
Thank you to all reviewers! The response to reviewer 2 may be most important to how the paper is interpreted:1

Reviewer 2: while the principle is certainly common in the literature, this is the first paper to demonstrate frequentist2

regret guarantees for perturbation induced exploration. Proof techniques do not appear to be terribly different than the3

prior arm, with the key differences appearing in Lemmas 4-5.. . . . . . However, I do not know if the fact that randomized4

value functions do in fact ensure frequentist regret guarantees is terribly surprising.5

Managing to give such a clean, seemingly straightforward, frequentist analysis of RLSVI seems to be a major6

contribution over prior art. The journal paper Osband et al. [2017] develops a theory of recursive stochastic-dominance7

relations to study the algorithm, hence requiring very different techniques than the rest of the RL literature. The paper on8

frequentist analysis of posterior sampling by Agrawal and Jia [2017] builds on those stochastic-dominance techniques,9

is immensely technical, requires modifying Thompson sampling to get the proof to work, and contains a critical flaw in10

the proof currently posted online. I’ve worked very hard to uncover a new proof that hopefully makes it easy for future11

researchers to transfer results known for optimistic algorithms over to randomized value function approaches.12

On whether the results are surprising: Strong theory sometimes takes years to develop and in the meantime people13

can start to get used to the main the ideas. This paper tries to provide some backing for the claim that “Training a14

value function estimation scheme on noise-perturbed data generates a highly sophisticated form of exploration that is15

fundamentally quite different from what is generated by employing stochastic policies.” It has been just three years16

since the first paper making such a claim was published [Osband et al., 2016]. To my understanding, this claim was17

often met with skepticism, especially because it lacked a frequentist regret bound to back it up. Such a bound has18

been elusive since then. Things can seem quite clear in hindsight, but I think the claims in this paper would have been19

shocking 7 years ago (before any analysis of Thompson sampling in bandits even exited.) That’s noteworthy, since20

we’re studying extremely old questions in sequential decision making.21

Responses to Reviewer 1: [Paraphrasing] (1) Would a similar analysis yield a high-probability regret bound? . . . (2)22

While the proof for Lemma 4 & 5 is described very well in the main text, it would be helpful to have a short explanation23

how this is used to achieve Lemma 6.. . . (3) How does this setting for β affect the empirical performance of the algorithm.24

. . . (4) The authors chose the setting with time-dependent dynamics which is a little less common than the default setting25

where dynamics and rewards are identically distributed across time steps within the episode. . .26

(1) Thanks so much! I now believe the high probability bounds work out. Effectively, the techniques in this paper bound,27

with high probability, the conditional expected regret E[V (M,π∗)− V (M,πk) | Hk] ≤ Bk by some simple terms Bk28

whose sum we know how to control. Rather than take an expectation, the Azuma-Hoeffdin’g inequality should bound29

the sum of martingale differences:
∑K

k=1

((
V (M,π∗)− V (M,πk)

)
− E[V (M,π∗)− V (M,πk) | Hk−1]

)
The main30

challenge seems to be that Bk involves terms that are not uniformly bounded, since we add Gaussian noise. The31

standard ways in which researchers bounds things like B1 + · · ·+BK could get unusually messy as a result.32

(2-4) In the revision, I’ll explain more about Lemma 6 and clearly highlight open questions regrading points (3) and (4).33

I think setting β too large is similar to setting overly large optimism bonuses for optimistic algorithms. For practical34

applications, I suspect the noise variances one adds should also be adaptive to the data. We’re essentially (recursively)35

applying linear-regression to minimize the Bellman residuals. One can write down variants of RLSVI that calibrate the36

noise they add to the variance of observed residuals, but I’d like to do careful empirical evaluation. I’ll try to work37

through the time-homogeneous analysis. The challenge is that mis-estimation of a single state could lead to error in38

every Bellman update. One needs to be careful to avoid introducing even more factors of H .39

Responses to Reviewer 3: In response to the comments on bootstrapping and the correct form of prior randomness .40

Thanks, this really gets to the crux of what makes boostrap-like methods for exploration so different from the treatment41

statistics books. You’re right that in initial periods, RLSVI is really no better than uniform exploration, though perhaps42

the same comment applies to optimistic algorithms. But my understanding is that, no matter what, any algorithm will43

visit certain states/actions many times. These become well understood and the variance of the injected noise begins to44

vanish at those states/actions. Some other parts of the state/action space are still poorly understood. Because we add45

lots of noise to the estimated rewards at those states, there is a significant chance they appear to be even better than they46

really are in any given episode, in which case the algorithm will deftly navigate through the well understood part of47

the state space trying to reach them. Once the algorithm starts actively trying to reach poorly understood states, it’s48

performing the kind of multi-period exploration that’s essential for efficient RL.49

To inject prior randomness, there is a natural counterpart (to sampling Q) for linear models, where you regularize the50

parameter vector to a prior sample. This proecdure actually corresponds to Algorithm 1 if specialize it to the tabular51

case (think θ = Q). Things are more subtle with neural networks but [Osband et al., 2018] offers one approach. You’re52

right, that algorithm otherwise applies directly to settings with function approximation.53


