
Provably Robust Boosted Decision Stumps and Trees
against Adversarial Attacks

Maksym Andriushchenko
University of Tübingen

maksym.andriushchenko@uni-tuebingen.de

Matthias Hein
University of Tübingen

matthias.hein@uni-tuebingen.de

Abstract

The problem of adversarial robustness has been studied extensively for neural
networks. However, for boosted decision trees and decision stumps there are almost
no results, even though they are widely used in practice (e.g. XGBoost) due to their
accuracy, interpretability, and efficiency. We show in this paper that for boosted
decision stumps the exact min-max robust loss and test error for an l1-attack can be
computed in O(T log T) time per input, where T is the number of decision stumps
and the optimal update step of the ensemble can be done in O(n2

T log T), where n
is the number of data points. For boosted trees we show how to efficiently calculate
and optimize an upper bound on the robust loss, which leads to state-of-the-art
robust test error for boosted trees on MNIST (12.5% for ✏1 = 0.3), FMNIST
(23.2% for ✏1 = 0.1), and CIFAR-10 (74.7% for ✏1 = 8/255). Moreover,
the robust test error rates we achieve are competitive to the ones of provably
robust convolutional networks. The code of all our experiments is available at
http://github.com/max-andr/provably-robust-boosting.

1 Introduction

It has recently been shown that deep neural networks are easily fooled by imperceptible perturba-
tions called adversarial examples [62, 24] or tend to output high-confidence predictions on out-of-
distribution inputs [51, 49, 29] that have nothing to do with the original classes. The most popular
defense against adversarial examples is adversarial training [24, 45], which is formulated as a robust
optimization problem [59, 45]. However, the inner maximization problem is likely to be NP-hard
for neural networks as computing optimal adversarial examples is NP-hard [33, 71]. A large variety
of sophisticated defenses proposed for neural networks [31, 7, 43] could be broken again via more
sophisticated attacks [1, 18, 48]. Moreover, empirical robustness, evaluated by some attack, can also
arise from gradient masking or obfuscation [1] in which case gradient-free or black-box attacks often
break heuristic defenses. A solution to this problem are methods that lead to provable robustness
guarantees [28, 72, 54, 77, 68, 75, 13, 25] or lead to classifiers which can be certified via exact com-
binatorial solvers [63]. However, these solvers do not scale to large neural networks, and networks
having robustness guarantees lack in terms of prediction performance compared to standard ones.
The only scalable certification method is randomized smoothing [41, 42, 12, 57], however obtaining
tight certificates for norms other than l2 is an open research question.

While the adversarial problem has been studied extensively for neural networks, other classifiers have
received much less attention e.g. kernel machines [76, 56, 28], k-nearest neighbors [69], and decision
trees [52, 3, 9]. Boosting, in particular boosted decision trees, are very popular in practice due to
their interpretability, competitive prediction performance, and efficient recent implementations such
as XGBoost [10] and LightGBM [34]. Thus there is also a need to develop boosting methods which
are robust to worst-case measurement error or adversarial changes of the input data. While robust
boosting has been extensively considered in the literature [70, 44, 19], it refers in that context to a

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

http://github.com/max-andr/provably-robust-boosting

Figure 1: Left: boosted decision stumps: normal and our robust models. Right: boosted decision trees: normal
and our robust models. In both cases, the normal models have very small geometric margin, while our robust
models also classify all training points correctly but additionally enforce a large geometric margin.

large functional margin or robustness with respect to outliers e.g. via using a robust loss function,
but not to the adversarial robustness we are considering in this paper. In the context of adversarial
robustness, very recently [9] considered the robust min-max loss for an ensemble of decision trees
with coordinate-aligned splits. They proposed an approximation of the inner maximization problem
but without any guarantees. The robustness guarantees were then obtained via a mixed-integer
formulation of [32] for the computation of the minimal adversarial perturbation for tree ensembles.
However, this approach has limited scalability to large problems.

Contributions In this paper, we show how to exactly compute the robust loss and robust test error
with respect to l1-norm perturbations for an ensemble of decision stumps with coordinate-aligned
splits. This can be done efficiently in O(T log T) time per data point, where T is the number of
decision stumps. Moreover, we show how to perform the globally optimal update of an ensemble of
decision stumps by directly minimizing the robust loss without any approximation in O(n2

T log T)
time per coordinate, where n is the number of training examples. We also derive a strict upper bound
on the robust loss for tree ensembles based on our results for an ensemble of decision stumps. It
can be efficiently evaluated in O(T l) time, where l is the number of leaves in the tree. Then we
show how this upper bound can be minimized during training in O(n2

l) time per coordinate. Our
derived upper bound is quite tight empirically and leads to provable guarantees on the robustness of
the resulting tree ensemble. The difference of the resulting robust boosted decision stumps and trees
compared to normally trained models is visualized in Figure 1.

2 Boosting and Robust Optimization for Adversarial Robustness

In this section we fix the notation, the framework of boosting, and define briefly the basis of robust
optimization for adversarial robustness, underlying adversarial training. In the next sections we derive
the specific robust training procedure for an ensemble of decision stumps where we optimize the
exact robust loss and for a tree ensemble where we optimize an upper bound.

Boosting While the main ideas can be generalized to the multi-class setting (using one-vs-all, see
Appendix E), for simplicity of the derivations we restrict ourselves to binary classification, that is our
labels y are in {�1, 1} and we assume to have d real-valued features. Boosting can be described as the
task of fitting an ensemble F : Rd ! R of weak learners ft : Rd ! R given as F (x) =

PT
t=1 ft(x).

The final classification is done via the sign of F (x). In boosting the ensemble is fitted in a greedy way
in the sense that given the already estimated ensemble we determine an update F

0 = F + fT+1, by
fitting the new weak learner fT+1 being guided by the performance of the current ensemble F . In this
paper we use in the experiments the exponential loss L : R ! R, where we use the functional margin
formulation where for a point (x, y) 2 Rd ⇥ {�1, 1} it is defined as L(y f(x)) = exp(�y f(x)).
However, all following algorithms and derivations hold for any margin-based, strictly monotonically
decreasing, convex loss function L, e.g. logistic loss L(y f(x)) = ln(1 + exp(�yf(x))). The
advantage of the exponential loss is that it decouples F and the update fT+1 in the estimation process
and allows us to see the estimation process for fT+1 as fitting a weighted exponential loss where the
weights to fit (x, y) are given by exp(�y F (x)),

L(y F 0(x)) = exp
�
� y

�
F (x) + fT+1(x)

��
= exp

�
� y F (x)

�
exp

�
� y fT+1(x)

�
.

In this paper we consider as weak learners: a) decision stumps (i.e. trees of depth one) of the form
ft,i : Rd ! R, ft,i(x) = wl + wr xi�b, where one does a coordinate-aligned split and b) decision

2

trees (binary tree) of the form ft(x) = u
(t)
qt(x)

, where u
(t)
qt(x)

: V ! R is a mapping from the set
of leaves V of the tree to R and qt : Rd ! V is a mapping which assigns to every input the leaf
of the tree it ends up. While the approach can be generalized to general linear splits of the form,
wl+wr hv,xi�b, we concentrate on coordinate-aligned splits, wl+wr xi�b which are more common
in practice since they lead to competitive performance and are easier to interpret for humans.

Robust optimization for adversarial robustness Finding the minimal perturbation with respect
to some lp-distance can be formulated as the following optimization problem:

min
�2Rd

k�kp such that yif(xi + �)  0, xi + � 2 C (1)

where (xi, yi) 2 Rd ⇥ {�1, 1} and C is a set of constraints every input has to fulfill. In this paper
we assume C = [0, 1]d and that all features are normalized to be in this range. We emphasize that
we concentrate on continuous features, for adversarial perturbations of discrete features we refer
to [53, 17, 36]. We denote by �

⇤
i the optimal solution of this problem for (xi, yi). Furthermore, let

�p(✏) := {� 2 Rd | k�kp  ✏} be the set of perturbations with respect to which we aim to be robust.
Then the robust test error with respect to �p(✏) is defined for n data points as 1

n

Pn
i=1 k�⇤i kp

✏.

The optimization problem (1) is non-convex for neural networks and can only be solved exactly via
mixed-integer programming [63] which scales exponentially with the number of hidden neurons.
Since such an evaluation is prohibitively expensive in most cases, often robustness is evaluated via
heuristic attacks [47, 45, 8] which results in lower bounds on the robust test error. Provable robustness
aims at providing upper bounds on the robust test error and the optimization of these bounds during
training [28, 72, 54, 77, 75, 13, 25, 12]. For an ensemble of trees the optimization problem (1) can
also be reformulated as a mixed-integer-program [32] which does not scale to large ensembles.

The goal of improving adversarial robustness can be formulated as a robust optimization problem
with respect to the set of allowed perturbations �p(✏) [59, 45]:

min
✓

nX

i=1

max
�2�p(✏)

L
�
f(xi + �; ✓), yi

�
. (2)

A training process, where one tries at each update step to approximately solve the inner maximization
problem, is called adversarial training [24]. We note that the maximization problem is in general non-
concave and thus globally optimal solutions are very difficult to obtain. Our goal in the following two
sections is to get provable robustness guarantees for boosted stumps and trees by directly optimizing
(2) or an upper bound on the inner maximization problem.

3 Exact Robust Optimization for Boosted Decision Stumps

We first show how the exact robust loss max�2�p(✏) L(yi F (xi + �; ✓)) can be computed for an
ensemble F of decision stumps. While decision stumps are very simple weak learners, they have
been used in the original AdaBoost [20] and were successfully used in object detection [66] or face
detection [67] which could be done in real-time due to the simplicity of the classifier.

3.1 Exact Robust Test Error for Boosted Decision Stumps

The ensemble of decision stumps can be written as

F (x) =
TX

t=1

ft,ct(x) =
TX

t=1

⇣
w

(t)
l + w

(t)
r xct�bt

⌘
,

where ct is the coordinate for which ft makes a split. First, observe that a point x 2 Rd with label y
is correctly classified when yF (x) > 0. In order to determine whether the point x is adversarially
robust wrt l1-perturbations, one has to solve the following optimization problem:

G(x, y) := min
k�k1✏

yF (x+ �) (3)

3

If G(x, y)  0, then the point x is non-robust. If G(x, y) > 0, then the point x is robust, i.e. it is
not possible to change the class. Thus the exact minimization of (3) over the test set yields the exact
robust test error. For many state-of-the-art classifiers, this problem is NP-hard. For particular MIP
formulations for tree ensembles, see [32], or for neural networks, see [63]. Closed-form solutions are
known only for the simplest models such as linear classifiers [24].

We can solve this certification problem for the robust test error exactly and efficiently by noting
that the objective and the attack model �1(✏) is separable wrt the input dimensions. Therefore,
we have to solve up to d simple one-dimensional optimization problems. We denote Sk = {s 2
{1, . . . , T} | cs = k}, i.e. the set of stump indices that split coordinate k. Then

min
k�k1✏

yF (x+ �) = min
k�k1✏

TX

t=1

yft,ct(x+ �) = min
k�k1✏

dX

k=1

X

s2Sk

yfs,k(x+ �) (4)

=
dX

k=1

min
|�k|✏

X

s2Sk

yfs,k(x+ �) =
dX

k=1

⇥ X

s2Sk

yw
(s)
l + min

|�k|✏

X

s2Sk

yw
(s)
r xk+�k�bs

⇤
:=

dX

k=1

Gk(x, y)

The one-dimensional optimization problem min
|�k|✏

P
s2Sk

yw
(s)
r xk+�k�bs can be solved by simply

checking all |Sk| + 1 piece-wise constant regions of the classifier for �k 2 [�✏, ✏]. The detailed
algorithm can be found in Appendix B. The overall time complexity of the exact certification is
O(T log T) since we need to sort up to T thresholds bs in ascending order to efficiently calculate all
partial sums of the objective. Moreover, using this result, we can obtain provably minimal adversarial
examples (see Appendix B for details and Figure 11 for visualizations).

3.2 Exact Robust Loss Minimization for Boosted Decision Stumps

We note that when L is monotonically decreasing, it holds:

max
�2�1(✏)

L(y F (x+ �)) = L

⇣
min

�2�1(✏)
yF (x+ �)

⌘
,

and thus the certification algorithm can directly be used to compute also the robust loss. For updating
the ensemble F with a new stump f that splits a certain coordinate j, we first have to solve the inner
maximization problem over �1(✏) in (2) before1 we optimize the parameters wl, wr, b of f :

max
k�k1✏

L

⇣
yiF (xi + �) + yifj(xi + �)

⌘
= L

⇣
min

k�k1✏

⇥ dX

k=1

X

s2Sk

yifs,k(xi + �) + yifj(xi + �)
⇤⌘

= L

⇣X

k 6=j

min
|�k|✏

X

s2Sk

yifs,k(xi + �) + min
|�j |✏

⇥ X

s2Sj

yifs,j(xi + �) + yifj(xi + �)
⇤⌘

= L

⇣X

k 6=j

Gk(xi, yi) +
X

s2Sj

yiw
(s)
l + yiwl + min

|�j |✏

⇥ X

s2Sj

yiw
(s)
r xij+�j�bs + yiwr xij+�j�b

⇤⌘
.

In order to solve the remaining optimization problem for �j we have to make a case distinction
based on the values of wr. However, first we define the minimal values of the ensemble part on
�j 2 [�✏, b� xij) and �j 2 [b� xij , ✏] as

hl(xij , yi) := min
�j<b�xij

|�j |✏

X

s2Sj

yiw
(s)
r xij+�j�bs , hr(xij , yi) := min

�j�b�xij

|�j |✏

X

s2Sj

yiw
(s)
r xij+�j�bs

These problems can be solved analogously to Gk(x, y). Then we get the case distinction:

g(xij , yi;wr) = min
|�j |✏

⇥ X

s2Sj

yiw
(s)
r xij+�j�bs + yiwr xij+�j�b

⇤
(5)

=

⇢
hr(xij , yi) + yiwr if b� xij < �✏ or (|b� xij |  ✏ and hl(xij , yi) > hr(xij , yi) + yiwr)

hl(xij , yi) if b� xij > ✏ or (|b� xij |  ✏ and hl(xij , yi)  hr(xij , yi) + yiwr)

The following Lemma shows that the robust loss is jointly convex in wl, wr

�
to see this set l = 2,

u = (wl, wr)T , r(x̂) = (yi, yi x̂ij�b)T , C = B1(xi, ✏) and c =
P

k 6=j Gk(xi, yi)
�
.

1The order is very important as a min-max problem is not the same as a max-min problem.

4

Lemma 1 Let L : R ! R be a convex, monotonically decreasing function. Then L̃ : Rl ! R
defined as L̃(u) = max

x̃2C
L(c+ hr(x̃), ui) is convex for any c 2 R, r : Rd ! Rl, and C ✓ Rd.

Thus the loss term for each data point is jointly convex in wl, wr and consequently the sum of
the losses is convex as well. This means that for the overall robust optimization problem over the
parameters wl, wr (for a fixed b), we have to minimize the following convex function

L
⇤(j, b) = min

wl,wr

nX

i=1

L

⇣X

k 6=j

Gk(xi, yi) +
X

s2Sj

yiw
(s)
l + yiwl + g(xij , yi;wr)

⌘
.

We plot an example of this objective wrt the parameters wl and wr of a single decision stump in
Figure 2. In general, for an arbitrary loss L, there is no closed-form minimizer wrt wl and wr.
Thus, we can minimize such an objective using, e.g. coordinate descent. Then on every iteration of
coordinate descent the minimum wrt wl or wr can be found using bisection for any convex loss L.
For the exponential loss, we can optimize wrt wl via a closed-form minimizer when wr is fixed. The
details can be found in Appendix B.3.

Figure 2: Visualization of the
min-max objective which is
convex wrt the parameters wl

and wr of a decision stump.

Finally, we have to minimize over all possible thresholds. We choose the
potential thresholds b 2 Bj = {xij � ✏�⌫, xij + ✏+⌫ | i = 1, . . . , n},
where ⌫ can be as small as precision allows and is just introduced so
that the thresholds lie outside of �1(✏). We optimize the robust loss
L
⇤(j, b) for all thresholds b 2 Bj and determine the minimum. For

each contiguous set of minimizers we determine the nearest neighbors
in Bj and check the thresholds half-way to them (note that they have
at most the same robust loss but never a better one) and then take the
threshold in the middle of all the ones having equal loss. As there
are in the worst case 2n unique thresholds, the overall complexity of
one update step is O(n2

T log T). And finally, at each update step one
typically checks all d coordinates and takes the one which yields the
smallest overall robust loss of the ensemble.

4 Robust Optimization for Boosted Decision Trees

We first provide an upper bound on the robust test error of the tree ensemble which is used further to
derive an upper bound on the robust loss that is then minimized in the update step of tree ensemble.

4.1 Upper Bound on the Robust Test Error for Boosted Decision Trees

Our goal is to solve the optimization problem (3). While the exact minimization is NP-hard for
tree ensembles [32], we can similarly to [73, 54] for neural networks derive a tractable lower bound
G̃(x, y) on G(x, y) for an ensemble of trees:

min
k�kp✏

yF (x+ �) = min
k�kp✏

TX

t=1

yu
(t)
qt(x+�) �

TX

t=1

min
k�kp✏

yu
(t)
qt(x+�)

:= G̃(x, y) (6)

If G̃(x, y) > 0, then the point x is provably robust. However, if G̃(x, y)  0, the point may be either
robust or non-robust. In this way, we get an upper bound on the number of non-robust points, which
yields an upper bound on the robust test error. We note that for a decision tree, mink�kp✏ yu

(t)
qt(x+�)

can be found exactly by checking all leafs which are reachable for points in Bp(x, ✏). This can be
done in O(l) time per tree, where l is the number of leaves in the tree.

4.2 Minimization of an Upper Bound on the Robust Loss for Boosted Decision Trees

The goal is to upper bound the inner maximization problem of Equation (2) based on the certificate
that we derived. Note that we aim to bound the loss of the whole ensemble F + f , and thus we do not
use any approximations of the loss such as the second-order Taylor expansion used in [23, 10]. We
use p = 1, that is the attack model is �1(✏). Let F (x) =

PT
t=1 ft(x) =

PT
t=1 u

(t)
qt(x)

be a fixed

5

ensemble of trees and f a new tree with which we update the ensemble. Then the robust optimization
problem is:

min
f

nX

i=1

max
k�k1✏

L

⇣
yi

�
F (xi + �) + f(xi + �)

�⌘
(7)

The inner maximization problem can be upper bounded for every tree separately given that L(yf(x))
is monotonically decreasing wrt yf(x), and using our certificate for the ensemble of T + 1 trees:

max
k�k1✏

L

⇣
yiF (xi + �) + yif(xi + �)

⌘
= L

⇣
min

k�k1✏

h TX

t=1

yift(xi + �) + yif(xi + �)
i⌘

(8)

 L

⇣ TX

t=1

min
k�k1✏

yift(xi + �) + min
k�k1✏

yif(xi + �)
⌘
= L

⇣
G̃(xi, yi) + min

k�k1✏
yif(xi + �)

⌘

We can efficiently calculate G̃(xi, yi) as described in the previous subsection. But note that
mink�k1✏ yif(xi + �) depends on the tree f . The exact tree fitting is known to be NP-complete
[39], although it is still possible to scale it to some moderate-sized problems with recent advances in
MIP-solvers and hardware as shown in [2]. We want to keep the overall procedure scalable to large
datasets, so we will stick to the standard greedy recursive algorithm for fitting the tree. On every step
of this process, we fit for some coordinate j 2 {1, . . . , d} and for some splitting threshold b, a single
decision stump f(x) = wl + wr xj�b. Therefore, for a particular decision stump with threshold b

and coordinate j we have to solve the following problem:

min
wl,wr2R

X

i2I

L

✓
G̃(xi, yi) + yiwl + min

|�j |✏
yiwr xij+�j�b

◆
(9)

where I are all the points xi + � which can reach this leaf for some � with k�k1  ✏.

Finally, we have to make a case distinction depending on the values of wr and b� xij :

min
|�j |✏

yiwr xij+�j�b = yiwr ·
⇢
1 if b� xij < �✏ or (|b� xij |  ✏ and yiwr < 0)

0 if b� xij > ✏ or (|b� xij |  ✏ and yiwr � 0)
(10)

where we denote the case distinction for brevity as (xi, yi;wr). Note that the right side of (10) is
concave as a function of wr. Thus the overall robust optimization amounts to finding the minimum of
the following objective, which is again by Lemma 1 jointly convex in wl, wr:

L
⇤(j, b) = min

wl,wr

X

i:i2I

L

⇣
G̃(xi, yi) + yiwl + yiwr (xi, yi;wr)

⌘
(11)

Note that the case distinction (xi, yi;wr) can be fixed once we fix the sign of wr. This allows us to
avoid doing bisection on wr, and rather use coordinate descent directly on each interval wr � 0 and
wr < 0. After finding the minimum of the objective on each interval, we then combine the results
from both intervals by taking the smallest loss out of them. The details are given in Appendix B.3.

Then we select the optimal threshold as described in Section 3.2. Finally, as in other tree building
methods such as [5, 10], we perform pruning after a tree is constructed. We start from the leafs and
prune nodes based on the upper bound on the training robust loss (8) to ensure that it decreases at
every iteration of tree boosting. This cannot be guaranteed with robust splits without pruning since
the tree construction process is greedy, and some training examples are also influenced by splits at
different branches. Thus, in order to control the upper bound on the robust loss globally over the
whole tree as in (8), and not just for the current subtree as in (9), we need a post-hoc approach that
takes into account the structure of the whole tree. Therefore, we have to use pruning. We note that
in the extreme case, pruning may leave only one decision stump at the root (although it happens
extremely rarely in practice), for which we are guaranteed to decrease the upper bound on the robust
loss. Thus every new tree in the ensemble is guaranteed to reduce the upper bound on the robust loss.
Note that this is also true if we use the shrinkage parameter [21] which we discuss in Appendix C.

Lastly, we note that the total worst case complexity is O(n2) in the number of training examples com-
pared to O(n log n) for XGBoost, which is a relatively low price given that the overall optimization
problem is significantly more complicated than the formulation used in XGBoost.

6

5 Experiments

General setup We are primarily interested in two quantities: test error (TE) and robust test error
(RTE) wrt l1-perturbations. For boosted stumps, we compute RTE as described in Section 3.1, but we
also report the upper bound on RTE (URTE) obtained using the stump-wise bound from Section 4.1
to illustrate that it is actually tight for almost all models. For boosted trees, we report RTE obtained
via the MIP formulation of [32] which we adapted to a feasibility problem (see Appendix G.2 for
more details), and also the tree-wise upper bounds described in Section 4.1. For evaluation we use
11 datasets: breast-cancer, diabetes, cod-rna, MNIST 1-5 (digit 1 vs digit 5), MNIST 2-6 (digit 2 vs
digit 6, following [32] and [9]), FMNIST shoes (sandals vs sneakers), GTS 100-rw (speed 100 vs
roadworks), GTS 30-70 (speed 30 vs speed 70), MNIST, FMNIST, and CIFAR-10. More details
about the datasets are given in Appendix F. We emphasize that we evaluate our models on image
recognition datasets mainly for the sake of comparison to other methods reported in the literature.

We consider five types of boosted stumps: normally trained stumps, adversarially trained stumps (see
Appendix G.1 for these results), robust stumps of Chen et al. [9], our robust stumps where the robust
loss is bounded stump-wise, and our robust stumps where the robust loss is calculated exactly. Next
we consider four types of boosted trees: normally trained trees, adversarially trained trees, robust
trees of Chen et al. [9], and our robust trees where the robust loss is bounded tree-wise. Both for
stumps and trees, we perform l1 adversarial training following [32], i.e. every iteration we train on
clean training points and adversarial examples (equal proportion). We generate adversarial examples
via the cube attack – a simple attack inspired by random search [50] described in Appendix D (we
use 10 iterations and p = 0.5) and its performance is shown in Section G.3. We perform model
selection of our models and models from Chen et al. [9] based on the validation set of 20% randomly
selected points from the original training set, and we train on the rest of the training set. All models
are trained with the exponential loss. More details about the experiments are available in Appendix F
and in our repository http://github.com/max-andr/provably-robust-boosting.

Boosted decision stumps The results for boosted stumps are given in Table 1. First, we observe
that normal models are not robust for the considered l1-perturbations. However, both variants of our
robust boosted stumps significantly improve RTE, outperforming the method of Chen et al. [9] on 7
out of the 8 datasets. Note that although our exact method optimizes the exact robust loss, we are
still not guaranteed to always outperform Chen et al. [9] since they use a different loss function, and
the quantities of interest are calculated on test data. The largest improvements compared to normal
models are obtained on breast-cancer from 98.5% RTE to 10.9% and on MNIST 2-6 from 99.9% to
9.1% RTE. The robust models perform slightly worse in terms of test error, which is in line with the
empirical observation made for adversarial training for neural networks [64]. Additionally, to the
robust test error (RTE), we also report the upper bound (URTE) to show that it is very close to RTE.
Notably, for our robust stumps trained with the upper bound on the robust loss, URTE is equal to the
RTE for all models, and it is very close to the RTE of our robust stumps trained with the exact robust
loss, while taking about 4x less time to train in average. Thus bounding the sum over weak learners
element-wise, as done in (6), seems to be tight enough to yield robust models. Finally, we provide in
Appendix G.2 a more detailed comparison to the robust boosted stumps of Chen et al. [9].

Table 1: Evaluation of robustness for boosted stumps. We show, in percentage, test error (TE), exact robust test
error (RTE), and upper bound on robust test error (URTE). Both variants of our robust stumps outperform the
method of Chen et al. [9]. We also observe that URTE is very close to RTE or even the same for many models.

Normal stumps Robust stumps Our robust stumps Our robust stumps
(standard training) Chen et al. [9] (robust loss bound) (exact robust loss)

Dataset l1 ✏ TE RTE URTE TE RTE TE RTE URTE TE RTE URTE

breast-cancer 0.3 2.9 98.5 100 8.8 16.8 4.4 10.9 10.9 5.1 10.9 10.9
diabetes 0.05 24.7 54.5 56.5 23.4 30.5 28.6 33.1 33.1 27.3 31.8 31.8
cod-rna 0.025 4.7 42.8 44.9 11.6 23.2 11.2 22.4 22.4 11.2 22.6 22.6
MNIST 1-5 0.3 0.5 85.4 85.4 0.9 5.2 0.6 3.7 3.7 0.7 3.6 3.7
MNIST 2-6 0.3 1.7 99.9 99.9 2.8 13.9 3.0 9.1 9.1 3.0 9.2 9.2
FMNIST shoes 0.1 2.4 100 100 7.1 22.2 6.2 11.8 11.8 5.7 10.8 11.5
GTS 100-rw 8/255 1.1 9.9 9.9 2.0 11.8 2.8 8.9 8.9 2.0 6.7 6.7
GTS 30-70 8/255 11.3 53.7 53.7 12.7 28.2 12.7 26.9 26.9 12.9 27.6 27.6

7

http://github.com/max-andr/provably-robust-boosting

Table 2: Evaluation of robustness for boosted trees. We report, in percentages, test error (TE), robust test error
(RTE), and upper bound on robust test error (URTE). Our robust boosted trees lead to better RTE compared to
adversarial training and robust trees of Chen et al. [9]. We observe that especially for our models URTE are very
close to RTE, while URTE are orders of magnitude faster to compute.

Normal trees Adv. trained trees Robust trees Our robust trees
(standard training) (with cube attack) Chen et al. [9] (robust loss bound)

Dataset l1 ✏ TE RTE URTE TE RTE URTE TE RTE TE RTE URTE

breast-cancer 0.3 0.7 81.0 81.8 0.0 27.0 27.0 0.7 13.1 0.7 6.6 6.6
diabetes 0.05 22.7 55.2 61.7 26.6 46.8 46.8 22.1 40.3 27.3 35.7 35.7
cod-rna 0.025 3.4 37.6 47.1 10.9 24.8 24.8 10.2 24.2 6.9 21.3 21.4
MNIST 1-5 0.3 0.1 90.7 96.0 1.3 9.0 9.5 0.3 2.9 0.2 1.3 1.4
MNIST 2-6 0.3 0.4 89.6 100 2.3 15.1 15.9 0.5 6.9 0.7 3.8 4.1
FMNIST shoes 0.1 1.7 99.8 99.9 5.5 14.1 14.2 3.1 13.2 3.6 8.0 8.1
GTS 100-rw 8/255 0.9 6.0 6.1 1.0 8.4 8.4 1.5 9.7 2.6 4.7 4.7
GTS 30-70 8/255 14.2 31.4 32.6 16.2 26.7 26.8 11.5 28.8 13.8 20.9 21.4

Boosted decision trees The results for boosted trees of depth 4 are given in Table 2. Our robust
training of boosted trees outperforms both adversarial training and the method of Chen et al. [9] in
terms of RTE on all 8 datasets. For example, on breast-cancer, the RTE of the robust trees of Chen
et al. [9] is 13.1%, while the RTE of our robust model is 6.6% and we achieve the same test error
of 0.7%. We note that TE and RTE of our robust trees are in many cases better than for our robust
stumps. This suggests that there is a benefit of using more expressive weak learners in boosting to get
more robust and accurate models. Adversarial training performs worse than our provable defense
not only in terms of URTE, but even in terms of LRTE. This is different from the neural network
literature [45, 25], where adversarial training usually provides better LRTE and significantly better
test error than methods providing provable robustness guarantees. However, our upper bound on
the robust loss is tight and tractable and thus adversarial training should not be used as it provides
only a lower bound and minimization of an upper bound makes more sense than minimization of a
lower bound. We provide a more detailed comparison to Chen et al. [9] in Appendix G.2 including
multi-class datasets (MNIST, FMNIST). We also show there that our proposed method to calculate
the certified robust error (URTE) is orders of magnitudes faster than the MIP formulation.

Comparison to provable defenses for neural networks We note that our methods are primarily
suitable for tabular data, but in the literature on robustness of neural networks there are no established
tabular datasets to compare to. Thus, we compare our robust boosted trees to the convolutional
networks of [73, 16, 75, 25, 13] on MNIST, FMNIST, and CIFAR-10. We do not compare to random-
ized smoothing since it is competitive only for small l1-balls [57]. Since the considered datasets
are multi-class, we extend our training of robust boosted trees from the binary classification case to
multi-class using the one-vs-all approach described in Appendix E. We also use data augmentation
by shifting the images by one pixel horizontally and vertically. We fit our robust trees with depth of
up to 30 for MNIST and FMNIST, and with depth of up to 4 for CIFAR-10. Note that we restrict the
minimum number of examples in a leaf to 100. Thus a tree of depth 30 makes only a small fraction of
the possible 230 splits. We provide a comparison in Table 3. In terms of provable robustness (URTE),
our method is competitive to many provable defenses for CNNs. In particular, we outperform the
LP-relaxation approach of [73] on all three datasets both in terms of test error and upper bounds. We
also systematically outpeform the recent approach of [75] aiming at enhancing verifiability of CNNs
– we have a better URTE with the same or better test error. Only the recent work of [25] is able to
outperform our approach. Also, the CIFAR-10 model of [16] shows better URTE than our approach,
but worse test error. We would like to emphasize that even on CIFAR-10 (with a relatively large
✏ = 8/255) our models are not too far away from the state-of-the-art. In addition our robust boosted
tree models require less computations at inference time.

Robustness vs accuracy tradeoff There is a lot of empirical evidence that robust training methods
for neural networks exhibit a trade-off between robustness and accuracy [73, 25, 64]. We can confirm
that the trade-off can also be observed for boosted trees: we consistently lose accuracy once we
increase ✏. The only slight gain in accuracy that we observe is on FMNIST shoes dataset. More
details and plots of robustness versus accuracy can be found in Appendix G.4.

8

Table 3: Comparison of our robust boosted trees to the state-of-the-art provable defenses for convolutional
neural networks reported in the literature. Our models are competitive to them in terms of upper bounds on
robust test error (URTE). By ⇤ we denote results taken from [25] where they could achieve significantly better
TE and URTE with the code of [73].

Dataset l1 ✏ Approach TE LRTE URTE

MNIST 0.3

Wong et al. [73]⇤ 13.52% 26.16% 26.92%
Xiao et al. [75] 2.67% 7.95% 19.32%
Our robust trees, depth 30 2.68% 12.46% 12.46%
Gowal et al. [25] 1.66% 6.12% 8.05%

FMNIST 0.1 Wong and Kolter [72] 21.73% 31.63% 34.53%
Croce et al. [13] 14.50% 26.60% 30.70%
Our robust trees, depth 30 14.15% 23.17% 23.17%

CIFAR-10 8/255

Xiao et al. [75] 59.55% 73.22% 79.73%
Wong et al. [73] 71.33% – 78.22%
Our robust trees, depth 4 58.46% 74.69% 74.69%
Dvijotham et al. [16] 59.38% 67.68% 70.79%
Gowal et al. [25] 50.51% 65.23% 67.96%

Normal trees Adversarially trained trees Our robust trees

Figure 3: The distribution of the splitting thresholds for boosted trees models trained on MNIST 2-6. We can
observe that our robust model almost always selects splits in the range between 0.3 and 0.7, which is reasonable
given l1-perturbations within ✏ = 0.3. At the same time, the normal and adversarially trained models split close
to 0 or 1, which suggests that their decisions might be easily flipped by the adversary.

Interpretability For boosted stumps or trees, unlike for neural networks, we can directly inspect
the model and the classification rules it has learned. In particular, in Figure 3, we plot the distibution
of the splitting thresholds b for the three boosted trees models on MNIST 2-6 reported in Table 2.
We can observe that our robust model almost always selects splits in the range between 0.3 and 0.7,
which is reasonable given that more than 80% pixels of MNIST are either 0 or 1, and the considered
l1-perturbations are within ✏ = 0.3. At the same time, the normal and adversarially trained models
split arbitrarily close to 0 or 1, which suggests that their decisions might be easily flipped if the
adversary is allowed to change them within this ✏. To emphasize the importance of interpretability
and transparent decision making, we provide feature importance plots and more histograms of the
splitting thresholds in Appendix G.5 and G.6.

6 Conclusions and Outlook

Our results show that the proposed methods achieve state-of-the-art provable robustness among
boosted stumps and trees, and are also competitive to provably robust CNNs. This can be seen
as a strong indicator that particularly for large l1-balls, current provably robust CNNs are so
over-regularized that their performance is comparable to simple decision tree ensembles that make
decisions based on individual pixel values. Thus it remains an open research question whether it is
possible to establish tight and tractable upper bounds on the robust loss for neural networks. On the
contrary, as shown in this paper, for boosted decision trees there exist simple and tight upper bounds
which can be efficiently optimized. Moreover, for boosted decision stumps one can compute and
optimize the exact robust loss. We thus think that if provable robustness is the goal then our robust
decision stumps and trees are a promising alternative as they not only come with tight robustness
guarantees but also are much easier to interpret.

9

Acknowledgements

We thank the anonymous reviewers for very helpful and thoughtful comments. We acknowledge the
support from the German Federal Ministry of Education and Research (BMBF) through the Tübingen
AI Center (FKZ: 01IS18039A). This work was also supported by the DFG Cluster of Excellence
“Machine Learning – New Perspectives for Science”, EXC 2064/1, project number 390727645, and
by DFG grant 389792660 as part of TRR 248.

References
[1] Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients give a false sense of security:

circumventing defenses to adversarial examples. ICML, 2018.

[2] Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 2017.

[3] Dimitris Bertsimas, Jack Dunn, Colin Pawlowski, and Ying Daisy Zhuo. Robust classification. INFORMS
Journal on Optimization, 1:2–34, 2018.

[4] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

[5] Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classification and regression trees.
Chapman & Hall/CRC, 1984.

[6] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: reliable attacks
against black-box machine learning models. ICLR, 2018.

[7] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: one hot way to
resist adversarial examples. ICLR, 2018.

[8] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. IEEE
Symposium on Security and Privacy, 2017.

[9] Hongge Chen, Huan Zhang, Duane Boning, and Cho-Jui Hsieh. Robust decision trees against adversarial
examples. ICML, 2019.

[10] Tianqi Chen and Carlos Guestrin. Xgboost: a scalable tree boosting system. KDD, 2016.

[11] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Query-efficient
hard-label black-box attack: an optimization-based approach. ICLR, 2019.

[12] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial robustness via randomized
smoothing. ICML, 2019.

[13] Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable robustness of relu networks via
maximization of linear regions. AISTATS, 2019.

[14] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evolutionary algorithm.
Theoretical Computer Science, 2002.

[15] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.
edu/ml.

[16] Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Brendan O’Donoghue,
Jonathan Uesato, and Pushmeet Kohli. Training verified learners with learned verifiers. arXiv preprint
arXiv:1805.10265, 2018.

[17] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: white-box adversarial examples for
text classification. ACL, 2018.

[18] Logan Engstrom, Andrew Ilyas, and Anish Athalye. Evaluating and understanding the robustness of
adversarial logit pairing. NeurIPS 2018 Workshop on Security in Machine Learning, 2018.

[19] Yoav Freund. A more robust boosting algorithm. arXiv preprint, arXiv:0905.2138v1, 2009.

[20] Yoav Freund and Robert E Schapire. Experiments with a new boosting algorithm. ICML, 1996.

[21] Jerome Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics,
29:1189–1232, 2001.

[22] Jerome Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38:367–378,
2002.

[23] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a statistical view of
boosting. Annals of Statistics, 28:337–407, 2000.

[24] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
ICLR, 2015.

10

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[25] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Uesato,
Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval bound propagation for training
verifiably robust models. NeurIPS Workshop on Security in Machine Learning, 2018.

[26] Chuan Guo, Jacob R Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Q Weinberger. Simple
black-box adversarial attacks. ICML, 2019.

[27] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2019. URL http://www.gurobi.com.
[28] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier against

adversarial manipulation. NeurIPS, 2017.
[29] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield high-confidence

predictions far away from the training data and how to mitigate the problem. CVPR, 2019.
[30] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with limited

queries and information. ICML, 2018.
[31] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing. arXiv preprint

arXiv:1803.06373, 2018.
[32] Alex Kantchelian, JD Tygar, and Anthony Joseph. Evasion and hardening of tree ensemble classifiers.

ICML, 2016.
[33] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: an efficient smt

solver for verifying deep neural networks. ICCAV, 2017.
[34] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.

Lightgbm: A highly efficient gradient boosting decision tree. NeurIPS, 2017.
[35] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of

Toronto, 2009.
[36] Bogdan Kulynych, Jamie Hayes, Nikita Samarin, and Carmela Troncoso. Evading classifiers in discrete

domains with provable optimality guarantees. NeurIPS Workshop on Security in Machine Learning, 2018.
[37] Maksim Lapin, Matthias Hein, and Schiele Bernt. Loss functions for top-k error: analysis and insights.

CVPR, 2016.
[38] Maksim Lapin, Matthias Hein, and Schiele Bernt. Analysis and optimization of loss functions for multiclass,

top-k and multilabel classification. PAMI, 40:1533–1554, 2016.
[39] Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is np-complete. Information

Processing Letters, 1976.
[40] Yann LeCun. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998.
[41] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified robustness

to adversarial examples with differential privacy. IEEE Symposium on Security and Privacy, 2019.
[42] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin Duke. Certified adversarial robustness with

addition gaussian noise. NeurIPS, 2019.
[43] Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry about adversarial examples in

object detection in autonomous vehicles. arXiv preprint arXiv:1707.03501, 2017.
[44] Roman Werner Lutz, Markus Kalisch, and Peter Bühlmann. Robustified l2 boosting. Computational

Statistics & Data Analysis, 52:3331–3341, 2008.
[45] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards

deep learning models resistant to adversarial attacks. ICLR, 2018.
[46] Seungyong Moon, Gaon An, and Hyun Oh Song. Parsimonious black-box adversarial attacks via efficient

combinatorial optimization. ICML, 2019.
[47] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate

method to fool deep neural networks. CVPR, 2016.
[48] Marius Mosbach, Maksym Andriushchenko, Thomas Trost, Matthias Hein, and Dietrich Klakow. Logit

pairing methods can fool gradient-based attacks. NeurIPS 2018 Workshop on Security in Machine Learning,
2018.

[49] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do deep
generative models know what they don’t know? ICLR, 2019.

[50] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Founda-
tions of Computational Mathematics, 17:527–566, 2017.

[51] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: high confidence predictions
for unrecognizable images. CVPR, 2015.

11

http://www.gurobi.com

[52] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples. arXiv preprint, arXiv:1809.03008, 2016.

[53] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami.
The limitations of deep learning in adversarial settings. IEEE EuroS&P, 2016.

[54] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial examples.
ICLR, 2018.

[55] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal of Machine Learning
Research, 5:101–141, 2004.

[56] Paolo Russu, Ambra Demontis, Battista Biggio, Giorgio Fumera, and Fabio Roli. Secure kernel machines
against evasion attacks. ACM workshop on AI and security, 2016.

[57] Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang, Ilya Razenshteyn, and Sebastien
Bubeck. Provably robust deep learning via adversarially trained smoothed classifiers. NeurIPS, 2019.

[58] Robert E Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 1999.

[59] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial training: Increasing local
stability of supervised models through robust optimization. Neurocomputing, 2018.

[60] Jack W Smith, JE Everhart, WC Dickson, WC Knowler, and RS Johannes. Using the adap learning
algorithm to forecast the onset of diabetes mellitus. Annual Symposium on Computer Application in
Medical Care, 1988.

[61] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer: benchmarking
machine learning algorithms for traffic sign recognition. Neural Networks, 2012.

[62] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. ICLR, 2014.

[63] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed integer
programming. ICLR, 2019.

[64] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robust-
ness may be at odds with accuracy. ICLR, 2019.

[65] Andrew V Uzilov, Joshua M Keegan, and David H Mathews. Detection of non-coding rnas on the basis of
predicted secondary structure formation free energy change. BMC Bioinformatics, 7:1–30, 2006.

[66] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features. CVPR,
2001.

[67] Paul Viola and Michael J Jones. Robust real-time face detection. IJCV, 57:137–154, 2004.
[68] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety analysis

of neural networks. NeurIPS, 2018.
[69] Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. Analyzing the robustness of nearest neighbors to

adversarial examples. ICML, 2018.
[70] Manfred K. Warmuth, Karen Glocer, and Gunnar Rätsch. Boosting algorithms for maximizing the soft

margin. NeurIPS, 2007.
[71] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S. Dhillon,

and Luca Daniel. Towards fast computation of certified robustness for relu networks. ICML, 2018.
[72] Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer adversarial

polytope. ICML, 2018.
[73] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial defenses.

NeurIPS, 2018.
[74] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking

machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
[75] Kai Y Xiao, Vincent Tjeng, Nur Muhammad Shafiullah, and Aleksander Madry. Training for faster

adversarial robustness verification via inducing relu stability. ICLR, 2019.
[76] H. Xu, C. Caramanis, and S. Mannor. Robustness and regularization of support vector machines. Journal

of Machine Learning Research, 10:1485–1510, 2009.
[77] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network

robustness certification with general activation functions. NeurIPS, 2018.

12

