
Stochastic Continuous Greedy ++:
When Upper and Lower Bounds Match∗

Hamed Hassani
ESE Department

University of Pennsylvania
Philadelphia, PA

hassani@seas.upenn.edu

Amin Karbasi
ECE Department
Yale University
New Haven, CT

amin.karbasi@yale.edu

Aryan Mokhtari
ECE Department

The University of Texas at Austin
Austin, TX

mokhtari@austin.utexas.edu

Zebang Shen
ESE Department

University of Pennsylvania
Philadelphia, PA

zebang@seas.upenn.edu

Abstract

In this paper, we develop Stochastic Continuous Greedy++ (SCG++),
the first efficient variant of a conditional gradient method for maximizing a con-
tinuous submodular function subject to a convex constraint. Concretely, for a
monotone and continuous DR-submodular function, SCG++ achieves a tight
[(1− 1/e)OPT− ε] solution while using O(1/ε2) stochastic gradients and O(1/ε)
calls to the linear optimization oracle. The best previously known algorithms either
achieve a suboptimal [(1/2)OPT− ε] solution with O(1/ε2) stochastic gradients or
the tight [(1−1/e)OPT−ε] solution with suboptimalO(1/ε3) stochastic gradients.
We further provide an information-theoretic lower bound to showcase the neces-
sity of O(1/ε2) stochastic oracle queries in order to achieve [(1− 1/e)OPT− ε]
for monotone and DR-submodular functions. This result shows that our proposed
SCG++ enjoys optimality in terms of both approximation guarantee, i.e., (1−1/e)
approximation factor, and stochastic gradient evaluations, i.e., O(1/ε2) calls to the
stochastic oracle. By using stochastic continuous optimization as an interface, we
also show that it is possible to obtain the [(1− 1/e)OPT− ε] tight approximation
guarantee for maximizing a monotone but stochastic submodular set function sub-
ject to a general matroid constraint after at most O(n2/ε2) calls to the stochastic
function value, where n is the number of elements in the ground set.

1 Introduction

In this paper, we consider the following non-oblivious stochastic submodular maximization problem:

max
x∈C

F (x) := max
x∈C

Ez∼p(z;x)[F̃ (x; z)], (1)

where x ∈ Rd+ is the decision variable, C ⊆ Rd is a convex feasible set, z ∈ Z is a random variable
with distribution p(z;x), and the submodular objective function F : Rd → R is defined as the
expectation of a set of stochastic functions F̃ : Rd ×Z → R. In this paper, we focus on a general
case of stochastic submodular maximization in which the probability distribution of the random
variable z depends on the variable x and may change during the optimization procedure. One should

∗The authors are listed in alphabetical order.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

note that the usual stochastic optimization where the distribution p is independent of x is a special case
of Problem (1). A canonical example of the general stochastic submodular maximization problem in
(1) is the multi-linear extension of a discrete submodular function where the stochasticity crucially
depends on the decision variable x at which we evaluate. Specifically, consider a discrete submodular
set function f : 2V → R+ defined over the ground set V . The aim is to solve the following problem
maxS∈I f(S) where I is a matroid constraint. For this problem, the classic greedy algorithm leads to
a 1/2 approximation guarantee, but one can achieve the optimal approximation guarantee of 1− 1/e
by maximizing its multilinear extension F : [0, 1]V → R+ which is defined as

F (x) := Ez∼x[f(z(x))] :=
∑
S⊆V

f(S)
∏
i∈S

xi
∏
j /∈S

(1− xj), (2)

where for the random set z(x) each element e is sampled with probability xe. This problem is a
special case of (1) if we define F̃ (x, z) as f(z(x)) and p(x, z) as the distribution of the random set
z(x), i.e., each coordinate ze is generated according to a Bernoulli distribution with parameter xe.

When F is monotone and continuous DR-submodular, Hassani et al. [17] showed that the Stochastic
Gradient Ascent (SGA) method finds a solution to Problem (1) with a function value no less than
[(1/2)OPT− ε] after computing O(1/ε2) stochastic gradients. Here, and throughout the paper, OPT
denotes the optimal value of Problem (1). Hassani et al. [17] also provided examples for which
SGA cannot achieve better than 1/2 approximation ratio, in general. Later, Mokhtari et al. [22]
proposed Stochastic Continuous Greedy (SCG), a conditional gradient method that achieves the tight
[(1− 1/e)OPT− ε] solution by O(1/ε3) calls to the linear optimization oracle while using O(1/ε3)
stochastic gradients. While both SCG and SGA are first-order methods, meaning that they rely on
stochastic gradients, SCG provably achieves a better result at the price of being slower. Therefore, a
fundamental question is the following

“Can we achieve the best of both worlds? That is, can we find a [(1−1/e)OPT−ε]
solution after at most O(1/ε2) calls to the stochastic oracle?"

Another question that naturally arises is about a lower bound on the number of stochastic gradient
evaluations for finding a (1− 1/e) approximate solution:

“What is the lower bound on the number of calls to the first-order stochastic oracle
for achieving a [(1− 1/e)OPT− ε] solution?"

In this paper, we develop a tight lower bound on the number of calls to the stochastic oracle for
achieving a [(1−1/e)OPT−ε] solution, and propose an algorithm that achieves the sample complexity
of the lower bound. The detail of our contributions follows.

Our contributions. We develop Stochastic Continuous Greedy++ (SCG++), the first
method that achieves the tight [(1− 1/e)OPT− ε] solution for Problem (1) with O(1/ε) calls to the
linear optimization program while using O(1/ε2) stochastic gradients in total. Our technique relies
on a novel variance reduction method that estimates the difference of gradients in the non-oblivious
stochastic setting without introducing extra bias. This is crucial in our analysis, as all the existing
variance reduction methods fail to correct for this bias and can only operate in the oblivious/classic
stochastic setting. We further show that our result is optimal in all aspects. In particular, we provide
an information-theoretic lower bound to showcase the necessity of O(1/ε2) stochastic oracle queries
in order to achieve [(1− 1/e)OPT− ε]. Note that under standard assumptions, one cannot achieve
an approximation ratio better than (1 − 1/e) for submodular functions [13]. By using stochastic
continuous optimization as an interface, we also provide a (1− 1/e)OPT− ε tight approximation
guarantee for maximizing a monotone but stochastic submodular set function subject to a matroid
constraint with at most O(n/ε2) calls to the stochastic oracle where n is the size of the ground set.

2 Related Work

Submodular set functions capture the intuitive notion of diminishing returns and have become in-
creasingly important in various machine learning applications. Examples include data summarization
[20, 21], dictionary learning [9], and variational inference [11], to name a few. It is known that for a
monotone submodular function and subject to a cardinality constraint, greedy algorithm achieves the
tight (1− 1/e) approximation guarantee [25]. However, the vanilla greedy method does not provide

2

the tightest guarantees for many classes of feasibility constraints. To circumvent this issue, the con-
tinuous relaxation of submodular functions, through the multilinear extension, have been extensively
studied [31, 7, 8, 14, 16, 30]. In particular, it is known that the Continuous Greedy algorithm achieves
the tight (1 − 1/e) approximation guarantee for monotone submodular functions under a general
matroid constraint [7] with a prohibitive query complexity of O(n8). The fastest existing solution
for maximizing a submodular function subject to a matroid constraint interplays between discrete
and continuous domains to achieve a running time of O(n/ε4) for finding a (1 − 1/e)OPT − ε
approximate solution [4]. In contrast, we develop a pure continuous method that obtains the same
guarantee with a running time of O(n2/ε2).

Continuous DR-submodular functions, an important subclass of non-convex functions, generalize
the notion of diminishing returns to the continuous domains [5]. Such functions naturally arise in
machine learning applications such as Map inference for Determinantal Point Processes [19] and
revenue maximization [26]. It has been recently shown that monotone continuous DR-submodular
functions can be (approximately) maximized over convex bodies using first-order methods [5, 17, 22].
When exact gradient information is available, [5] showed that the continuous greedy algorithm
achieves [(1 − 1/e)OPT − ε] with O(1/ε) gradient evaluations. However, the problem becomes
considerably more challenging when we only have access to a stochastic first-order oracle. In
particular, Hassani et al. [17] showed that the stochastic gradient ascent achieves [1/2OPT− ε] by
using O(1/ε2) stochastic gradients. In contrast, [22, 23] proposed a stochastic variant of continuous
greedy that achieves [(1− 1/e)OPT− ε] by using O(1/ε3) stochastic gradients. This paper shows
how to achieve [(1− 1/e)OPT− ε] by O(1/ε2) stochastic gradient evaluations.

3 Preliminaries

Submodularity. A set function f : 2V → R+, defined on the ground set V , is submodular if
f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B), for all subsets A,B ⊆ V . Even though submodularity is
mostly considered on discrete domains, the notion can be naturally extended to arbitrary lattices [15].
To this aim, let us consider a subset of Rd+ of the form X =

∏d
i=1 Xi where each Xi is a compact

subset of R+. A function F : X → R+ is continuous submodular if ∀(x,y) ∈ X × X
F (x) + F (y) ≥ F (x ∨ y) + F (x ∧ y), (3)

where x ∨ y
.
= max(x,y) (component-wise) and x ∧ y

.
= min(x,y) (component-wise). A

submodular function is monotone if for any x,y ∈ X such that x ≤ y, we have F (x) ≤ F (y)
(here, by x ≤ y we mean that every element of x is less than that of y). When twice differentiable,
F is submodular if and only if all cross-second-derivatives are non-positive [3], i.e., we have
∀i 6= j,∀x ∈ X , ∂2F (x)/∂xi∂xj ≤ 0. This expression shows continuous submodular functions are
not convex nor concave in general, as concavity (convexity) implies that ∇2F � 0 (resp.52F � 0).
A proper subclass of submodular functions are called DR-submodular [29] if for all x,y ∈ X such
that x ≤ y and any standard basis vector ei ∈ Rn and a non-negative number z ∈ R+ such that
zei + x ∈ X and zei + y ∈ X , then, F (zei + x)− F (x) ≥ F (zei + y)− F (y). One can easily
verify that for a differentiable DR-submodular function the gradient is an antitone mapping, i.e., for
all x,y ∈ X such that x ≤ y we have∇F (x) ≥ ∇F (y) [5].

Variance Reduction. Beyond the vanilla stochastic gradient, variance reduced methods [28, 18, 10,
27, 2] have succeeded in reducing stochastic first-order oracle complexity in oblivious stochastic
optimization

max
x∈C

F (x) := max
x∈C

Ez∼p(z)F̃ (x; z), (4)

where each component function F̃ (·; z) is L-smooth. In contrast to (1), the underlying distribution
p of (4) is invariant to the variable x and is hence called oblivious. We will now explain a recent
variance reduction technique for solving (4) using stochastic gradient information. Consider the
following unbiased estimate of the gradient at the current iterate xt:

gt := gt−1 +∇F̃ (xt;M)−∇F̃ (xt−1;M), (5)

where ∇F̃ (y;M) := 1
|M|

∑
z∈M∇F̃ (y; z) for some y ∈ Rd, gt−1 is an unbiased gradient esti-

mator at xt−1, andM is a mini-batch of random samples drawn from p(z). [12] showed that, with
the gradient estimator (5), O(1/ε3) stochastic gradient evaluations are sufficient to find an ε-first-
order stationary point of Problem (4), improving upon the O(1/ε4) complexity of SGD. A crucial

3

property leading to the success of the variance reduction method given in (5) is that ∇F̃ (xt;M) and
∇F̃ (xt−1;M) use the same minibatch sampleM in order to exploit the L-smoothness of component
functions f(·; z). Such construction is only possible in the oblivious setting where p(z) is independent
of the choice of x, and would introduce bias in the more general non-oblivious case (1). To see this,
letM be the minibatch of random variable z sampled according to distribution p(z;xt). We have
E[∇F̃ (xt;M)] = ∇F (xt) but E[∇F̃ (xt−1;M)] 6= ∇F (xt−1) since the distribution p(z;xt−1) is
not the same as p(z;xt). The same argument renders all the existing variance reduction techniques
inapplicable for the non-oblivious setting of Problem (1).

4 Stochastic Continuous Greedy++

In this section, we present the Stochastic Continuous Greedy++ (SCG++) algorithm
which is the first method to obtain a [(1 − 1/e)OPT − ε] solution with O(1/ε2) stochastic oracle
complexity. The SCG++ algorithm essentially operates in a conditional gradient manner. To be
more precise, at each iteration t, given a gradient estimator gt, SCG++ solves the subproblem

vt = argmax
v∈C

〈v,gt〉 (6)

to obtain an element vt in C as ascent direction, which is then added to the iterate xt+1 with a scaling
factor 1/T , i.e., the new iterate xt+1 is computed by following the update

xt+1 = xt +
1

T
vt, (7)

where T is the total number of iterations of the algorithm. The iterates are assumed to be initialized
at the origin which may not belong to the feasible set C. Though each iterate xt may not necessarily
be in C, the feasibility of the final iterate xT is guaranteed by the convexity of C. Note that the iterate
sequence {xs}Ts=0 can be regarded as a path from the origin (as we manually force x0 = 0) to some
feasible point in C. The key idea in SCG++ is to exploit the high correlation between the consecutive
iterates originated from the O(1/T)-sized increments to maintain a highly accurate estimate gt,
which is the focus of the rest of this section. Note that by replacing the gradient approximation vector
gt in the update of SCG++ by the exact gradient of the objective function, we recover the update
rule of the continuous greedy method [7, 5].

We now proceed to describe our approach for evaluating the gradient approximation gt when we face
a non-oblivious problem as in (1). Given a sequence of iterates {xs}ts=0, the gradient of the objective
function F at the iterate xt can be written in a path-integral form as

∇F (xt) = ∇F (x0) +

t∑
s=1

{
∆s def

= ∇F (xs)−∇F (xs−1)
}
. (8)

By obtaining an unbiased estimate of ∆t = ∇F (xt)−∇F (xt−1) and reusing the previous unbiased
estimates for s < t, we obtain recursively an unbiased estimator of ∇F (xt) which has a reduced
variance. Estimating ∇F (xs) and ∇F (xs−1) separately as suggested in (5) would cause the bias
issue in the the non-oblivious case (see discussion at the end of section 3). Therefore, we propose an
approach for directly estimating the difference ∆t = ∇F (xt)−∇F (xt−1) in an unbiased manner.

We construct an unbiased estimator gt of the gradient vector∇F (xt) by adding an unbiased estimate
∆̃t of the gradient difference ∆t = ∇F (xt) − ∇F (xt−1) to gt−1, where gt−1 as an unbiased
estimate of∇F (xt−1). Note that ∆t = ∇F (xt)−∇F (xt−1) can be written as

∆t =

∫ 1

0

∇2F (x(a))(xt − xt−1)da =

[∫ 1

0

∇2F (x(a))da

]
(xt − xt−1), (9)

where x(a)
def
= a ·xt+(1−a) ·xt−1 for a ∈ [0, 1]. Therefore, if we sample the parameter a uniformly

at random from the interval [0, 1], it can be easily verified that ∆̃t := ∇2F (x(a))(xt − xt−1) is an
unbiased estimator of the gradient difference ∆t since

Ea[∇2F (x(a))(xt − xt−1)] = ∇F (xt)−∇F (xt−1). (10)

Therefore, all we need is an unbiased estimator of the Hessian-vector product ∇2F (y)(xt − xt−1)
for the non-oblivious objective F at an arbitrary y ∈ C. In the following lemma, we present an
unbiased estimator of∇2F (y) for any y ∈ C that can be evaluated efficiently.

4

Algorithm 1 Stochastic Continuous Greedy++ (SCG++)

Input: Minibatch size |M0| and |M|, and total number of rounds T
1: Initialize x0 = 0;
2: for t = 1 to T do
3: if t = 1 then
4: Sample a minibatchM0 of z according to p(z;x0) and compute g0 def

= ∇F̃ (x0;M0);
5: else
6: Sample a minibatch M of z according to p(z;x(a)) where a is a chosen uniformly at

random from [0, 1] and x(a) := a · xt + (1− a) · xt−1;
7: Compute the Hessian approximation ∇̃2

t corresponding toM according to (12);
8: Construct ∆̃t based on (13) (Option I) or (18) (Option II);
9: Update the stochastic gradient approximation gt := gt−1 + ∆̃t;

10: end if
11: Compute the ascent direction vt := argmaxv∈C{v>gt};
12: Update the variable xt+1 := xt + 1/T · vt;
13: end for

Lemma 1. For any y ∈ C, let z be the random variable with distribution p(z;y) and define

∇̃2F (y; z)
def
= F̃ (y; z)[∇ log p(z;y)][∇ log p(z;y)]> + [∇F̃ (x; z)][∇ log p(z;y)]>

+ [∇ log p(z;y)][∇F̃ (y; z)]> +∇2F̃ (y; z) + F̃ (y; z)∇2 log p(z;y).
(11)

Then, ∇̃2F (y; z) is an unbiased estimator of∇2F (y), i.e., Ez∼p(z;y)[∇̃2F (y; z)] = ∇2F (y).

The result in Lemma 1 shows how to evaluate an unbiased estimator of the Hessian ∇2F (y). If we
consider a as a random variable with a uniform distribution over the interval [0, 1], then we can define
the random variable z(a) with the probability distribution p(z(a);x(a)) where x(a) is defined as
x(a) := a · xt + (1− a) · xt−1. Considering these two random variables and the result in Lemma 1,
we can construct an unbiased estimator of the integral

∫ 1

0
∇2F (x(a))da in (9) by

∇̃2
t

def
=

1

|M|
∑

(a,z(a))∈M

∇̃2F (x(a); z(a)), (12)

whereM is a minibatch containing |M| samples of random tuple (a, z(a)). Once we have access to
∇̃2
t which is an unbiased estimator of

∫ 1

0
∇2F (x(a))da, we can approximate the gradient difference

∆t by its unbiased estimator which is defined as

∆̃t := ∇̃2
t (x

t − xt−1). (13)

Note that for the general objective F (·), the matrix-vector product ∇̃2
t (x

t − xt−1) requires O(d2)
computation and memory. To resolve this issue, in Section 4.1 we provide an implementation of
(13) using only first-order information which has a computational and memory complexity of O(d).
Using ∆̃t as an unbiased estimator of the gradient difference ∆t, we define our gradient estimator as

gt = ∇F̃ (x0;M0) +

t∑
i=1

∆̃t. (14)

This update can also be written in a recursive way as gt = gt−1 + ∆̃t, if we set g0 = ∇F̃ (x0;M0).
Note that the proposed approach for gradient approximation in (14) has a variance reduction mecha-
nism which leads to optimal computational complexity of SCG++ in terms of number of calls to
the stochastic oracle. We further highlight this point in Section 4.2.

4.1 Implementation of the Hessian-Vector Product

Now we focus on the computation of the gradient difference approximation ∆̃t in (13). We aim
to come up with a scheme that avoids explicitly computing the matrix estimator ∇̃2

t which has a

5

complexity of O(d2), and present an approach directly approximating ∆̃t that only uses the finite
differences of gradients with a complexity of O(d). Based on (12), computing ∇̃2

t (x
t − xt−1) is

equivalent to computing |M| instances of ∇̃2F (y; z)(xt−xt−1) for some y ∈ C and z ∈ Z . Denote
d = xt − xt−1 and use the expression in (11) to write

∇̃2F (y;z) · d = F̃ (y; z)[∇ log p(z;y)>d]∇ log p(z;y) + [∇ log p(z;y)>d]∇F̃ (x; z)

+ [∇F̃ (y; z)>d][∇ log p(z;y)] +∇2F̃ (y; z) · d + F̃ (y; z)∇2 log p(z;y) · d.
(15)

Note that the first three terms can be computed in time O(d) and only the last two terms on the
right hand side of (15) involve O(d2) operations, which can be approximated by the following finite
gradient difference scheme. For any twice differentiable function ψ : Rd → R and arbitrary d ∈ Rd
with bounded Euclidean norm ‖d‖ ≤ D, we compute, for some small δ > 0,

φ(δ;ψ)
def
=
∇ψ(y + δ · d)−∇ψ(y − δ · d)

2δ
' ∇2ψ(y) · d. (16)

As the Hessian of ψ(·) is L2-smooth, the above approximation can be bounded by ‖∇2ψ(y) · d−
φ(δ;ψ)‖ = ‖∇2ψ(y) ·d−∇2ψ(x̃) ·d‖ ≤ D2L2δ, where x̃ is obtained from the mean value theorem.
This quantity can be made arbitrary small by decreasing δ. In next section, we show that setting
δ = O(ε2) is sufficient, where ε is the target accuracy. By applying the technique of (16) to the two
functions ψ(y) = F̃ (y; z) and ψ(y) = log p(z;y), we can approximate (15) in time O(d):

ξδ(y; z)
def
= F̃ (y; z)[∇ log p(z;y)>d]∇ log p(z;y) + [∇ log p(z;y)>d]∇F̃ (x; z)

+ [∇F̃ (y; z)>d][∇ log p(z;y)] + φ(δ; F̃ (y; z)) + φ(δ; log p(z;y)).
(17)

We further can define a minibatch version of that which is used in Option II of Step 8 in Algorithm 1,

ξδ(x;M)
def
=

1

|M|
∑

(a,z(a))∈M

ξδ(x(a); z(a)). (18)

4.2 Convergence Analysis
In this section, we analyze the convergence of Algorithm 1 using (18) as the gradient-difference
estimation. The result for (13) can be obtained similarly. We note that (13) is a special case of (18)
by taking δ → 0 (e.g., by letting δ = O(ε2)). We first state the assumptions required for our analysis.
Assumption 4.1 (function value at the origin). The function value F at the origin is F (0) ≥ 0.

Assumption 4.2 (bounded stochastic function value). The stochastic function F̃ (x; z) has bounded
function value for all z ∈ Z and x ∈ C: maxz∈Z,x∈C F̃ (x; z) ≤ B.
Assumption 4.3 (monotonicity and DR-submodularity). F is monotone and DR-submodular.
Assumption 4.4 (compactness of feasible domain). The set C is compact with diameter D.

Assumption 4.5 (bounded gradient norm). For all x ∈ C, the stochastic gradient ∇F̃ has bounded
norm: ∀z ∈ Z, ‖∇F̃ (x; z)‖ ≤ GF̃ , and the norm of the gradient of log p has bounded fourth-order
moment, i.e., Ez∼p(x;z)‖∇ log p(z;x)‖4 ≤ G4

p. Further we define G = max{GF̃ , Gp}.
Assumption 4.6 (bounded second-order derivatives). ∀x ∈ C, the Hessian ∇2F̃ has bounded
spectral norm ∀z ∈ Z, ‖∇2F̃ (x; z)‖ ≤ LF̃ , and spectral norm of the log-probability Hessian has
bounded second moment: Ez∼p(z;x)‖∇2 log p(z;x)‖2 ≤ L2

p. Further we define L = max{LF̃ , Lp}.

Assumption 4.7 (continuity of the Hessian). The stochastic Hessian is L2,f -Lipschitz continuous,
i.e, for all x,y ∈ C and all z ∈ Z , i.e., ‖∇2F̃ (x; z) −∇2F̃ (y; z)‖ ≤ L2,F̃ ‖x − y‖. The Hessian
of the log probability log p(x; z) is L2,p-Lipschitz continuous: for all x,y ∈ C and all z ∈ Z , i.e.,
‖∇2 log p(x; z)−∇2 log p(y; z)‖ ≤ L2,p‖x− y‖. Further, define L2 = max{L2,F̃ , L2,p}.
Remark 1. Assumption 4.7 is only used to show the finite difference scheme (15) has bounded
variance, and the oracle complexity of our method does not depend on L2,F̃ and L2,p.

As we mentioned in the previous section, the update for the stochastic gradient vector gt in the update
of SCG++ is designed properly to reduce the noise of gradient approximation. In the following
lemma, we formally characterize the variance of gradient approximation for SCG++ . To this end,
we also need to properly choose the minibatch sizes |M0| and |M|.

6

Lemma 2. Consider SCG++ outlined in Algorithm 1 and assume that in Step 8 we follow (18) to
construct the gradient difference approximation ∆̃t (Option II). If Assumptions (4.2), (4.4), (4.5),
(4.6), and (4.7) hold and we set the minibatch sizes to |M0| = (G2/(L̄2D2ε2)) and |M| = 2/ε, and
the error of Hessian-vector product approximation δ is O(ε2) as in (31), then

E
[
‖gt −∇F (xt)‖2

]
≤ (1 + εt)L̄2D2ε2, ∀t ∈ {0, . . . , T − 1}, (19)

where L̄ is a constant defined by L̄2 def
= 4B2G4 + 16G4 + 4L2 + 4B2L2.

Lemma 2 shows that by |M| = O(ε−1) calls to the stochastic oracle at each iteration, the variance
of gradient approximation in SCG++ after t iterations is of order O((1 + εt)ε). In the following
theorem, we incorporate this result to characterize the convergence guarantee of SCG++ .
Theorem 1. Consider the SCG++ method outlined in Algorithm 1 and assume that in Step 8
we follow the update in (18) to construct the gradient difference approximation ∆̃t (Option II). If
Assumptions 4.1-4.7 hold, then the output of SCG++ denoted by xT satisfies

E
[
F (xT)

]
≥ (1− 1/e)F (x∗)− 2L̄D2ε,

by setting |M0| = G2

2L̄2D2ε2
, |M| = 1

2ε , T = 1
ε , and δ = O(ε2) as in (31). Here L̄ is a constant

defined by L̄2 def
= 4B2G4 + 16G4 + 4L2 + 4B2L2.

The result in Theorem 1 shows that after at most T = O(1/ε) iterations the objective function value
for the output of SCG++ is at least (1− 1/e)OPT−O(ε). As the number of calls to the stochastic
oracle per iteration is of O(1/ε), to reach a [(1 − 1/e)OPT − O(ε)] approximation guarantee the
SCG++ method has an overall stochastic first-order oracle complexity of O(1/ε2). We formally
characterize this result in the following corollary.
Corollary 1 (oracle complexities). To find a [(1− 1/e)OPT− ε] solution to Problem (1) using Algo-
rithm 1 with Option II, the overall stochastic first-order oracle complexity is (2G2D2 + 4L̄2D4)/ε2

and the overall linear optimization oracle complexity is 2L̄D2/ε.

5 Discrete Stochastic Submodular Maximization
In this section, we focus on extending our result in the previous section to the case where F is
the multilinear extension of a (stochastic) discrete submodular function f . This is also an instance
of the non-oblivious stochastic optimization in (1). Indeed, once such a result is achieved, with
proper rounding scheme such as randomized pipage rounding [6] or contention resolution method
[32], we can extend our results to the discrete setting. Let V denote a finite set of d elements, i.e.,
V = {1, . . . , d}. Consider a discrete submodular function f : 2V → R+, which is defined as an
expectation over a set of functions fγ : 2V → R+. Our goal is to maximize f subject to some
constraint I, where I contains feasible subsets of V . In other words, we aim to solve the following
discrete and stochastic submodular function maximization problem

max
S∈I

f(S) := max
S∈I

Eγ∼p(γ)[fγ(S)], (20)

where p(γ) is an arbitrary distribution. In particular, we assume the pairM = {V, I} forms a matroid
with rank r. The prototypical example is maximization under the cardinality constraint, i.e., for a
given integer r, find S ⊆ V , |S| ≤ r, which maximizes f . The challenge here is to find a solution
with near-optimal quality for the problem in (20) without computing the expectation in (20). That is,
we assume access to an oracle that, given a set S, outputs an independently chosen sample fγ(S)
where γ ∼ p(γ). The focus of this section is on extending our result into the discrete domain and
showing that SCG++ can be applied for maximizing a stochastic submodular set function f , namely
Problem (20), through the multilinear extension of the function f . Specifically, in lieu of solving (20)
we can solve its multilinear extension problem

max
x∈C

F (x), (21)

where F : [0, 1]V → R+ is the multilinear extension of f and is defined as

F (x) :=
∑
S⊆V

f(S)
∏
i∈S

xi
∏
j /∈S

(1− xj) =
∑
S⊆V

Eγ∼p(γ)[fγ(S)]
∏
i∈S

xi
∏
j /∈S

(1− xj), (22)

7

and the convex set C = conv{1I : I ∈ I} is the matroid polytope [6]. Note that here xi denotes the
i-th component of the vector x. In other words, F (x) is the expected value of f over sets wherein
each element i is included with probability xi independently. To solve (21) using SCG++ , we
need access to unbiased estimators of the gradient and the Hessian. We now construct the Hessian
approximation ∇̃2

k using the result in [6] which is stated in Lemma 4, in the supplementary material.

Let a be a uniform random variable between [0, 1] and let e = (e1, · · · , ed) be a random vector
in which ei’s are generated i.i.d. according to the uniform distribution over the unit interval [0, 1].
In each iteration, a minibatchM of |M| samples of {a, e, γ} (recall that γ is the random variable
that parameterizes the component function fγ), i.e. M = {ak, ek, γk}|M|k=1, is generated. Then for
all k ∈ [|M|], we let xak = akx

t + (1 − ak)xt−1 and construct the random set S(xak , ek) using
xak and ek in the following way: s ∈ S(xak , ek) if and only if [ek]s ≤ [xak]s for s ∈ [d]. Having
S(xak , ek) and γk, each entry of the Hessian estimator ∇̃2

t ∈ Rd×d is[
∇̃2
t

]
i,j

=
1

|M|
∑

k∈[|M|]

fγk(S(xak , ek) ∪ {i, j})− fγk(S(xak , ek) ∪ {i} \ {j})

−fγk(S(xak , ek) ∪ {j} \ {i}) + fγk(S(xak , ek) \ {i, j}),
(23)

where i 6= j, and if i = j then [∇̃2
t]i,j = 0. As linear optimization over the rank-r matriod polytope

always return vt with at most r nonzero entries, the complexity of computing (23) is O(|M|rd).

We use the above Hessian approximation to solve (21) as a special case of Problem (1) using SCG++ .
Theorem 2. ConsiderDγ := maxi∈V fγ(i) as the maximum marginal value of fγ , and defineDf :=√
Eγ [D2

γ]. By using the minibatch size |M| = O(
√
r3dDf/ε) and |M0| = O(

√
dDf/

√
rε2),

Algorithm 1 finds a [(1− 1/e)OPT − 6ε] approximation of the multilinear extension problem in (21)
at most (

√
r3dDf/ε) iterations. Moreover, the overall stochastic oracle cost is O(r3dD2

f/ε
2).

Since the cost of a single stochastic gradient computation is O(d), Theorem 2 shows that the overall
computation complexity of Algorithm 1 is O(d2/ε2). Note that, in multilinear extension case, the
smoothness Assumption 4.6 required for the results in Section 4 is absent, and that is why we need to
develop a more sophisticated gradient-difference estimator to achieve a similar theoretical guarantee
(more details is available in the appendix).
Remark 2 (optimality of oracle complexities). Note that to achieve the tight (1− 1/e− ε) approxi-
mation, the O(1/ε2) stochastic oracle complexity in Theorem 2 is optimal in terms of its dependency
on ε. A lower bound on the stochastic oracle complexity is given in the following theorem.

6 Lower Bound
In this section, we show that reaching a (1 − 1/e − ε)-optimal solution of Problem (1) requires
at least O(1/ε2) calls to an oracle which provides stochastic first-order information. To do
so, we first construct a stochastic submodular set function f , defined through the expectation
f(S) = Eγ∼p(γ)[fγ(S)], with the following property: Obtaining a (1 − 1/e − ε)-optimal solu-
tion for maximization of f under a cardinality constraint (an instance of Problem (20)) requires
at least O(1/ε2) samples of the form fγ(·) where γ is generated i.i.d from distribution p. Such
a lower bound on sample complexity can be directly extended to Problem (1) with an stochastic
first order oracle, by considering the multilinear extension of the function f , denoted by F , and
noting that (i) Problems (20) and (21) have the same optimal values, and (ii) one can construct an
unbiased estimator of the gradient of the multilinear extension using d independent samples from the
underlying stochastic set function f . Hence, any method for maximizing (21) is also an algorithm for
maximizing (20) with the same guarantees on the quality of the solution and with sample complexities
that differ at most by a factor d. Now we provide the formal statements regarding the above argument.
Theorem 3. There exists a distribution p(γ) and a monotone submodular function f : 2V →
R+, given as f(S) = Eγ∼p(γ)[fγ(S)], such that the following holds: In order to find a (1 −
1/e − ε)-optimal solution for (20) with k-cardinality constraint, any algorithm requires at least
min{exp(αk), β/ε2} stochastic samples fγ(·).
Corollary 2. There exists a DR-submodular function F : [0, 1]n → R, a convex constraint C, and a
stochastic first order oracle Ofirst, such that any algorithm for maximizing F subject to C requires
at least min{exp(αn), β/ε2} queries from Ofirst.

8

7 Conclusion

In this paper, we developed SCG++ , the first efficient variant of continuous greedy for maximizing
a stochastic continuous DR-submodular function subject to a convex constraint. We showed that
SCG++ achieves a tight [(1 − 1/e)OPT − ε] solution while using O(1/ε2) stochastic gradients.
We further derived a tight lower bound on the number of calls to the first-order stochastic oracle
for achieving a [(1− 1/e)OPT− ε] approximate solution. This result showed that SCG++ has the
optimal sample complexity for finding an optimal (1− 1/e) approximation guarantee for monotone
but stochastic DR-submodular functions.

Acknowledgment
The work of H. Hassani was partially supported by NSF CPS-1837253. Karbasi’s work is partially
supported by NSF (IIS-1845032), ONR (N00014- 19-1-2406) and AFOSR (FA9550-18-1-0160).
Shen’s work is supported by Zhejiang Provincial Natural Science Foundation of China under Grant
No. LZ18F020002, and National Natural Science Foundation of China (Grant No: 61672376,
61751209, 61472347).

References
[1] A. Agarwal, M. J. Wainwright, P. L. Bartlett, and P. K. Ravikumar. Information-theoretic lower

bounds on the oracle complexity of convex optimization. In Advances in Neural Information
Processing Systems, pages 1–9, 2009.

[2] Z. Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. In Advances in Neural
Information Processing Systems, pages 2680–2691, 2018.

[3] F. Bach. Submodular functions: from discrete to continuous domains. arXiv preprint
arXiv:1511.00394, 2015.

[4] A. Badanidiyuru and J. Vondrák. Fast algorithms for maximizing submodular functions. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1497–1514, 2014.

[5] A. A. Bian, B. Mirzasoleiman, J. Buhmann, and A. Krause. Guaranteed non-convex opti-
mization: Submodular maximization over continuous domains. In Artificial Intelligence and
Statistics, pages 111–120, 2017.

[6] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set function
subject to a matroid constraint. In IPCO, volume 7, pages 182–196. Springer, 2007.

[7] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular function
subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766, 2011.

[8] C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function maximization via the mul-
tilinear relaxation and contention resolution schemes. SIAM Journal on Computing, 43(6):
1831–1879, 2014.

[9] A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset selection,
sparse approximation and dictionary selection. ICML, 2011.

[10] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Advances in neural information
processing systems, pages 1646–1654, 2014.

[11] J. Djolonga and A. Krause. From map to marginals: Variational inference in bayesian submodu-
lar models. In NIPS, 2014.

[12] C. Fang, C. J. Li, Z. Lin, and T. Zhang. Spider: Near-optimal non-convex optimization via
stochastic path-integrated differential estimator. In Advances in Neural Information Processing
Systems, pages 687–697, 2018.

9

[13] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45(4):
634–652, 1998.

[14] M. Feldman, J. Naor, and R. Schwartz. A unified continuous greedy algorithm for submodular
maximization. In IEEE 52nd Annual Symposium on Foundations of Computer Science, pages
570–579, 2011.

[15] S. Fujishige. Submodular functions and optimization, volume 58. Annals of Discrete Mathe-
matics, North Holland, Amsterdam, 2nd edition, 2005. ISBN 0-444-52086-4.

[16] S. O. Gharan and J. Vondrák. Submodular maximization by simulated annealing. In Proceedings
of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1098–1116,
2011.

[17] H. Hassani, M. Soltanolkotabi, and A. Karbasi. Gradient methods for submodular maximization.
In Advances in Neural Information Processing Systems, pages 5841–5851, 2017.

[18] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pages 315–323, 2013.

[19] A. Kulesza and B. Taskar. Determinantal point processes for machine learning. arXiv preprint
arXiv:1207.6083, 2012.

[20] H. Lin and J. Bilmes. A class of submodular functions for document summarization. In
Proceedings of Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, 2011.

[21] H. Lin and J. Bilmes. Word alignment via submodular maximization over matroids. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies: short papers-Volume 2, pages 170–175. Association for
Computational Linguistics, 2011.

[22] A. Mokhtari, H. Hassani, and A. Karbasi. Conditional gradient method for stochastic submodular
maximization: Closing the gap. In International Conference on Artificial Intelligence and
Statistics, pages 1886–1895, 2018.

[23] A. Mokhtari, H. Hassani, and A. Karbasi. Stochastic conditional gradient methods: From
convex minimization to submodular maximization. arXiv preprint arXiv:1804.09554, 2018.

[24] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Mathematics of operations research, 3(3):177–188, 1978.

[25] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions–I. Mathematical Programming, 14(1):265–294, 1978.

[26] R. Niazadeh, T. Roughgarden, and J. R. Wang. Optimal algorithms for continuous non-monotone
submodular and dr-submodular maximization. 2018.

[27] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. Stochastic variance reduction for
nonconvex optimization. In International conference on machine learning, pages 314–323,
2016.

[28] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[29] T. Soma and Y. Yoshida. A generalization of submodular cover via the diminishing return
property on the integer lattice. In NIPS, 2015.

[30] M. Sviridenko, J. Vondrák, and J. Ward. Optimal approximation for submodular and super-
modular optimization with bounded curvature. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1134–1148, 2015.

[31] J. Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages
67–74. ACM, 2008.

10

[32] J. Vondrák, C. Chekuri, and R. Zenklusen. Submodular function maximization via the multilin-
ear relaxation and contention resolution schemes. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 783–792. ACM, 2011.

11

