics d; , and d . These
are metrics in the frequency domain. What does having a small error in the frequency domain imply
about the quality of approximating the distribution of returns V7?

From Levy’s continuity theorem we know that the pointwise convergence of CF implies the conver-
gence in distribution of their corresponding distributions. This suggest that we could define the error
in the frequency domain

dunit(V, V™) = sup sup |V (w; z) — V™ (w; )| .
reX weR
Nevertheless, we did not define the distance this way because the Bellman operator would not be a
contraction w.r.t. to it. So a valid question is whether, or in what sense, the smallness of doo_,p(V7 V)

implies anything about the closeness of their corresponding probability distribution functions V'



and V™7 In this section we show that such a relation indeed exists. We relate d, , and d; , to the
p-smooth Wasserstein distance of the probability distribution functions [Arras et al., 2017].
Definition 1. Let p > 1, CP(2) be the space of p-times continuous differentiable functions on domain
Q and () = {feCP(Q) : [|[fP|o <1,0<k<p}. For two probability distributions
11, o € M(Q), the p-smooth Wasserstein distance is defined as

[ 1@ e dm(ac»].

We (Mh Mz sup
fef ()

Remark 1. Note that the conventional 1-Wasserstein distance is defined as

Wi (1, p2) = sup /f (dpa(z) = dpz(2))],

fELip, ()

where Lip, is the space of 1-Lipschitz functions. As H fo HOO < 1 implies 1-Lipschitz functions, but
not necessarily vice versa, We, (f1, t2) < Wi (11, p2).

Let us also define the p-smooth Wasserstein between V; and V5 as follows:

We, (V1,V5F) & sup We, (Vi(s; ), V5 (5 2)).
xE

This is the maximum over states € A" of the value of the p-smooth Wasserstein between the
distribution of return according to the probability distributions V; (-; z) and Va(+; x).

Theorem 3. Consider the ACVI procedure (14) after K > 1 iterations. Assume that €,(0;z) = 0

forallx € X andk =1,..., K + 1. Furthermore, assume that the immediate reward distribution
R™(:|z) is Ryax-bounded. We then have

2v2 | R,
We, Vi1, V') < —= “

a1

2%
Z’Y HEK-i—l 1”00 1 + 1_ mec

This upper bound can be simplified if we are willing to provide a uniform over iterations upper bound
on ||€x41—il « ;- In that case, we have

2v 2 Rmax
< Rt |

We note that the 2-smooth Wasserstein distance W, , which is an integral probability metric [Miiller,
1997], is only one of the many distances between probability distributions [Gibbs and Su, 2002]. The
choice of the right probability distance most likely depends on the performance measure we would
like the policy to optimize. Studying this further is an interesting topic of future research.

We, (Vi 41, V™) < el +27 Rmax] :

7 Conclusion

This paper laid the groundwork for a new class of distributional RL algorithms. We have shown
that one might represent the uncertainty about the return in the frequency domain, and such a
representation (called Characteristic Value Function) enjoys properties such as satisfying a Bellman
equation and having a contractive Bellman operator. This in turn allows us to compute the CVF by
an iterative method called Characteristic Value Iteration. We also showed the effect of errors in the
iterative procedure, and provided error propagation results, in both the frequency domain and the
probability distribution space.

This paper is only the first step towards understanding CVFs and their properties. Among remaining
questions is how to perform the regression step (15) of ACVI properly and efficiently. Specifically,
how should we set the weighting function w(w) in order to achieve accurate CVF in frequencies that
are relevant for the tasks we want to solve. Studying other distances between CFs and their properties
is another interesting research directions. This work only focused on the policy evaluation problem,
so another obvious direction is designing risk-aware policy optimization algorithms based on CVF.
Finally, empirically evaluating this approach for return uncertainty representation may lead to better
understanding of its strengths and weaknesses.
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