
We thank all the reviewers for their helpful comments and suggestions. Below we address the concerns raised.1

Importance of Convergence vs Function value (R1). For an algorithm with a log 1
ε dependence of the running time2

for computing a (1 + ε)-approximate solution, like p-IRLS, the guarantee can be translated into a guarantee for3

convergence in the solution without any significant loss in the runtime complexity of the method. We demonstrate this4

theoretically and experimentally below. We thank the reviewer for pointing out that this is inadequately explained in the5

paper, and we will clarify this in the final version of the paper.6

If x is a (1 + δ)-approximate solution, using Lemma A.1 from the supplementary material we can show that7

we can achieve the guarantee ‖x− x?‖∞ ≤ ε ‖Ax? − b‖p by picking δ =
(
εσmin(A)

4m

)p
, where σmin(A) is8

the smallest singular value of A. This gives log m
δ = O(p log m

σmin(A)ε ), and hence a total iteration count of9

O(p4.5m
p−2

2(p−1) log m
σmin(A)ε ). Asymptotically, the running time bound is only off by a factor of p if we wish to10

measure the convergence in `∞-norm, as long as log 1
σmin(A) = O(log m

ε ).11
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We also demonstrate this relation experimentally. The plots demonstrate the12

average resulting `∞ norm deviation for the solution computed, as we change the13

ε parameter used in the algorithm. We use the instances described in the paper;14

matrices of size 1000×800 and graphs with 1000 nodes. For each instance, we: 1)15

find a very high accuracy solution, by choosing a very small ε ∼ 10−25, 2) scale16

the problem so that the optimum value is 1, and run the algorithm again to find the17

optimum solution x?. 3) Now we have a problem such that ‖Ax? − b‖p = 1,18

we run the algorithm again with various values of ε, to obtain solutions x(ε) and19

plot ‖x(ε)− x?‖∞ (averaged over 20 samples). These results are very much in20

agreement with the theoretical ε
1
p dependence proved above. (Note that the error21

bars indicate log(mean± std) so they are missing on one side when mean < std.)22

Runtime comparison with [AKPS19] and [BCLL18] (R1). As noted by R1,23

the running time of [AKPS19] (and [BCLL18]) is not stated precisely in the24

comparison. The running time bounds are not stated precisely in either paper;25

they hide the p dependencies and poly(log m
ε ) dependencies. We have focused26

on the polynomial terms in the comparison because they are the dominant terms.27

For [AKPS19] the running time is at least p2p+2m
p−2
3p−2 log2 mε , for [BCLL18] it28

seems to be at least p2.5m
p−2
2p log2 mε . The log2 mε dependence is worse for both29

[AKPS19] and [BCLL18], compared to our algorithm, and the p2p+2 factor is30

much worse in [AKPS19]. We will clarify this in the paper.31

Experimental comparison to [AKPS19] and [BCLL18] (R1). We agree that a direct comparison to [AKPS19] and32

[BCLL18] is desirable. Unfortunately, both algorithms are quite complicated to implement, and no implementations are33

publicly available. The [BCLL18] paper lacks an explicit algorithm description and leaves out several details (e.g. it34

asks to run accelerated gradient descent (AGD) “until convergence”, the specific accuracy target for AGD will have a35

large impact on the running time). The [AKPS19] algorithm description also leaves out specifying several parameters36

in the algorithm, hiding p dependencies and log m
ε factors. As pointed out above, these large hidden factors make the37

algorithm, as stated, difficult to implement efficiently. In contrast, our algorithm is far simpler to implement.38

Simplicity of p-IRLS compared to [MPT+18] (R3). We thank R3 for this. We will clarify this in the final version.39

Combining p-norm with a regularizer e.g. `1 (Lasso) (R3). This is definitely a great idea for future work. Our40

current techniques would not suffice for this, but we thank the reviewer for pointing out this potential direction.41

Spacing between subfigures in figure 4 (R1) We will address this in the final version.42

Proof of claimed bound. We prove the bound on ‖x− x?‖∞ claimed above. Given that x is a (1 + δ)-approximate43

solution, using Lemma A.1, we can write the following lower bound on the objective value:44

(1 + δ) ‖Ax? − b‖pp ≥ ‖Ax? − b‖pp + p (Ax? − b)
>
RA(x− x?) + p/8A(x− x?)>A>RA(x− x)? + 2−(p+1) ‖Ax−Ax?‖pp ,

where R = diag(|Ax? − b|p−2). Since the gradient at x? is 0, simplifying, we get, 2p+1δ ‖Ax? − b‖pp ≥45

‖Ax−Ax?‖pp . Now, translating between various norms, we obtain,46

‖x− x?‖∞ ≤
1

σmin(A) ‖Ax−Ax?‖2 ≤
m

1
2
− 1

p

σmin(A) ‖Ax−Ax?‖p ≤
2m

1
2

σmin(A)

(
2δ
m

) 1
p ‖Ax? − b‖p .


