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Abstract

Time series with non-uniform intervals occur in many applications, and are dif-
ficult to model using standard recurrent neural networks (RNNs). We generalize
RNNs to have continuous-time hidden dynamics defined by ordinary differential
equations (ODEs), a model we call ODE-RNNs. Furthermore, we use ODE-RNNs
to replace the recognition network of the recently-proposed Latent ODE model.
Both ODE-RNNs and Latent ODEs can naturally handle arbitrary time gaps be-
tween observations, and can explicitly model the probability of observation times
using Poisson processes. We show experimentally that these ODE-based models
outperform their RNN-based counterparts on irregularly-sampled data.

1 Introduction
Standard RNN

RNN-Decay

Neural ODE

ODE-RNN

Time

Figure 1: Hidden state trajectories. Ver-
tical lines show observation times. Lines
show different dimensions of the hidden
state. Standard RNNs have constant or
undefined hidden states between observa-
tions. The RNN-Decay model has states
which exponentially decay towards zero,
and are updated at observations. States
of Neural ODE follow a complex trajec-
tory but are determined by the initial state.
The ODE-RNN model has states which
obey an ODE between observations, and
are also updated at observations.

Recurrent neural networks (RNNs) are the dominant
model class for high-dimensional, regularly-sampled time
series data, such as text or speech. However, they are an
awkward fit for irregularly-sampled time series data, com-
mon in medical or business settings. A standard trick for
applying RNNs to irregular time series is to divide the
timeline into equally-sized intervals, and impute or ag-
gregate observations using averages. Such preprocessing
destroys information, particularly about the timing of
measurements, which can be informative about latent
variables [Lipton et al., 2016, Che et al., 2018].

An approach which better matches reality is to construct
a continuous-time model with a latent state defined at all
times. Recently, steps have been taken in this direction,
defining RNNs with continuous dynamics given by a sim-
ple exponential decay between observations [Che et al.,
2018, Cao et al., 2018, Rajkomar et al., 2018, Mei and
Eisner, 2017].

We generalize state transitions in RNNs to continuous-
time dynamics specified by a neural network, as in Neural
ODEs [Chen et al., 2018]. We call this model the ODE-
RNN, and use it to contruct two distinct continuous-time
models. First, we use it as a standalone autoregressive
model. Second, we refine the Latent ODE model of Chen
et al. [2018] by using the ODE-RNN as a recognition
network. Latent ODEs define a generative process over
time series based on the deterministic evolution of an
initial latent state, and can be trained as a variational
autoencoder [Kingma and Welling, 2013]. Both models
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naturally handle time gaps between observations, and remove the need to group observations into
equally-timed bins. We compare ODE models to several RNN variants and find that ODE-RNNs can
perform better when the data is sparse. Since the absence of observations itself can be informative,
we further augment Latent ODEs to jointly model times of observations using a Poisson process.

2 Background

Recurrent neural networks A simple way to handle irregularly-timed samples is to include the
time gap between observations ∆t = ti − ti−1 into the update function of the RNN:

hi = RNNCell(hi−1,∆t, xi) (1)
However, this approach raises the question of how to define the hidden state h between observations.
A simple alternative introduces an exponential decay of the hidden state towards zero when no
observations are made [Che et al., 2018, Cao et al., 2018, Rajkomar et al., 2018, Mozer et al., 2017]:

hi = RNNCell(hi−1 · exp{−τ∆t}, xi) (2)
where τ is a decay rate parameter. However, Mozer et al. [2017] found that empirically, exponential-
decay dynamics did not improve predictive performance over standard RNN approaches.

Neural Ordinary Differential Equations Neural ODEs [Chen et al., 2018] are a family of
continuous-time models which define a hidden state h(t) as a solution to ODE initial-value problem:

dh(t)

dt
= fθ(h(t), t) where h(t0) = h0 (3)

in which the function fθ specifies the dynamics of the hidden state, using a neural network with
parameters θ. The hidden state h(t) is defined at all times, and can be evaluated at any desired times
using a numerical ODE solver:

h0, . . . , hN = ODESolve(fθ, h0, (t0, . . . , tN )) (4)
Chen et al. [2018] used the adjoint sensitivity method [Pontryagin et al., 1962] to compute memory-
efficient gradients w.r.t. θ for training ODE-based deep learning models using black-box ODE solvers.
They also conducted toy experiments in a time-series model in which the latent state follows a Neural
ODE. Chen et al. [2018] used time-invariant dynamics in their time-series model: dh(t)/dt = fθ(h(t)) ,
and we follow the same approach, but adding time-dependence would be straightforward if necessary.

3 Method

In this section, we use neural ODEs to define two distinct families of continuous-time models: the
autoregressive ODE-RNN, and the variational-autoencoder-based Latent ODE.

3.1 Constructing an ODE-RNN Hybrid

Following Mozer et al. [2017], we note that an RNN with exponentially-decayed hidden state
implicitly obeys the following ODE dh(t)

dt = −τh with h(t0) = h0, where τ is a parameter of the
model. The solution to this ODE is the pre-update term h0 · exp{−τ∆t} in (2). This differential
equation is time-invariant, and assumes that the stationary point (i.e. zero-valued state) is special. We
can generalize this approach and model the hidden state using a Neural ODE. The resulting algorithm
is given in Algorithm 1. We define the state between observations to be the solution to an ODE:
h′i = ODESolve(fθ, hi−1, (ti−1, ti)) and then at each observation, update the hidden state using a
standard RNN update hi = RNNCell(h′i, xi). Our model does not explicitly depend on t or ∆t when
updating the hidden state, but does depend on time implicitly through the resulting dynamical system.
Compared to RNNs with exponential decay, our approach allows a more flexible parameterization of
the dynamics. A comparison between the state dynamics of these models is given in table 2.

Autoregressive Modeling with the ODE-RNN The ODE-RNN can straightforwardly be used
to probabilistically model sequences. Consider a series of observations {xi}Ni=0 at times {ti}Ni=0.
Autoregressive models make a one-step-ahead prediction conditioned on the history of observations,
i.e. they factor the joint density p(x) =

∏
i pθ(xi|xi−1, . . . , x0). As in standard RNNs, we can use

an ODE-RNN to specify the conditional distributions pθ(xi|xi−1...x0) (Algorithm 1).

2



Algorithm 1 The ODE-RNN. The only difference, highlighted in blue, from standard RNNs is that
the pre-activations h′ evolve according to an ODE between observations, instead of being fixed.

Input: Data points and their timestamps {(xi, ti)}i=1..N

h0 = 0
for i in 1, 2, . . . , N do

h′i = ODESolve(fθ, hi−1, (ti−1, ti)) . Solve ODE to get state at ti
hi = RNNCell(h′i, xi) . Update hidden state given current observation xi

end for
oi = OutputNN(hi) for all i = 1..N
Return: {oi}i=1..N ;hN

3.2 Latent ODEs: a Latent-variable Construction

Autoregressive models such as RNNs and the ODE-RNN presented above are easy to train and allow
fast online predictions. However, autoregressive models can be hard to interpret, since their update
function combines both their model of system dynamics, and of conditioning on new observations.
Furthermore, their hidden state does not explicitly encode uncertainty about the state of the true
system. In terms of predictive accuracy, autoregressive models are often sufficient for densely sampled
data, but perform worse when observations are sparse.

An alternative to autoregressive models are latent-variable models. For example, Chen et al. [2018]
proposed a latent-variable time series model, where the generative model is defined by ODE whose
initial latent state z0 determines the entire trajectory:

z0 ∼ p(z0) (5)
z0, z1, . . . , zN = ODESolve(fθ, z0, (t0, t1, . . . , tN )) (6)

each xi
indep.∼ p(xi|zi) i = 0, 1, . . . , N (7)

Encoder-decoder models Encoder Decoder

Latent ODE (ODE enc.) ODE-RNN ODE
Latent ODE (RNN enc.) RNN ODE
RNN-VAE RNN RNN

Table 1: Different encoder-decoder architectures.

We follow Chen et al. [2018] in using a varia-
tional autoencoder framework for both training
and prediction. This requires estimating the ap-
proximate posterior q(z0|{xi, ti}Ni=0). Inference
and prediction in this model is effectively an
encoder-decoder or sequence-to-sequence archi-
tecture, in which a variable-length sequence is
encoded into a fixed-dimensional embedding, which is then decoded into another variable-length
sequence, as in Sutskever et al. [2014].

Chen et al. [2018] used an RNN as a recognition network to compute this approximate posterior.
We conjecture that using an ODE-RNN as defined above for the recognition network would be a
more effective parameterization when the datapoints are irregularly sampled. Thus, we propose using
an ODE-RNN as the encoder for a latent ODE model, resulting in a fully ODE-based sequence-to-
sequence model. In our approach, the mean and standard deviation of the approximate posterior
q(z0|{xi, ti}Ni=0) are a function of the final hidden state of an ODE-RNN:

q(z0|{xi, ti}Ni=0) = N (µz0 , σz0) where µz0 , σz0 = g(ODE-RNNφ({xi, ti}Ni=0)) (8)

Where g is a neural network translating the final hidden state of the ODE-RNN encoder into the mean
and variance of z0. To get the approximate posterior at time point t0, we run the ODE-RNN encoder
backwards-in-time from tN to t0. We jointly train both the encoder and decoder by maximizing the

Table 2: Definition of hidden state h(t) between
observation times ti−1 and ti in autoregressive
models. In standard RNNs, the hidden state does
not change between updates. In ODE-RNNs,
the hidden state is defined by an ODE, and is
additionally updated by another network at each
observation.

Model State h(ti) between observations

Standard RNN hti−1

RNN-Decay hti−1e
−τ∆t

GRU-D hti−1
e−τ∆t

ODE-RNN ODESolve(fθ, hi−1, (ti−1, t))
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Figure 2: The Latent ODE model with an ODE-RNN encoder. To make predictions in this model, the
ODE-RNN encoder is run backwards in time to produce an approximate posterior over the initial
state: q(z0|{xi, ti}Ni=0). Given a sample of z0, we can find the latent state at any point of interest by
solving an ODE initial-value problem. Figure adapted from Chen et al. [2018].

evidence lower bound (ELBO):

ELBO(θ, φ) = Ez0∼qφ(z0|{xi,ti}Ni=0) [log pθ(x0, . . . , xN ))]− KL
[
qφ(z0|{xi, ti}Ni=0)||p(z0)

]
(9)

This latent variable framework comes with several benefits: First, it explicitly decouples the dynamics
of the system (ODE), the likelihood of observations, and the recognition model, allowing each to be
examined or specified on its own. Second, the posterior distribution over latent states provides an
explicit measure of uncertainty, which is not available in standard RNNs and ODE-RNNs. Finally, it
becomes easier to answer non-standard queries, such as making predictions backwards in time, or
conditioning on a subset of observations.

3.3 Poisson process likelihoods
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Figure 3: Visualization of
the inferred Poisson rate λ(t)
(green line) for two selected
features of different patients
from the Physionet dataset.
Vertical lines mark observa-
tion times.

The fact that a measurement was made at a particular time is often
informative about the state of the system [Che et al., 2018]. In the
ODE framework, we can use the continuous latent state to param-
eterize the intensity of events using aninhomogeneous Poisson point
process [Palm, 1943] where the event rate λ(t) changes over time.
Poisson point processes have the following log-likelihood:

log p(t1, . . . , tN |tstart, tend, λ(·)) =

N∑
i=1

log λ(ti)−
∫ tend

tstart

λ(t)dt

Where tstart and tend are the times at which observations started and
stopped being recorded.

We augment the Latent ODE framework with a Poisson process over
the observation times, where we parameterize λ(t) as a function
of z(t). This means that instead of specifying and maximizing
the conditional marginal likelihood p(x1, . . . , xN |t1, . . . , tN , θ), we
can instead specify and maximizing the joint marginal likelihood
p(x1, . . . , xN , t1, . . . , tN , |θ). To compute the joint likelihood, we
can evaluate the Poisson intensity λ(t), precisely estimate its integral,
and the compute latent states at all required time points, using a
single call to an ODE solver.

Mei and Eisner [2017] used a similar approach, but relied on a fixed time discretization to estimate
the Poisson intensity. Chen et al. [2018] showed a toy example of using Latent ODEs with a Poisson
process likelihood to fit latent dynamics from observation times alone. In section 4.4, we incorporate
a Poisson process likelihood into a latent ODE to model observation rates in medical data.

3.4 Batching and computational complexity

One computational difficulty that arises from irregularly-sampled data is that observation times can
be different for each time series in a minibatch. In order to solve all ODEs in a minibatch in sync, we
must we must output the solution of the combined ODE at the union of all time points in the batch.

Taking the union of time points does not substantially hurt the runtime of the ODE solver, as the
adaptive time stepping in ODE solvers is not sensitive to the number of time points (t1...tN ) at which
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Figure 4: (a) A Latent ODE model conditioned on a small subset of points. This model, trained
on exactly 30 observations per time series, still correctly extrapolates when more observations are
provided. (b) Trajectories sampled from the prior p(z0) ∼ Normal

(
z0; 0, I

)
of the trained model,

then decoded into observation space.

the solver outputs the state. Instead, it depends on the length on the time interval [t1, tN ] and the
complexity of the dynamics. (see suppl. figure 3). Thus, ODE-RNNs and Latent ODEs have a similar
asymptotic time complexity to standard RNN models. However, as the ODE must be continuously
solved even when no observations occur, the compute cost does not scale with the sparsity of the data,
as it does in decay-RNNs. In our experiments, we found that the ODE-RNN takes 60% more time
than the standard GRU to evaluate, and the Latent ODE required roughly twice the amount of time to
evaluate than the ODE-RNN.

3.5 When should you use an ODE-based model over a standard RNN?

Standard RNNs are ignore the time gaps between points. As such, standard RNNs work well on
regularly spaced data, with few missing values, or when the time intervals between points are short.

Models with continuous-time latent state, such as the ODE-RNN or RNN-Decay, can be evaluated
at any desired time point, and therefore are suitable for interpolation tasks. In these models, the
future hidden states depend on the time since the last observation, also making them better suited
for sparse and/or irregular data than standard RNNs. RNN-Decay enforces that the hidden state
converges monontically to a fixed point over time. In ODE-RNNs the form of the dynamics between
the observations is learned rather than pre-defined. Thus, ODE-RNNs can be used on sparse and/or
irregular data without making strong assumptions about the dynamics of the time series.

Latent variable models versus autoregressive models We refer to models which iteratively com-
pute the joint distribution p(x) =

∏
i pθ(xi|xi−1, . . . , x0) as autoregressive models (e.g. RNNs and

ODE-RNNs). We call models of the form p(x) =
∫ ∏

i p(xi|z0)p(z0)dz0 latent-variable models (e.g.
Latent ODEs and RNN-VAEs).

In autoregressive models, both the dynamics and the conditioning on data are encoded implicitly
through the hidden state updates, which makes them hard to interpret. In contrast, encoder-decoder
models (Latent ODE and RNN-VAE) represent state explicitly through a vector zt, and represent
dynamics explicitly through a generative model. Latent states in these models can be used to compare
different time series, for e.g. clustering or classification tasks, and their dynamics functions can be
examined to identify the types of dynamics present in the dataset.

4 Experiments

4.1 Toy dataset

We tested our model on a toy dataset of 1,000 periodic trajectories with variable frequency and the
same amplitude. We sampled the initial point from a standard Gaussian, and added Gaussian noise
to the observations. Each trajectory has 100 irregularly-sampled time points. During training, we
subsample a fixed number of points at random, and attempt to reconstruct the full set of 100 points.

Conditioning on sparse data Latent ODEs can often reconstruct trajectories reasonably well given
a small subset of points, and provide an estimate of uncertainty over both the latent trajectories and
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predicted observations. To demonstrate this, we trained a Latent ODE model to reconstruct the full
trajectory (100 points) from a subset of 30 points. At test time, we conditioned this model on a subset
of 10, 30 or 50 points. Conditioning on more points results in a better fit as well as smaller variance
across the generated trajectories (fig. 4). Figure 4(b) demonstrates that the trajectories sampled from
the prior of the trained model are also periodic.

Extrapolation Next, we show that a time-invariant ODE can recover stationary periodic dynamics
from data automatically. Figure 5 shows a Latent ODE trained to condition on 20 points in the
[0; 2.5] interval (red area) and predict points on [2.5; 5] interval (blue area). A Latent ODE with
an ODE-RNN encoder was able to extrapolate the time series far beyond the training interval and
maintain periodic dynamics. In contrast, a Latent ODE trained with RNN encoder as in Chen et al.
[2018] did not extrapolate the periodic dynamics well.

(a) Latent ODE with RNN encoder
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Time

0

2

x

Time

(b) Latent ODE with ODE-RNN encoder

0 5 10 15 20 25
Time

0.0
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5.0
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Figure 5: (a) Approximate posterior samples from a Latent ODE trained with an RNN recognition
network, as in Chen et al. [2018]. (b) Approximate posterior samples from a Latent ODE trained with
an ODE-RNN recognition network (ours). At training time, the Latent ODE conditions on points in
red area, and reconstruct points in blue area. At test time, we condition the model on 20 points in red
area, and solve the generative ODE on a larger time interval.

4.2 Quantitative Evaluation

We evaluate the models quantitavely on two tasks: interpolation and extrapolation. On each dataset,
we used 80% for training and 20% for test. See the supplement a detailed description.

Baselines In the class of autoregressive models, we compare ODE-RNNs to standard RNNs. We
compared the following autoregressive models: (1) ODE-RNN (proposed) (2) A classic RNN where
∆t is concatenated to the input (RNN-∆t) (3) An RNN with exponential decay on the hidden
states h · e−τ∆t (RNN-Decay) (4) An RNN with missing values imputed by a weighted average of
previous value and empirical mean (RNN-Impute), and (5) GRU-D [Che et al., 2018] which combines
exponential decay and the above imputation strategy. Among encoder-decoder models, we compare
the Latent ODE to a variational autoencoder in which both the encoder and decoder are recurrent
neural nets (RNN-VAE). The ODE-RNN can use any hidden state update formula for the RNNCell
function in Algorithm 1. Throughout our experiments, we use the Gated Recurrent Unit (GRU) [Cho
et al., 2014]. See the supplement for the architecture details.

Interpolation The standard RNN and the ODE-RNN are straightforward to apply to the interpola-
tion task. To perform interpolation with a Latent ODE, we encode the time series backwards in time,
compute the approximate posterior q(z0|{xi, ti}Ni=0) at the first time point t0, sample the initial state
of ODE z0, and generate mean observations at each observation time.

Extrapolation In the extrapolation setting, we use the standard RNN or ODE-RNN trained on the
interpolation task, and then extrapolate the sequence by re-feeding previous predictions. To encourage
extrapolation, we used scheduled sampling [Bengio et al., 2015], feeding previous predictions instead
of observed data with probability 0.5 during training. One might expect that directly optimizing for
extrapolation would perform best at extrapolation. Such a model would resemble an encoder-decoder
model, which we consider separately below (the RNN-VAE). For extrapolation in encoder-decoder
models, including the Latent ODE, we split the timeline in half. We encode the observations in the
first half forward in time and reconstruct the second half.
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4.3 MuJoCo Physics Simulation

Next, we demonstrated that ODE-based models can learn an approximation to simple Newtonian
physics. To show this, we created a physical simulation using the “Hopper” model from the Deepmind
Control Suite [Tassa et al., 2018]. We randomly sampled the initial position of the hopper and initial
velocities such that hopper rotates in the air and falls on the ground (figure 6). These trajectories are
deterministic functions of their initial states, which matches the assumptions made by the Latent ODE.
The dataset is 14-dimensional, and we model it with a 15-dimensional latent state. We generated
10,000 sequences of 100 regularly-sampled time points each.

We perform both interpolation and extrapolation tasks on the MuJoCo dataset. During training, we
subsampled a small percentage of time points to simulate sparse observation times. For evaluation,
we measured the mean squared error (MSE) on the full time series.

Table 3: Test Mean Squared Error (MSE) (×10−2) on the MuJoCo dataset.

Interpolation (% Observed Pts.) Extrapolation (% Observed Pts.)
Model 10% 20% 30% 50% 10% 20% 30% 50%

A
ut

or
eg RNN ∆t 2.454 1.714 1.250 0.785 7.259 6.792 6.594 30.571

RNN GRU-D 1.968 1.421 1.134 0.748 38.130 20.041 13.049 5.833
ODE-RNN (Ours) 1.647 1.209 0.986 0.665 13.508 31.950 15.465 26.463

E
nc

-D
ec RNN-VAE 6.514 6.408 6.305 6.100 2.378 2.135 2.021 1.782

Latent ODE (RNN enc.) 2.477 0.578 2.768 0.447 1.663 1.653 1.485 1.377
Latent ODE (ODE enc, ours) 0.360 0.295 0.300 0.285 1.441 1.400 1.175 1.258

Table 3 shows mean squared error for models trained on different percentages of observed points.
Latent ODEs outperformed standard RNN-VAEs on both interpolation and extrapolation. Our ODE-
RNN model also outperforms standard RNNs on the interpolation task. The gap in performance
between RNN and ODE-RNN increases with sparser data. Notably, the Latent ODE (an encoder-
decoder model) shows better performance than the ODE-RNN (an autoregressive model).

All autoregressive models performed poorly at extrapolation. This is expected, as they were only
trained for one-step-ahead prediction, although standard RNNs performed better than ODE-RNNs.
Latent ODEs outperformed RNN-VAEs on the extrapolation task.

Interpretability of the latent state Figure 6 shows how the norm of the latent state time-derivative
fθ(z) changes with time for two reconstructed MuJoCo trajectories. When the hopper hits the ground,
there is a spike in the norm of the ODE function. In contrast, when the hopper is lying on the ground,
the norm of the dynamics is small.

Figure 7 shows the entropy of the approximate posterior q(z0|{xi, ti}Ni=0) of a trained model con-
ditioned on different numbers of observations. The average entropy (uncertainty) monotonically
decreases as more points are observed. Figure 8 shows the latent state z0 projected to 2D using
UMAP [McInnes et al., 2018]. The latent state corresponds closely to the physical parameters of the
true simulation that most strongly determine the future trajectory of the hopper: distance from the
ground, initial velocity on z-axis, and relative position of the leg of the hopper.

Truth

Latent
ODE

||f(z)||
(ODE)

||∆h||
(RNN)

Time Time

Figure 6: Top row: True trajectories from MuJoCo dataset. Second row: Trajectories reconstructed
by a latent ODE model. Third row: Norm of the dynamics function fθ in the latent space of the latent
ODE model. Fourth row: Norm of the hidden state of a RNN trained on the same dataset.
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Figure 8: Nonlinear projection of latent space of z0 from a
Latent ODE model trained on the MuJoCo dataset). Each point
is the encoding of one time series. The points are colored
by the (a) initial height (distance from the ground) (b) initial
velocity in z-axis (c) relative initial position of the hip of the
hopper. The latent state corresponds closely to the physical
parameters of the true simulation.

Table 4: Test MSE (mean ± std) on
PhysioNet. Autoregressive models.
Model Interp (×10−3)

RNN ∆t 3.520 ± 0.276
RNN-Impute 3.243 ± 0.275
RNN-Decay 3.215 ± 0.276
RNN GRU-D 3.384 ± 0.274

ODE-RNN (Ours) 2.361 ± 0.086

Table 5: Test MSE (mean ± std) on PhysioNet.
Encoder-decoder models.

Model Interp (×10−3) Extrap (×10−3)

RNN-VAE 5.930 ± 0.249 3.055 ± 0.145
Latent ODE (RNN enc.) 3.907 ± 0.252 3.162 ± 0.052

Latent ODE (ODE enc) 2.118 ± 0.271 2.231 ± 0.029
Latent ODE + Poisson 2.789 ± 0.771 2.208 ± 0.050

4.4 Physionet

We evaluated our model on the PhysioNet Challenge 2012 dataset [Silva et al., 2012], which contains
8000 time series, each containing measurements from the first 48 hours of a different patient’s
admission to ICU. Measurements were made at irregular times, and of varying sparse subsets of the
37 possible features.

Most existing approaches to modeling this data use a coarse discretization of the aggregated mea-
surements per hour [Che et al., 2018], which forces the model to train on only one-twentieth of
measurements. In contrast, our approach, in principle, does not require any discretization or aggrega-
tion of measurements. To speed up training, we rounded the observation times to the nearest minute,
reducing the number of measurements only 2-fold. Hence, there are still 2880 (60*48) possible
measurement times per time series under our model’s preprocessing, while the previous standard
was to used only 48 possible measurement times. We used 20 latent dimensions in the latent ODE
generative model. See supplement for more details on hyperparameters. Tables 4 and 5 report mean
squared error averaged over runs with different random seeds, and their standard deviations. We run
one-sided t-test to establish a statistical significance. Best models are marked in bold. ODE-based
models have smaller mean squared error than RNN baselines on this dataset.

Finally, we constructed binary classifiers based on each model type to predict in-hospital mortality.
We passed the hidden state at the last measured time point into a two-layer binary classifier. Due
to class imbalance (13.75% samples with positive label), we report test area under curve (AUC)
instead of accuracy. Table 6 shows that the ODE-RNN, Latent ODE and GRU-D achieved the similar
classification AUC. A possible explanation is that modelling dynamics between time points does not
make a difference for binary classification of the full time series.

We also included a Poisson Process likelihood on observation times, jointly trained with the Latent
ODE model. Figure 3 shows the inferred measurement rate on a patient from the dataset. Although
the Poisson process was able to model observation times reasonably well, including this likelihood
term did not improve classification accuracy.

4.5 Human Activity dataset

We trained the same classifier models as above on the Human Activity dataset, which contains
time series from five individuals performing various activities: walking, sitting, lying, etc. The
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Table 6: Per-sequence classification.
AUC on Physionet.

Method AUC

RNN ∆t 0.787 ± 0.014
RNN-Impute 0.764 ± 0.016
RNN-Decay 0.807 ± 0.003
RNN GRU-D 0.818 ± 0.008
RNN-VAE 0.515 ± 0.040
Latent ODE (RNN enc.) 0.781 ± 0.018

ODE-RNN 0.833 ± 0.009
Latent ODE (ODE enc) 0.829 ± 0.004
Latent ODE + Poisson 0.826 ± 0.007

Table 7: Per-time-point classification.
Accuracy on Human Activity.

Method Accuracy

RNN ∆t 0.797 ± 0.003
RNN-Impute 0.795 ± 0.008
RNN-Decay 0.800 ± 0.010
RNN GRU-D 0.806 ± 0.007
RNN-VAE 0.343 ± 0.040
Latent ODE (RNN enc.) 0.835 ± 0.010

ODE-RNN 0.829 ± 0.016
Latent ODE (ODE enc) 0.846 ± 0.013

data consists of 3d positions of tags attached to their belt, chest and ankles (12 features in total).
After preprocessing, the dataset has 6554 sequences of 211 time points (details in supplement). The
task is to classify each time point into one of seven types of activities (walking, sitting, etc.). We
used a 15-dimensional latent state (more details in the supplement). Table 7 shows that the Latent
ODE-based classifier had higher accuracy than the ODE-RNN classifier on this task.

5 Related work

Standard RNNs treat observations as a sequence of tokens, not accounting for variable gaps between
observations. One way to accommodate this is to discretize the timeline into equal intervals, impute
missing data, and then run an RNN on the imputed inputs. To perform imputation, Che et al. [2018]
used a weighted average between the empirical mean and the previous observation. Others have used
a separate interpolation network [Shukla and Marlin, 2019], Gaussian processes [Futoma et al., 2017],
or generative adversarial networks [Luo et al., 2018] to perform interpolation and imputation prior to
running an RNN on time-discretized inputs. In contrast, Lipton et al. [2016] used a binary mask to
indicate the missing measurements and reported that RNNs performs better with zero-filling than
with imputed values. They note that such methods can be sensitive to the discretization granularity.

Another approach is to directly incorporate the time gaps between observations into RNN. The
simplest approach is to append the time gap ∆t to the RNN input. However, Mozer et al. [2017]
suggested that appending ∆t makes the model prone to overfitting, and found empirically that it did
not improve predictive performance. Another solution is to introduce the hidden states that decay
exponentially over time [Che et al., 2018, Cao et al., 2018, Rajkomar et al., 2018].

Mei and Eisner [2017] used hidden states with exponential decay to parametrize neural Hawkes
processes, and explicitly modeled observation intensities. Hawkes processes are self-exciting pro-
cesses whose latent state changes at each observation event. This architecture is similar to our
ODE-RNN. In contrast, the Latent ODE model assumes that observations do not affect the latent state,
but only affect the model’s posterior over latent states, and is more appropriate when observations
(such as taking a patient’s temperature) do not substantially alter their state. Ayed et al. [2019]
used a Neural-ODE-based framework to learn the initial state and ODE parameters from a physical
simulation. Concurrent work by De Brouwer et al. [2019] proposed an autoregressive model with
ODE-based transitions between observation times and Bayesian updates of the hidden states.

6 Discussion and conclusion

We introduced a family of time series models, ODE-RNNs, whose hidden state dynamics are
specified by neural ordinary differential equations (Neural ODEs). We first investigated this model as
a standalone refinement of RNNs. We also used this model to improve the recognition networks of a
variational autoencoder model known as Latent ODEs. Latent ODEs provide relatively interpretable
latent states, as well explicit uncertainty estimates about latent states. Neither model requires
discretizing observation times, or imputing data as a preprocessing step, making them suitable for
the irregularly-sampled time series data common in many applications. Finally, we demonstrate that
continuous-time latent states can be combined with Poisson process likelihoods to model the rates at
which observations are made.
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