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Abstract

We introduce a new algorithm for multi-objective reinforcement learning (MORL)
with linear preferences, with the goal of enabling few-shot adaptation to new tasks.
In MORL, the aim is to learn policies over multiple competing objectives whose
relative importance (preferences) is unknown to the agent. While this alleviates
dependence on scalar reward design, the expected return of a policy can change
significantly with varying preferences, making it challenging to learn a single
model to produce optimal policies under different preference conditions. We
propose a generalized version of the Bellman equation to learn a single parametric
representation for optimal policies over the space of all possible preferences. After
an initial learning phase, our agent can execute the optimal policy under any given
preference, or automatically infer an underlying preference with very few samples.
Experiments across four different domains demonstrate the effectiveness of our

approachP_-]

1 Introduction

In recent years, there has been increased interest
in the paradigm of multi-objective reinforcement
learning (MORL), which deals with learning
control policies to simultaneously optimize over
several criteria. Compared to traditional RL,
where the aim is to optimize for a scalar reward,
the optimal policy in a multi-objective setting
depends on the relative preferences among com-
peting criteria. For example, consider a virtual
assistant (Figure[T)) that can communicate with
a human to perform a specific task (e.g., provide

Showers this evening, becoming

a steady rain overnight. Low 6C. Turn left at the
Winds S at 15 to 25 km/h. Chance next intersection.
of rain 100%...

ﬁ success 0.7 e success 0.5 a»
brevity o3 @ brevity o.5 e»
(weather) dile (driving) @

Figure 1: Task-oriented dialogue policy learning is a
real-life example of unknown linear preference scenario.
Users may expect either briefer dialogue or more infor-
mative dialogue depending on the task.

weather or navigation information). Depending on the user’s relative preferences between aspects like
success rate or brevity, the agent might need to follow completely different strategies. If success is all
that matters (e.g., providing an accurate weather report), the agent might provide detailed responses
or ask several follow-up questions. On the other hand, if brevity is crucial (e.g., while providing
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turn-by-turn guidance), the agent needs to find the shortest way to complete the task. In traditional
RL, this is often a fixed choice made by the designer and incorporated into the scalar reward. While
this suffices in cases where we know the preferences of a task beforehand, the learned policy is limited
in its applicability to scenarios with different preferences. The MORL framework provides two
distinct advantages — (1) reduced dependence on scalar reward design to combine different objectives,
which is both a tedious manual task and can lead to unintended consequences [1]], and (2) dynamic
adaptation or transfer to related tasks with different preferences.

However, learning policies over multiple preferences under the MORL setting has proven to be
quite challenging, with most prior work using one of two strategies [2]. The first is to convert the
multi-objective problem into a single-objective one through various techniques [3} 14, 5, 6] and use
traditional RL algorithms. These methods only learn an ‘average’ policy over the space of preferences
and cannot be tailored to be optimal for specific preferences. The second strategy is to compute a set
of optimal policies that encompass the entire space of possible preferences in the domain [[7} (8} 9].
The main drawback of these approaches is their lack of scalability — the challenge of representing a
Pareto front (or its convex approximation) of optimal policies is handled by learning several individual
policies, which can grow significantly with the size of the domain.

In this paper, we propose a novel algorithm for learning a single policy network that is optimized over
the entire space of preferences in a domain. This allows our trained model to produce the optimal
policy for any user-specified preference. We tackle two concrete challenges in MORL: (1) provide
theoretical convergence results of a multi-objective version of Q-Learning for MORL with linear
preferences, and (2) demonstrate effective use of deep neural networks to scale MORL to larger
domains. Our algorithm is based on two key insights — (1) the optimality operator for a generalized
version of Bellman equation [[10] with preferences is a valid contraction, and (2) optimizing for the
convex envelope of multi-objective Q-values ensures an efficient alignment between preferences
and corresponding optimal policies. We use hindsight experience replay [[L1] to re-use transitions
for learning with different sampled preferences and homotopy optimization [12] to ensure tractable
learning. In addition, we also demonstrate how to use our trained model to automatically infer hidden
preferences on a new task, when provided with just scalar rewards, through a combination of policy
gradient and stochastic search over the preference parameters.

We perform empirical evaluation on four different domains — deep sea treasure (a popular MORL
benchmark), a fruit tree navigation task, task-oriented dialog, and the video game Super Mario Bros.
Our experiments demonstrate that our methods significantly outperform competitive baselines on all
domains. For instance, our envelope MORL algorithm achieves an % improvement on average user
utility compared to the scalarized MORL in the dialog task and a factor 2x average improvement on
SuperMario game with random preferences. We also demonstrate that our agent can reasonably infer
hidden preferences at test time using very few sampled trajectories.

2 Background

A multi-objective Markov decision process (MOMDP) can be represented by the tuple
(S, A, P,r,Q, fq) with state space S, action space A, transition distribution P(s’|s, a), vector
reward function 7 (s, a), the space of preferences (2, and preference functions, e.g., f,,(r) which
produces a scalar utility using preference w € 2. In this work, we consider the class of MOMDPs
with linear preference functions, i.e., f,,(r(s,a)) = wTr(s,a). We observe that if w is fixed to a
single value, this MOMDP collapses into a standard MDP. On the other hand, if we consider all
possible returns from an MOMDP, we have a Pareto frontier 7* := {# | A7’ > #}, where the return
7:= >, 7'r(ss, a;). And for all possible preference in €2, we define a convex coverage set (CCS) of
the Pareto frontier as:

CCS:={PeF*|dwedst WP >wT# Vi e F},

which contains all returns that provide the maximum cumulative utility. Figure [2] (a) shows an
example of CCS and the Pareto frontier. The CCS is a subset of the Pareto frontier (points A to H, and
K), containing all the solutions on its outer convex boundary (excluding point K). When a specific
linear preference w is given, the point within the CCS with the largest projection along the direction
of the relative importance weights will be the optimal solution (Figure Zb)).

Our goal is to train an agent to recover policies for the entire CCS of MOMDP and then adapt to the
optimal policy for any given w € {2 at test time. We emphasize that we are not solving for a single,
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Figure 2: (a) The Pareto frontier may encapsulate local concave parts (points A-H, plus point K), whereas
CCS is a convex subset of Pareto frontier (points A-H). Point L indicates a non-optimal solution. (b) Linear
preferences select the optimal solution from CCS with the highest utility, represented by the projection length
along preference vector. Arrows are different linear preferences, and points indicate possible returns. Return D
has better cumulative utility than return F under the preference in solid line. (c) The scalarized MORL algorithms
(e.g., [13])) find the optimal solutions at a stage while they are not aligned with preference, e.g., two optimal
solutions D and F in the CCS, misaligned with preferences ws and wi. The scalarized update cannot use the
information of max, Q(s, a,w1) (corresponding to F) to update the optimal solution aligned with w2 or vice
versa. It only searches along w; direction leading to non-optimal L, even if solution D has been seen under wo.
It still requires many iterations for the value-preference alignment.

unknown w, but instead aim for generalization across the entire space of preferences. Accordingly,
our MORL setup has two phases:

Learning phase. In this phase, the agent learns a set of optimal policies 11, corresponding to the
entire CCS of the MOMDP, using interactions with the environment and historical trajectories. For
each m € Il, there exists at least one linear preference w such that no other policy 7’ generates
higher utility under that w:

relly = Jwe W st Vr € ILw v (so) > wTv™ (s0),

where s is a fixed initial state, and v™ is the value function, i.e., v™(s) = E,[7|sy = s]. Given any
preference w, I1 - (w) determines the optimal policy.

Adaptation phase. After learning, the agent is provided a new task, with either a) a preference w
specified by a human, or b) an unknown preference, where the agent has to automatically infer w.
Efficiently aligning IT. (w) with the preferred optimal policy is non-trivial since the CCS can be very
large. In both cases, the agent is evaluated on how well it can adapt to tasks with unseen preferences.

2.1 Related Work

Multi-Objective RL  Existing MORL algorithms can be roughly divided into two main cate-
gories [[14} 15, 2]|: single-policy methods and multiple-policy methods. Single-policy methods aim
to find the optimal policy for a given preference among the objectives [[16, [17]. These methods
explore different forms of preference functions, including non-linear ones such as the minimum over
all objectives or the number of objectives that exceed a certain threshold. However, single-policy
methods do not work when preferences are unknown.

Multi-policy approaches learn a set of policies to obtain the approximate Pareto frontier of optimal
solutions. The most common strategy is to perform multiple runs of a single-policy method over
different preferences [[7,[18]]. Policy-based RL algorithms [[19, 20] simultaneously learn the optimal
manifold over a set of preferences. Several value-based reinforcement learning algorithms employ
an extended version of the Bellman equation and maintain the convex hull of the discrete Pareto
frontier [8} 21} 22]]. Multi-objective fitted Q-iteration (MOFQI) [23] [24] encapsulates preferences
as input to a Q-function approximator and uses expanded historical trajectories to learn multiple
policies. This allows the agent to construct the optimal policy for any given preference during testing.
However, these methods explicitly maintain sets of policies, and hence are difficult to scale up to
high-dimensional preference spaces. Furthermore, these methods are designed to work during the
learning phase but cannot be easily adapted to new preferences at test time.

Scalarized Q-Learning. Recent work has proposed the scalarized Q-learning algorithm [9]] which
uses a vector value function but performs updates after computing the inner product of the value
function with a preference vector. This method uses an outer loop to perform a search over preferences,



while the inner loop performs the scalarized updates. Recently, Abels et al. [13] extended this to use
a single neural network to represent value functions over the entire space of preferences. However,
scalarized updates are not sample efficient and lead to sub-optimal MORL policies — our approach
uses a global optimality filter to perform envelope Q-function updates, leading to faster and better
learning (as we demonstrate in Figure [JJ(c) and Section ).

Three key contributions distinguish our work from Abels et al. [13]: (1) At algorithmic level,
our envelope Q-learning algorithm utilizes the convex envelope of the solution frontier to update
parameters of the policy network, which allows our method to quickly align one preference with
optimal rewards and trajectories that may have been explored under other preferences. (2) At
theoretical level, we introduce a theoretical framework for designing and analyzing value-based
MORL algorithms, and convergence proofs for our envelope Q-learning algorithm. (3) At empirical
level, we provide new evaluation metrics and benchmark environments for MORL and apply our
algorithm to a wider variety of domains including two complex larger scale domains — task-oriented
dialog and supermario. Our FTN domain is a scaled up, more complex version of Minecart in [13].

Policy Adaptation. Our policy adaptation scheme is related to prior work in preference elicita-
tion [25] 26} 27] or inverse reinforcement learning [28, [29]]. Inverse RL (IRL) aims to learn a scalar
reward function from expert demonstrations, or directly imitate the expert’s policy without inter-
mediate steps for solving a scalar reward function [30]. Chajewska et al. [31] proposed a Bayesian
version to learn the utility function. IRL is effective when the hidden preference is fixed and expert
demonstrations are available. In contrast, we require policy adaptation across various different
preferences and do not use any demonstrations.

3 Multi-objective RL with Envelope Value Updates

In this section, we propose a new algorithm for multi-objective RL called envelope Q-learning. Our
key idea is to use vectorized value functions and perform envelope updates, which utilize the convex
envelope of the solution frontier to update parameters. This is in contrast to approaches like scalarized
Q-Learning, which perform value function updates using only a single preference at a time. Since
we learn a set of policies simultaneously over multiple preferences, and our concept of optimality is
defined on vectorized rewards, existing convergence results from single-objective RL no longer hold.
Hence, we first provide a theoretical analysis of our proposed update scheme below followed by a
sketch of the resulting algorithm.

Bellman operators. The standard Q-Learning [32] algorithm for single-objective RL utilizes the
Bellman optimality operator 7"

(TQ)(Sv (1) = 7"(8, a) + ’YES/NP(~|S,G)(HQ)(SI)‘ (D

where the operator H is defined by (HQ)(s') := sup, ¢ 4 Q(s,a’) is an optimality filter over the
Q-values for the next state s’.

We extend this to the MORL case by considering a value space Q C (Q — R™)S*A, containing all
bounded functions Q(s, a,w) — estimates of expected total rewards under m-dimensional preference
(w) vectors. We can define a corresponding value metric d as:

dQ,Q) = sup [wH(Q(s,a,w)—Q'(s,a,w))]. )

s€S,ac A
weN
Since the identity of indiscernibles [33]] does not hold, we note that d forms a complete pseudo-metric
space, and refer to Q as a Multi-Objective Q-value (MOQ) function. Given a policy 7 and sampled
trajectories 7, we first define a multi-objective evaluation operator 7 as:

(T=Q)(s,a,w) :=7r(s,a) + YE, v (p.nQ(s", ', w). 3)

We then define an optimality filter H for the MOQ function as (HQ)(s,w) :=
argo SUP e wen WTQ(S, a,w'), where the arg, takes the multi-objective value corresponding to
the supremum (i.e., Q(s, a,w’) such that (a,w’) € argsup,c 4 ,reqwTQ(s, a,w’)). The return of
argg depends on which w is chosen for scalarization, and we keep arg, for simplicity. This can
be thought of as generalized version of the single-objective optimality filter in Eq.[I] Intuitively,
solves the convex envelope (hence the name envelope Q-learning) of the current solution frontier to



produce the @ that optimizes utility given state s and preference w. This allows for more optimistic
Q-updates compared to using just the standard Bellman filter (/1) that optimizes over actions only —
this is the update used by scalarized Q-learning [13]]. We can then define a multi-objective optimality

operator T as:
(TQ)(s,a,w) :==7(s,a) + VEyp(.|s,a)(HQ) (5", w). 4)

The following theorems demonstrate the feasibility of using our optimality operator for multi-objective
RL. Proofs for all the theorems are provided in the supplementary material.

Theorem 1 (Fixed Point of Envelope Optimality Operator). Let Q* € Q be the preferred optimal
value function in the value space, such that

Q*(Sv a, (4)) = a‘rgQ sup w'E T~(P,m) [Z ’Ytr(sh at)‘| ’ (5)
t=0

well |so=s,a0=a

where the arg, takes the multi-objective value corresponding to the supremum. Then, Q" = T Q™.

Theorem ] tells us the preferred optimal value function is a fixed-point of 7 in the value space.

Theorem 2 (Envelope Optimality Operator is a Contraction). Let Q, Q' be any two multi-objective Q-
value functions in the value space Q as defined above. Then, the Lipschitz condition d(TQ, T Q') <
~d(Q, Q') holds, where v € [0, 1) is the discount factor of the underlying MOMDP M.

Finally, we provide a generalized version of Banach’s Fixed-Point Theorem in the pseudo-metric
space.

Theorem 3 (Multi-Objective Banach Fixed-Point Theorem). If T is a contraction mapping with
Lipschitz coefficient v on the complete pseudo-metric space (Q, d), and Q™ is defined as in Theorem
then lim,, ., d(T"Q, Q") = 0 forany Q € Q.

Theorems guarantee that iteratively applying optimality operator 7~ on any MOQ-value function
will terminate with a function @ that is equivalent to @* under the measurement of pseudo-metric d.
These Qs are as good as Q™ since they all have the same utilities for each w, and will only differ
when the utility corresponds to a recess in the frontier (see Figure [J|c) for an example, at the recess,
either D or F is optimal).

Maintaining the envelope sup,, wTQ(-, -, w’) allows our method to quickly align one preference
with optimal rewards and trajectories that may have been explored under other preferences, while
scalarized updates that optimizes the scalar utility cannot use the information of max, Q(s, a,w’) to
update the optimal solution aligned with a different w. As illustrated in Figure 2 (c), assuming we
have found two optimal solutions D and F in the CCS, misaligned with preferences ws and w;. The
scalarized update cannot use the information of max, Q(s, a,w;) (corresponding to F) to update
the optimal solution aligned with ws or vice versa. It only searches along w; direction leading to
non-optimal L, even if solution D has been seen under w,. Hence, the envelope updates can have
better sample efficiency in theory, as is also seen from the empirical results.

Learning Algorithm. Using the above theorems, we provide a sample-efficient learning algorithm
for multi-objective RL (Algorithm[I)). Since our goal is to induce a single model that can adapt to the
entire space of (2, we use one parameterized function to represent Q C (Q — R™)S*A, We achieve
this by using a deep neural network with s, w as input and |.4| x m Q-values as output. We then
minimize the following loss function at each step k

LA(0) = By [y — Q(s.0,w;0) 3] ©
where y = Ey [r + v argg max, o wTQ(s', a,w’; 0)], which empirically can be estimated by sam-
pling transition (s, a, s’, ) from a replay buffer.

Optimizing L* directly is challenging in practice because the optimal frontier contains a large number
of discrete solutions, which makes the landscape of loss function considerably non-smooth. To
address this, we use an auxiliary loss function LB:

LP(0) = Es o wl[|wTy —wTQ(s, a,w; 0)]]. @)

>We use double Q learning with target Q networks following Mnih et al. [34]



Combined, our final loss function is L(#) = Algorithm 1: Envelope MOQ-Learning

(1 — ) - LA@) + X\ - LB(f), where \ is a Input: a preference sampling distribution D.,, path p for
We]ght to trade Off between losses LA and the balance Welght A inCreaSing fromOto 1.

Lﬁ . We slowly increase the value of \ from Initiali.ze replay buffer D, network Qy, and A = 0.

0 to 1, to shift our loss function from LA forepisode=1,...,M do

Sample a linear preference w ~ D,,,.

to LB. This method, known as homotopy forz=0 N do

optimization [[12)), is effective since for each Observe state ;.

update step, it uses the optimization result Sample an action e-greedily:

from the previous step as the initial guess. L*

first ensures the prediction of Q is close to @ — {raﬂdom action in A, W.p. €
any real expected total reward, although it maxge 4 W' Q(st,a,w;0), wp 1—e

may not be optimal. L® provides an auxiliary

pull along the direction with better utility. Receive a vectorized reward r; and observe s¢.1.

Store transition (st, at, 7+, St+1) in Dr.

The loss function above has an expectation if update then -
over w — this entails sampling random pref- Sample N transitions
erences in the algorithm. However, since the (83,5, 75, 85+1) ~ Dr.

ws are decoupled from the transitions, we can %‘mp le N, Prffe;?nce? W ={w: ~ Do}
increase sample efficiency by using a scheme ompute yi; = (7Q):; =

similar to Hindsight Experience Replay [11]. T, for terminal s;41;
Furthermore, computing the optimality filter 7j +yarg, max w!Q(s;j11,a,w’;0),0.w.
H over the entire Q is infeasible; instead we acA,

approximate this by applying H over a mini-
batch of transitions before performing param- forall1 <i < Nyand1<j < N;.

eter updates. Further details on our model Update Q by descending its stochastic
architectures and implementation details are gradient according to equationsfgandf7}
available in the supplementary material (Sec- VoL(0) = (1-X\)-VoL*(0)+)\-VoL?(0).
tion[A2.3).

w'ew

|_ Increase X along the path pj.

Policy adaptation. Once we obtain a pol-
icy model Il (w) from the learning phase,
the agent can adapt to any provided preference by simply feeding the w into the network. While this
is a straightforward scenario, we also consider a more challenging test where only scalar rewards are
available and the agent has to uncover a hidden preference w while adapting to the new task. For
this case, we assume preferences are drawn from a truncated multivariable Gaussian distribution
D (pi1, - - -, fim; o) on an (m —1)-simplex, where nonnegative parameters pi1, . . ., (i, are the means
with py + - -+ + .y, = 1, and o is a fixed standard deviation for all dimensions. Our goal is then
to infer the parameters of this Gaussian distribution, for which we perform a combination of policy
gradient (e.g., REINFORCE [35])) and stochastic search while keeping the policy model fixed. We
determine the best preference parameters that maximize the expected return in the target task:

ETN(P,HL(QJ)) [thrt(st,at)‘|‘| . (8)

arg max E,,pm
K1y sHm

t=0
4 Experiments

Evaluation Metrics. Three metrics are to evaluate the empirical performance on test tasks:

a) Coverage Ratio (CR). The first metric is coverage ratio (CR), which evaluates the agent’s ability to
recover optimal solutions in the convex coverage set (CCS). If 7 C R™ is the set of solutions found b
the agent (via sampled trajectories), we define FN.CCS := {z € F | Jy € CCS s.t. [|[x—yll1/|lyllx <
€} as the intersection between these sets with a tolerance of e. The CR is then defined as:

precision-recall

precision + recall’

where the precision = |F N, CCS|/|F]|, indicating the fraction of optimal solutions among the
retrieved solutions, and the recall = |F N, CCS|/|CCS|, indicating the fraction of optimal instances
that have been retrieved over the total amount of optimal solutions (see Figure a)).



b) Adaptation Error (AE). Our second met-
ric compares the retrieved control frontier
with the optimal one, when an agent is pro-
vided with a specific preference w during
the adaptation phase:

AE(C) := Ewnn, [|IC(w) =Copt(w)]/Cop (w)],
(10)

which is the expected relative error be-
tween optimal control frontier Cop : €2 —
R with w — maxpeeeswT? and the
agent’s control frontier Cr, = wT#y .

¢) Average Utility (UT). This measures
the average utility obtained by the trained
agent on randomly sampled preferences
and is a useful proxy to AE when we don’t
have access to the optimal policy.

Domains. We evaluate on four different
domains (complete details in supplemen-
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Figure 3: Illustration of evaluation metrics for MORL. (a.)
Coverage ratio (CR) measures an agent’s ability to find all
the potential optimal solutions in the convex coverage set of
Pareto frontier. Dots with black boundary are solutions in
CCS, dots without black boundary are non-optimal returns,
and dots in green are solutions retrieved by an MORL algo-
rithm. CR is the F1 based on the precision and recall calcula-
tion. (b.) Adaptation error (AE) measures an agent’s ability of
policy adaptation to real-time specified preferences. The gray
curve indicates the theoretical limit of the best cumulative
utilities under all preference, and the green curve indicates the
cumulative utilities of an MORL algorithm. AE is the average
gap between these two curves over all preferences.

tary material):

1.

Baselines.

Deep Sea Treasure (DST) A classic MORL benchmark [14] in which an agent controls a
submarine searching for treasures in a 10 x 11-grid world while trading off time-cost and
treasure-value. The grid world contains 10 treasures of different values. Their values increase
as their distances from the starting point so = (0, 0) increase. We ensure the Pareto frontier of
this environment to be convex.

. Fruit Tree Navigation (FTN) A full binary tree of depth d with randomly assigned vectorial

reward r € R® on the leaf nodes. These rewards encode the amounts of six different components
of nutrition of the fruits on the tree: {Protein, Carbs,Fats,Vitamins, Minerals, Water}.
For every leaf node, Jw for which its reward is optimal, thus all leaves lie on the CCS. The goal
of our MORL agent is to find a path from the root to a leaf node that maximizes utility for a given
preference, choosing between left or right subtrees at every non-terminal node.

. Task-Oriented Dialog Policy Learning (Dialog) A modified task-oriented dialog system in the

restaurant reservation domain based on PyDial [36]. We consider the task success rate and the
dialog brevity (measured by number of turns) as two competing objectives of this domain.

. Multi-Objective SuperMario Game (SuperMario) A multi-objective version of the popular

video game Super Mario Bros. We modify the open-source environment from OpenAl gym [37]]
to provide vectorized rewards encoding five different objectives: x-pos: value corresponding
to the difference in Mario’s horizontal position between current and last time point, time: a
small negative time penalty, deaths: a large negative penalty given each time Mario dies , coin:
rewards for collecting coins, and enemy: rewards for eliminating an enemy.

We compare our envelope MORL algorithm with classic and state-of-the-art baselines:

1. MOFQI [24]: Multi-objective fitted Q-iteration where the Q-approximator is a large linear model.

. CN+OLS [13]: Conditional neural network with Optimistic Linear Support (OLS) method as the

outer loop for selecting w. This method is first proposed in [9] with multiple neural networks,
and we employ an improved version using single conditional neural network [13]].

. Scalarized [13]]: The state-of-the-art algorithm uses scalarized Q-update with double Q-learning,

prioritized and hindsight experience replay, which is equivalent to CN+DER proposed in [[13].

Main Results. Table|I|shows the performance comparison of different MORL algorithms in four
domains. We elaborate training and test details for each domain in supplementary material. In DST
and FTN we compare CR and AE as defined in section {4} In the task-oriented dialog policy learning
task, we compare the average utility (Avg. UT) for 5,000 test dialogues with uniformly sampled user
preferences on success and brevity. In the SuperMario game, the Avg. UT is over 500 test episodes



Method DST FIN (d = 6) Dialog>  SuperMario?

CR 1 AE | CR 1 AE | Avg.UT 1 Avg.UT 1
MOFQI 0.639 = 0.421 139.6 +25.98 0.197 & 0.000 0.176 +0.001 2.17 +0.21 -
CN+OLS 0.751 £0.163  34.63 + 1.396 2.53+0.22

Scalarized 0.989 +£0.024 0.165£0.096 0.914 £0.044 0.016 +0.005 2.38£0.22 162.7 £ 77.66
Envelope (ours)!  0.994 + 0.001  0.152 4+ 0.006  0.987 = 0.021  0.006 + 0.001 2.65 + 0.22 321.2 + 146.9

Table 1: Comparison of different MORL algorithms in learning and adaptation phases across four experimental
domains. 1 indicates higher is better, and | indicates lower is better for the scores. Each data point indicates the
mean and standard deviation over 5 independent training and test runs. *Using the unpaired t-test, we obtain
significance scores of p < 0.05 vs MOFQI on all domains, p < 0.01 vs CN+OLS on DST and p < 0.05 vs
Scalarized on FTN, Dialog and SuperMario. * Additional results are in the supplementary material and

with uniformly sampled preferences. The envelope algorithm steadily achieves the best performance
in terms of both learning and adaptation among all the MORL methods in all four domains.
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Figure 4: Coverage Ratio (CR) and Adaptation Error (AE) comparison of the scalarized algorithm [[13] and our
envelope deep MORL algorithm over 5000 episodes of FTN tasks of depths d = 5, 6, 7. Higher CR indicates
better coverage of optimal policies, lower AE indicates better adaptation. The error bars are standard deviations
of CR and AE estimated from 5 independent runs under each configuration.

Scalability. There are three aspects of the scalability of a MORL algorithm: the ability to deal
with (1) large state space, (2) many objectives, and (3) large optimal policy set. Unlike other neural
network-based methods, MOFQI cannot deal with the large state space, e.g., the video frames in
SuperMario Game. The CN+OLS baseline requires solving all the intersection points of a set of
hyper-planes thus is computationally intractable in domains with m > 3 objectives, such as FTN
and SuperMario. We denote these entries as “~" in Table[I} Both scalarized and envelope methods
can be applied to cases having large state space and reasonably many objectives. However, the size
of optimal policy set may affect the performance of these algorithms. Figure @] shows CR and AE
results in three FTN environments with d = 5 (with 32 solutions), d = 6 (with 64 solutions), and
d = 7 (with 128 solutions). We observe that both scalarized and envelope algorithms are close to
optimal when d = 5 but both CR and AE values are worse for d = 7. However, the envelope version
is more stable and outperforms the scalarized MORL algorithm in all three cases. These results point
to the robustness and scalability of our algorithms.

Sample Efficiency. To compare sample efficiency during the learning phase, we train both our
scalarized and envelope deep MORL on the FTN task with different depths for 5,000 episodes. We
compute coverage ratio (CR) over 2,000 episodes and adaptation error (AE) over 5,000 episodes.
Figure [] shows plots for the metrics computed over a varying number of sampled preferences NN,
(more details can be found in the supplementary material). Each point on the curve is averaged over
5 experiments. We observe that the envelope MORL algorithm consistently has a better CR and AE
scores than the scalarized version, with smaller variances. As IV, increases, CR increases and AE
decreases, which shows better use of historical interactions for both algorithms when NN, is larger.
And to achieve the same level AE the envelope algorithm requires smaller N, than the scalarized
algorithm. This reinforces our theoretical analysis that the envelope MORL algorithm has better
sample efficiency than the scalarized version.

Policy Adaptation. We show how the MORL agents respond to user preference during the adap-
tation phase in the dialog policy learning task, where the agent must trade off between the dialog
success rate and the conversation brevity. Figure[5]shows the success rate (SR) curves as we vary the



Protein | Carbs | Fats | Vitamins | Minerals | Water X-pos time life coin ‘ enemy

vi [ 0.9639 0. 0.0361 0. 0. 0. gl | 0.5288 | 0.1770 | 0.1500 | 0.0470 0.0972

N I 090& o 0. SRk g2 | 0.1985 | 0.2237 | 0.2485 | 0.1422 ' 0.1868

va | 0.1366 | 0.0459 | 0. 07503 | 00671 0. g3 | 02196 | 0.1296 | 0.3541 | 0.1792  0.1175

v5 0. 0.0148 | 0.0291 | 0.0428 07503 0.1629 g4 [ 0.0211 | 0.2404 | 0.0211 | 0.6960 0.0211

v6 0. 0.0505 0. 0. 0. 0.9495 g5 | 0.0715 | 0.1038 | 0.2069 | 0.3922 0.2253
Table 2: Inferred preferences of the envelope Table 3: Inferred preferences of the envelope
MOQ-learning algorithm on different FTN (d = 6) multi-objective A3C algorithm in different Mario
tasks (v1 to v6) after only 15 episodes interaction. Game variants (g1 to g5) with 100 episodes. The
The underlying preferences are all ones on the di- underlying preferences are all ones on the diagonal
agonal of the table and zeros for the off-diagonal. of the table and zeros for the off-diagonal.

weight of the preference on task completion success. The success rates of both MORL algorithms
increase as the user’s weight on success increases, while those of the single-objective algorithms do
not change. This shows that our envelope MORL agent can adapt gracefully to the user’s preference.
Furthermore, our envelope deep MORL algorithm outperforms other algorithms whenever success is
relatively more important to the user (weight > 0.5).

. . . 95
Revealing underlying preferences. Finally, we ;
test the ability of our agent to infer and adapt to un- @90 % ,r/\‘ o G hend T LN
. . A s N\ ¥ 4 A

known preferences on FTN and SuperMario. During ;’85 R \,»”err A vl A - \WA
the learning phase, the agent does not know the under- 2 ’
lying preference, and hence learns a multi-objective  §80

. : : . Y Envelope Version
policy. During the adaptatlon phase, our agent per- 3., — sovrion
forms recovers underlying preferences (as described Single-Obi02urne0.5800e)
in Section [3)) to uncover the underlying preference 70 ~ epeonbanmibaed

.= . 01 0.2 03 0.4 05 0.6 0.7 0.8 0.9

that maximizes utility. Table 2] shows the learned Weight of Success

preferences for 6 different FTN tasks (vl to v6)
with unknown one-hot preferences [1,0, 0,0, 0, 0]
to [O’ 0,0,0,0, 1]’ respectively, meaning the ag_ent age of closest around 500 dialogues in the interval
should only care abput one elementary Nutrition. ¢ . round + 0.05 weight of success. The light
These were learned in a few-shot adaption setting, shadow indicates the standard deviations of 5 inde-
using just 15 episodes. For the SuperMario Game, pendent runs under each configuration.

we implement an A3C [38]] variant of our envelope

MORL agent (see supplementary material for details). Table [3]shows the learned preferences for 5
different tasks (g1 to g5) with unknown one-hot preferences using just 100 episodes.

Figure 5: The success-weight curves of task-
oriented dialog. Each data point is a moving aver-

We observe that the learned preferences are concentrated on the diagonal, indicating good alignment
with the actual underlying preferences. For example, in the SuperMario game variant g4, the envelope
MORL agent finds the preference with the highest weight (0.6960) on the coin objective can best
describe the goal of g4, which is to collect as many coins as possible. We also tested policy adaptation
on the original Mario game using game scores for the scalar rewards. We find that the agent learns
preference weights of 0.37 for x-pos and 0.23 for time, which seems consistent with a common
strategy that humans employ — simply move Mario towards the flag as quickly as possible.

5 Conclusion

We have introduced a new algorithm for multi-objective reinforcement learning (MORL) with linear
preferences, with the goal of enabling few-shot adaptation of autonomous agents to new scenarios.
Specifically, we propose a multi-objective version of the Bellman optimality operator, and utilize it to
learn a single parametric representation for all optimal policies over the space of preferences. We
provide convergence proofs for our multi-objective algorithm and also demonstrate how to use our
model to adapt and elicit an unknown preference on a new task. Our experiments across four different
domains demonstrate that our algorithms exhibit effective generalization and policy adaptation.
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