
Thank you for the constructive comments and suggestions. We will incorporate all presentation improvements suggested.1

Theoretical results (Reviewer 1): [ωᵀ and argQ cancel each other] By definition (line 143),2

argQ sup
a∈A,ω′∈Ω

ωᵀQ(s, a,ω′) := Q(s, a′,ω′′), i.e., the argQ operator extracts the Q value that results in the largest3

utility using the preferences ω. Therefore, linearizing this Q with the same ω results in exactly the same supremum, i.e.,4

ωᵀargQ sup
a∈A,ω′∈Ω

ωᵀQ(s, a,ω′) = ωᵀQ(s, a′,ω′′) = sup
a∈A,ω′∈Ω

ωᵀQ(s, a′,ω′) . Note the supremum is over ω′, not ω.5

[Theorem 1] Thanks for catching the typo - Q should be Q∗. We realize that the proofs are a bit compressed - we will6
update the paper with more detailed derivations for all proofs. Here is Thm. 1 in detail (starting step 2 under line 601):7

ω
ᵀTQ

∗
(s, a,ω) = ω

ᵀ
r(s, a) + γ · ωᵀEs′∼P(·|s,a) argQ sup

a′∈A,ω′∈Ω

ω
ᵀ
Q
∗
(s
′
, a
′
,ω
′
)

(linearity of exp. & cancel ωᵀ and argQ) = ω
ᵀ
r(s, a) + γ · Es′∼P(·|s,a) sup

a′∈A,ω′∈Ω

ω
ᵀ
Q
∗
(s
′
, a
′
,ω
′
)

(insert eq. (20), def. of Q∗) = ω
ᵀ
r(s, a) + γ · Es′∼P(·|s,a) sup

a′∈A,ω′∈Ω

ω
ᵀ

{
argQ sup

π∈Π
ω
′ᵀE τ∼(P,π)

|s0=s′,a0=a′

[∞∑
t=0

γ
t
r(st, at)

]}

(use def. of argQ, explained below) = ω
ᵀ
r(s, a) + γ · Es′∼P(·|s,a) sup

a′∈A
ω

ᵀ

{
argQ sup

π∈Π
ω

ᵀE τ∼(P,π)

|s0=s′,a0=a′

[∞∑
t=0

γ
t
r(st, at)

]}

(rearrange expectation and sup) = ω
ᵀ
r(s, a) + γ · ωᵀ

argQ sup
π∈Π

ω
ᵀE τ∼(P,π)
s0∼P(·|s,a)

[∞∑
t=0

γ
t
r(st, at)

]

(merge 1st term to sum & use def. of Q∗ again) = ω
ᵀ

{
argQ sup

π∈Π
ω

ᵀE τ∼(P,π)
|s0=s,a0=a

[∞∑
t=0

γ
t
r(st, at)

]}
= ω

ᵀ
Q
∗
(s, a,ω)

The fourth equation is due to a sandwich inequality, ω
ᵀ
argQ sup

π∈Π
ω

ᵀ
Q
π ≤ sup

ω′∈Ω

ω
ᵀ
argQ sup

π∈Π
ω
′ᵀ
Q
π

= ω
ᵀ
argQ sup

π∈Π
ω

ᵀ
∗Q

π
=8

ω
ᵀ
Q
π′
ω′∗ ≤ ω

ᵀ
argQ sup

π∈Π
ω

ᵀ
Q
π, where ω′∗ and π′ω′∗ are preference and policy corresponding to the supremums.9

[Theorem 2] Step 2 to 3 (line 614) is because |E[·]| ≤ E[| · |] ≤ sup | · |, and step 3 to 4 results from the cancellation10

between ωᵀ and argQ (as justified above). After line 616, step 2 to 3 arises from the w.l.o.g. assumption that11

ωᵀQ(s′, a′,ω′) − sup
a′′,ω′′

ωᵀQ′(s′, a′′,ω′′) ≥ 0, as stated in lines 612 and 615. Thus, the whole expression in | · | is12

nonnegative and ωᵀQ(s′, a′,ω′) − ωᵀQ′(s′, a′,ω′) ≥ 0 . We can discard the last two terms since ωᵀQ′(s′, a′,ω′) ≤13

sup
a′′∈A,ω′′∈Ω

ωᵀQ′(s′, a′′,ω′′). Step 3 to 4 is because sup
s′,ω′

f(s′, a′,ω′) ≤ sup
s′,a′′,ω′

f(s′, a′′,ω′) holds for any a′ and f(·).14

Empirical results (Reviewers 1 and 3): [Multiple runs and error bars] Each data point in Table 1 indicates the mean15

and standard deviation over 5 independent training and test runs, for all methods in all four domains. The error bars16

in Figure 4 are standard deviations of CR and AE estimated from 5 independent runs under each configuration. This is17

mentioned in lines 228, 860-862, 877, 881, but we will consolidate and make this clearer for the reader.18

[Statistical tests] We performed the unpaired t-test between our envelope model and the baselines and achieved19

significance scores of p < 0.05 vs MOFQI on all domains, p < 0.01 vs CN+OLS on DST and p < 0.05 vs Scalarized20

on FTN, Dialog and SuperMario. We will add this information to the results table.21

Comparison with Abels, et al. (Reviewers 2 and 3): There are 3 key contributions that distinguish our work from22

Abels et. al., 2019. We will add a better description of these to the paper as well as better explain figures 2 & 3.23

[Algorithmic] Our algorithm (envelope Q-learning), utilizes the convex envelope of the solution frontier to update24

parameters of the policy network, using an optimality filter H (line 142) which maintains supω′ ω
ᵀQ(·, ·,ω′). This25

allows our method to quickly align one preference with optimal rewards and trajectories that may have been explored26

under other preferences. Abels et al. on the other hand, use scalarized updates that optimizes the scalar utility and hence27

cannot use the information of maxaQ(s, a,ω′) to update the optimal solution aligned with a different ω. As illustrated28

in Figure 2 (c), assuming we have found two optimal solutions D and F in the CCS, misaligned with preferences ω2 and29

ω1. The scalarized update cannot use the information of maxaQ(s, a,ω1) (corresponding to F) to update the optimal30

solution aligned with ω2 or vice versa. It only searches along ω1 direction leading to non-optimal L, even if solution D31

has been seen under ω2. Hence, our algorithm has better sample efficiency, as is also seen from the empirical results.32

[Theoretical] Further, we introduce a theoretical framework for designing and analyzing value-based MORL al-33

gorithms, and convergence proofs for our envelope Q-learning algorithm. Abels et al., whose method can also be34

analyzed under our framework, do not provide theoretical analyses of the correctness or convergence of their algorithm.35

[Empirical] We also provide new evaluation metrics and benchmark environments for MORL – CR and AE. In36

terms of experiments, Abels et al. only evaluate on two synthetic domains – DST and Minecart. We apply our algorithm37

to a wider variety of domains including DST, FTN and two complex larger scale domains – task-oriented dialog and38

supermario. Our FTN domain (128 solutions) is a scaled up, more complex version of Minecart (< 10 solutions).39

