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Abstract

Modelling the dynamics of multi-agent learning has long been an important re-
search topic, but all of the previous works focus on 2-agent settings and mostly
use evolutionary game theoretic approaches. In this paper, we study an n-agent
setting with n tends to infinity, such that agents learn their policies concurrently
over repeated symmetric bimatrix games with some other agents. Using the mean
field theory, we approximate the effects of other agents on a single agent by an
averaged effect. A Fokker-Planck equation that describes the evolution of the
probability distribution of Q-values in the agent population is derived. To the best
of our knowledge, this is the first time to show the Q-learning dynamics under an
n-agent setting can be described by a system of only three equations. We validate
our model through comparisons with agent-based simulations on typical symmetric
bimatrix games and different initial settings of Q-values.

1 Introduction

A multi-agent system concerns a set of autonomous agents interacting in a shared environment.
Learning in multi-agent systems has recently attracted much attention [3, 13, 15], since multi-agent
systems find application in a wide variety of domains, such as traffic control [1], energy management
[20], robotic coordination [19], and distributed sensing [16]. While single-agent reinforcement
learning has acquired a strong theoretical foundation [26], there is a lack of a thorough understanding
of reinforcement learning under multi-agent settings [2]. Shoham [24] calls for more grounded
research in this area rather than designing arbitrary learning strategies that result in convergence to a
certain solution concept. Bloembergen et al. [2] point out that the modelling of multi-agent learning
dynamics may facilitate parameter tuning, systematic comparison of different learning algorithms,
and shedding light into the design of new learning algorithms.

Tuyls et al. [27, 29] model the dynamics of Q-learning with Boltzmann exploration in repeated
2-player bimatrix games using a evolutionary game theoretic approach. They derive a differential
equation for each of the row and column player, and show that the learning process of each player can
be understood as the replicator dynamics of a strategy change in an infinitely large agent population.
Extensions have been made to study the dynamics of other learning algorithms, such as FAQ-learning
[10], lenient FAQ-learning [18], gradient ascent [9] and regret minimization [12], in a similar manner.
Gomes and Kowalczyk [22] construct a continuous time model for Q-learning, but focus on how
another exploration strategy, ε-greedy, affects the expected behaviours of agents. Wunder et al. [32]
use dynamical system methods to study an idealization of Q-learning with ε-greedy in repeated
2-player general-sum games. They show that the use of this learning method in certain subclasses of
general-sum games induces chaotic behaviour for some initial conditions.
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In general, all of the aforementioned works focus on the dynamics of reinforcement learning under
2-agent settings. Many real-life multi-agent systems, however, involve a much greater number of
agents by nature. In this paper, we consider an n-agent setting with n tends to infinity, such that,
concurrently, agents learn their policies over repeated 2-player symmetric bimatrix games with some
other agents in the population. The opponents that an agent interacts with will change from time to
time. Thus, instead of learning against some fixed opponents, an agent learns to play with a wide
range of socially changeable opponents. We note that this scenario, which has not been considered in
the literature before, is a typical setting in norm emergence research [23].

One major difficulty of modelling multi-agent learning dynamics is to cope with non-stationarity,
i.e., the fact that the interactions of agents leads to a highly dynamic shared environment [2, 28, 22].
One can expect that this non-stationarity will drastically increase as the total number of agents
increases. This makes directly applying previous models in aforementioned works to n-agent settings
inappropriate, because, in principle, the number of equations required to model the entire population
dynamics is proportional to the number of agents in the population. As n tends to infinity, analyzing
or solving this system of equations becomes practically infeasible. We find the mean field theory
[31] in statistical mechanics sheds light on this kind of problems. According to this theory, all of
the effects of neighboring particles impose on a single particle can be approximated by an averaged
effect—mean field—on that particle. This consequently reduces the degrees of freedom of the
problem, and may make the problem analytically solvable.

Here, we assume agents use Q-learning with Boltzmann exploration. Using the mean field theory,
we approximate the effects of other agents on a single agent with an averaged effect, such that one
can conceive each agent in effect learns its policy over repeated interactions with a fictitious agent
using the mean policy of the population. The Q-learning processes of individual agents will change
the environment shared by all the agents. To capture this effect, we derive a Fokker-Planck equation
that describes how the distribution of Q-values of the entire population evolves as time goes forward.
We show under the n-agent setting we consider, the population dynamics can be modelled by a
system of only three equations. For validation, we compare the behaviours obtained by our mean field
theoretic model with the behaviours found in agent-based simulations. The comparison indicates our
model well describes the qualitatively different patterns of evolution resulting from different types of
symmetric bimatrix games and different initial settings of Q-values.

It is interesting to note that there is another line of research [17, 25, 33] on reinforcement learning
in mean-field games [8, 14]. In this line of research, novel learning algorithms that converge to
certain solution concepts (e.g., Nash equilibria) in mean-field games are proposed, however, the
actual process of convergence is not formally described. This paper, to the best of our knowledge,
is the first time to formally show the reinforcement learning dynamics in an infinitely large agent
population. In particular, the Fokker-Planck equation describing the evolution of the probability
distribution of Q-values in an agent population has not been reported elsewhere.

2 Preliminaries

In this paper, we focus on an infinitely large Q-learning agent population, in which each agent learns
its policy concurrently over repeated symmetric bimatrix games with some other agents. Here we
present the n-agent learning framework we consider in Section 2.1. The necessary backgrounds on
symmetric bimatrix games and Q-learning are provided in Sections 2.2 and 2.3 respectively.

2.1 An n-Agent Concurrent Learning Framework

Consider a large population N “ t1, . . . , nu of n agents, where n tends to infinity. Each agent has
the same set A “ ta1, . . . , aku of k available actions for a symmetric bimatrix game G. The learning
framework of these n agents is presented in Algorithm 1. Specifically, at each time step, an individual
agent first independently selects an action to use according to its own policy (lines 3-5). Then, each
agent plays the game G with each of the m opponents that are randomly selected from the population
(lines 6-12). Note that the m opponents with whom an agent play games may change for different
time steps. A larger value of m suggests agents can learn their policies from the interactions with a
wider range of other agents.1 For normalization, we assume the received immediate payoff for an

1When m equals 1, our framework is in effect equivalent to the social learning [23], which is a commonly
adopted framework in norm emergence research.
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individual agent is averaged over all of the m games it plays at each time step. At the end of each
time step, each agent learns its policy independently and concurrently, so as to maximize its own
future payoff (lines 13-16).

Algorithm 1 An n-Agent Concurrent Learning Framework
Require: a set N of agents, a set A of available actions, a symmetric game G, the number m of opponents per

time step, the maximum time step T
1: while t ă T do
2: tÐ t` 1
3: for each agent i P N do
4: Agent i select an action a P A according to its policy
5: end for
6: for each agent i P N do
7: while θi ă m do Ź θi is the number of games that agent i has played
8: Randomly select agent j from the population N if θj ă m
9: Agents i and j play the game G using their selected actions respectively

10: θi Ð θi ` 1, θj Ð θj ` 1
11: end while
12: end for
13: for each agent i P N do
14: Receive an immediate payoff, and update its policy using a learning method
15: θi Ð 0
16: end for
17: end while

2.2 Symmetric Bimatrix Games

Bimatrix games are typical mathematical modellings of strategic interactions between rational
decision-makers (agents). Conventionally, in such a game, there are two players: the row player and
the column player. The players play an action at the same time, and receive a payoff immediately.
A bimatrix game is symmetric if both the players have the same set of available actions, and the
resulting payoff of each player depends not on the role of the player, but only on their joint actions
[4]. For reasons of exposition, we focus on an action set size of 2. In Table 1, we present a general
form of 2-player-2-action symmetric bimatrix games. The first number of each entry is the payoff of
the row player and the second number is the payoff of the column player. Clearly, the payoff matrix
of the row player is the transpose of the payoff matrix of the column player.

Action a1 Action a2
Action a1 α, α β, γ
Action a2 γ, β δ, δ

Table 1: A general form of 2-player-2-action symmetric bimatrix games.

2.3 Q-Learning for Bimatrix Games

Q-learning [30] is one of the most important algorithms in reinforcement learning research, and is
the basis of a number of multi-agent reinforcement learning algorithms [3, 5, 7]. Given that there
is a set S of states and a set A of available actions, such that an agent may transit to a new state
s1 P S as a result of using an action a P A under the current state s P S. Q-learning maintains a
Q-value for each state-action pair ps, aq to estimate the cumulative payoff over the successive time
steps after performing action a at state s. Consider an arbitrary agent i in the agent population N .
Suppose that at time t, it plays the jth action aj under state s, and receives an immediate payoff
ritps, ajq accordingly. This agent will update its Q-value Qit`1ps, ajq for the state-action pair ps, ajq
as follows:

Qit`1ps, ajq “ p1´ ηqQ
i
tps, ajq ` ηrr

i
tps, ajq ` γ max

@a1PA
Qitps

1, a1qs, (1)

where η is the learning rate, γ is the discounting factor, and s1 is the resulting state of using action a
under state s, so that the term γmaxa1PAQ

i
tps
1, a1q estimates the optimal discounted future payoff
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after the state transition. For any bimatrix game, there is only one episode in the entire course (or
round) of the game: at a given time step t, the players each takes one action simultaneously, and
receives an immediate payoff; then, the game ends. At the next time step t` 1, agents play another
round of the game. This means that from time t to t` 1, there is no state transition for an agent in
bimatrix games, and the resulting state s1 does not exist at all. Therefore, for bimatrix games, it is a
common practice to maintain a vector of Q-values for each action, i.e., Qi

t “ rQ
i
tpa1q . . . Q

i
tpakqs

ᵀ,
and remove the term γmaxa1PAQ

i
tps
1, a1q from the Q-value update function [11, 22, 32]:

Qit`1pajq “ p1´ ηqQ
i
tpajq ` ηr

i
tpajq. (2)

We consider that each agent adopts a mixed-strategy policy, such that its Q-values are interpreted as
Boltzmann probabilities for action selection. Let xit “ rx

i
tpa1q . . . x

i
tpakqs

ᵀ represent the mixed-
strategy policy of agent i at time t, in which each component xitpajq,@aj P A is its probability of
playing action aj at time t. The value of xitpajq is given as follows:

xitpajq “
eτQ

i
tpajq

ř

@aPA e
τQi

tpaq
, (3)

where τ P r0,8q is the Boltzmann exploration temperature. A larger value of τ indicates the fewer
exploration for individual agents. When τ is 0, the probability of taking each action is uniform, which
means that agents take actions randomly. When τ Ñ 8, agents take the action with the highest
Q-value in probability 1.

3 A Mean Field Theoretic Model

In this section, we model the Q-learning dynamics under the n-agent setting presented in the last
section. In Section 3.1, taking the view of an individual agent, we model the dynamics of its Q-values
with mean field approximation, such that, fictitiously, an agent updates its Q-values in response to
the mean policy of the population. In Section 3.2, taking an bird eye’s view, we model how the
probability distribution of Q-values in the population evolves as time goes forward, and show the
population dynamics can be characterized by a system of three equations.

3.1 Dynamics of Q-values for Individual Agents

Consider an arbitrary agent i in the population N . By Equation 2, we can derive the difference
equation of its Q-values in terms of expected change. For any action aj , at time t, the expected
change of the corresponding Q-value is given as follows:

ErQit`1pajq ´Q
i
tpajqs “ xitpajqrQ

i
t`1pajq ´Q

i
tpajqs ` r1´ x

i
tpajqs ˆ 0

“ ηxitpajqrErritpajqs ´Qitpajqs.
(4)

On the right hand side of the first line, the first term represents the change in the Q-value if action
aj is used at time t, and the second term indicates that there should be no change in the Q-value if
action aj is not used at time t. In the continuous time limit, this difference equation corresponds to
the following differential equation:

Er
dQitpajq

dt
s “ ηxitpajqrErritpajqs ´Qitpajqs

“ η
eτQ

i
tpajq

ř

@aPA e
τQi

tpaq
rErritpajqs ´Qitpajqs.

(5)

This differential equation governs the dynamics of the expected change in Q-values for individual
agents. By this equation, at a certain time step t, how fast an agent increases or decreases its Q-value
for a particular action is susceptible to the learning rate η, Boltzmann exploration temperature τ , the
current Q-values and the received payoff at this time step.

Remember that at each time step, an agent play games with m other agents that are randomly selected
from the population. Let us first focus on one particular round of the gameG and assume the opponent
in this round to be agent z. We denote the payoff matrix of the row player in game G by U. For agent
i, the expected payoff of taking action aj against agent z using the policy xzt is determined as:

Erritpaj ,xzt qs “ eᵀjUxzt , (6)
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where ej is the unit vector, in which the jth component equals 1 and the other components equal
0. Let x̄t “ rxtpa1q . . . xtpakqs

ᵀ be the mean policy of the population N at time t, such that
x̄t “

1
n

ř

@iPN xit, where n is the total number of agents. The policy xzt of agent z can be represented
by a deviation ∆xzt from the mean policy x̄t, such that xzt “ x̄t `∆xzt . With the first-order Taylor
series expansion, the expected payoff Erritpaj ,xzt qs is approximated as:

Erritpaj ,xzt qs “ Erritpaj , x̄t `∆xzt qs

« Erritpaj , x̄tqs ` Er∇ritpaj , x̄tqᵀ∆xzt s.
(7)

Let Mi
t Ă N be the set of m opponents that agent i plays games with at time t. For agent i, its

expected received payoff of taking action aj at time t, that is, Erritpajqs, which is averaged over the
m rounds of games it plays with m opponents, is approximated as:

Erritpajqs “
1

m

ř

zPMi
t
Erritpaj ,xzt qs

«
1

m

ř

zPMi
t
rErritpaj , x̄tqs ` Er∇ritpaj , x̄tqᵀ∆xzt ss

“ Erritpaj , x̄tqs `∇ritpaj , x̄tqᵀEr
1

m

ř

zPMi
t
∆xzt s

« Erritpaj , x̄tqs.

(8)

As the value of m increases, the term Er 1m
ř

zPMi
t
∆xzt s will become closer to 0, and hence the

approximation will become more accurate.2 By this approximation, for an individual agent, its
received payoff of playing with its opponents is approximately the payoff of playing against the mean
policy x̄t averaged over all of the agents in the population. That is to say, although different agents
actually interact with different opponents, intuitively, one can conceive different agents face one same
fictitious agent that uses the mean policy.

Substituting the term Erritpajqs with the approximation shown in Equation 8, Equation 5—the
equation that fundamentally governs the dynamics of the expected change in Q-values for individual
agents—is rewritten as follows:

Er
dQitpajq

dt
s “ η

eτQ
i
tpajq

ř

@aPA e
τQi

tpaq
rErritpaj , x̄tqs ´Qitpajqs. (9)

On the right hand side, the learning rate η and Boltzmann exploration temperature τ are a priori
given and the same for the entire agent population. Moreover, for symmetric bimatrix games, the
expected payoff of using action aj against the mean policy x̄t is independent of the roles of individual
agents. Therefore, at time t, for any agent i, how fast it changes its Q-values should be attributed to
its current Q-values Qi

t and the mean policy x̄t of the whole population. Dropping the agent index,
for any individual agent in the population, Equation 9 can be expressed as a function vj of its current
Q-values and the mean policy:

vjpQt, x̄tq fi Er
dQtpajq

dt
s “ η

eτQtpajq

ř

@aPA e
τQtpaq

rErrtpaj , x̄tqs ´Qtpajqs. (10)

Note that the mean policy x̄t is indeed given by the Q-values of all agents in the population, i.e.,
@aj P A, x̄tpajq “

1
n

ř

@iPN xitpajq “
1
n

ř

@iPN pe
τQi

tpajq{
ř

@aPA e
τQi

tpaqq. Therefore, the expected
change in Q-values for any individual agent is determined by the joint Q-values of all the agents,
which include the Q-values of itself. This suggests that in long term, the trajectories of Q-values for
individual agents are uniquely determined by their joint initial Q-values.

3.2 Evolution of the Distribution of Q-values in a Population

Consider a Q-value space Rk with k axes Y1, . . . , Yk, where k is the number of available actions. At
time t, each agent i occupies a point Qt “ Qi

t in this space according to its current Q-values Qi
t.

2 The series in Equation 8 should be convergent, since the function upaj ,xz
t q is an analytic function. Given

each element of the vector ∆xz
t is between 0 and 1, we consider the second order and the higher order terms

negligible. When m,nÑ8, Equation 8 holds.
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Figure 1: A 3-dimensional illustration of the entry and departure of individual agents through facets
causing the change in the number of agents in the box B.

Let ppQt, tq be the function of agent density in the space at time t, such that the density ppQt, tq at
any point Qt is the proportion of agents in the population having their Q-values equal to Qt and
hence occupying the point Qt in the space at time t. Intuitively, ppQt, tq can also be considered as
the probability distribution of Q-values in the agent population. Note that agents will update their
Q-values during interactions. As a result, as time t moves forward, agents will change their positions
in the space, which will lead to the change in the density function ppQt, tq. In what follows, we shall
derive the differential equation that describes the time evolution of ppQt, tq.

Let us focus on an arbitrary point Qt in this space, and an infinitesimal box (or hyperrectangle) B
around this point, such that B fi tqt : Qtpajq ď qtpajq ď Qtpajq ` dQtpajq, @aj P Au. Basically,
the number of agents in this box at time t is nppQt, tqdV , where dV “ Π@ajPAdQtpajq is the
volume of the box. Given that there is no birth or death of individual agents over time, there is only
one cause for the change in the density ppQt, tq of agents in that box—some agents enter or leave the
box through its surface. Note that there are 2k facets for a k-dimensional box. Let F pQtpajqq denote
a facet of this box, in which the jth component of each vector in this facet is set to Qtpajq, such
that the Yj-axis is the normal of this facet. That is, F pQtpajqq fi tqt : qtpajq “ Qtpajq, Qtpaiq ď
qtpaiq ď Qtpaiq ` dQtpaiq, @i P t1, . . . , kuztjuu. We define ψ`pQtpajq, tq and ψ´pQtpajq, tq,
respectively, to be the number of agents that travel through the facet F pQtpajqq in the positive and
negative direction of the Yj-axis from time t to t` dt. A graphical demonstration with the number of
available actions k “ 3 is shown in Figure 1. By the conservation law of the number of agents in the
population, we shall have:

nppQt, t` dtqdV ´ nppQt, tqdV “
k

ÿ

j“1

ψ`pQtpajq, tq ` ψ´pQtpajq ` dQtpajq, tq

´ ψ´pQtpajq, tq ´ ψ`pQtpajq ` dQtpajq, tq.

(11)

This equation expresses that the number of agents entering (or leaving) the box should be the sum of
the number of agents entering (or leaving) through every facets. The first and the second term on the
left hand side represent the numbers of agents in this box at time t` dt and at time t, respectively.
Thus, the left hand side corresponds to the change in the number of agents in the box from time t
to t ` dt. On the right hand side, since agents that travel through the facet F pQtpajq ` dQtpajqq
in the negative direction of the Yj-axis will in effect enter the box B (as shown in Figure 1), the
first two terms are the number of agents entering the box B along the Yj-axis. Symmetrically, the
last two terms are the number of agents leaving that box along the Yj-axis. Hence, the right hand
side corresponds to the sum of the net number of agents entering the box along every axes. Let
ψpQtpajq, tq fi ψ`pQtpajq, tq ´ψ´pQtpajq, tq, which denotes the flow of agents travelling through
the facet FpQtpajqq. Equation 11 can be rewritten as:

nppQt, t` dtqdV ´ nppQt, tqdV “
řk
j“1 ψpQtpajq, tq ´ ψpQtpajq ` dQtpajq, tq. (12)

We now derive the form of ψpQtpajq, tq. Remember that how fast an agent increases or decreases
its Q-value, i.e., the velocity of this agent in the Q-value space, is given by the function vjpQt, x̄tq
shown in Equation 10. From time t to t ` dt, the displacement that an agent around the point Qt

travels should be approximately vjpQt, x̄tqdt. That is, roughly speaking, agents that travel through
the facet F pQtpajqq along the Yj-axis from time t to t ` dt should be located in the adjacent box
B1 fi tqt : Qtpajq´vjpQt, x̄tqdt ď qtpajq ď Qtpajq, Qtpaiq ď qtpaiq ď Qtpaiq`dQtpaiq, @i P
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t1, . . . , kuztjuu. Therefore, the value of ψpQtpajq, tq should be:

ψpQtpajq, tq “ nppQt, tqvjpQt, x̄tqdtdSj , (13)

where dSj “ Π@aiPAztajudQtpaiq is the area of the facet F pQtpajqq, so that vjpQt, x̄tqdtdSj is the
volume of of the box B1. Substituting ψpQtpajq, tq in Equation 12 with Equation 13, and dividing
both sides by dV dt, we have:

nppQt, t` dtq ´ nppQt, tq

dt
“

k
ÿ

j“1

nppQt, tqvjpQt, x̄tqdSj ´ nppQt ` dQt, tqvjpQt ` dQt, x̄tqdSj
dV

“

k
ÿ

j“1

1

dQtpajq
rnppQt, tqvjpQt, x̄tq ´ nppQt ` dQt, tqvjpQt ` dQt, x̄tqs.

(14)
This equation in the continuous limit corresponds to:

BppQt, tq

Bt
“ ´

k
ÿ

j“1

B

BQtpajq
rppQt, tqvjpQt, x̄tqs “ ´∇ ¨ pppQt, tqvpQt, x̄tqq, (15)

where ∇¨ is the divergence operator, and vpQt, x̄tq is a vector field (or the flux) in which the jth
component is vjpQt, tq. This equation is the Fokker-Planck equation [6, 21] with zero diffusion. By
this equation, the change in the density of agents occupying a certain point Qt in the space, which
is also the probability density of agents having certain Q-values Qt in the population, is jointly
determined by the current density ppQt, tq and the velocity vpQt, x̄tq. Note that the velocity in Q-
values depends on the mean policy x̄t. By the law of large numbers, each component x̄tpajq,@aj P A
of the mean policy x̄t should be close to the expectation, which is given by:

x̄t “

ż

. . .

ż

eτQtpajq

ř

@aPA e
τQtpaq

ppQt, tqdQtpa1q . . . dQtpakq. (16)

Therefore, the Q-learning dynamics of an infinitely large agent population can be modelling by the
following system of three equations:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

BppQt, tq

Bt
“ ´

k
ÿ

j“1

B

BQtpajq
rppQt, tqvjpQt, x̄tqs,

vjpQt, x̄tq “ η
eτQpajq

ř

@aPA e
τQtpaq

rErrtpaj , x̄tqs ´Qtpajqs,

x̄t “

ż

. . .

ż

eτQtpajq

ř

@aPA e
τQtpaq

ppQt, tqdQtpa1q . . . dQtpakq.

(17)

This system of equation by nature involves a backward-forward structure. For an individual agent,
at a certain time instant, it reasons backward and updates its Q-values towards a better estimation
of the best response action facing the current expected policy. Collectively, the current updates of
Q-values for individual agents may result in a future Q-value distribution that is different from the
current one. This will in the other way round cause a change in the expected policy, which will
make agents’ current best responses to the expected policy invalid in the future. Therefore, under the
n-agent setting we consider, the Q-learning agents are usually myopic.

4 Experimental Validation

In this section, we compare the behaviours obtained by our mean field theoretic model with the
behaviours obtained from agent-based simulations. For the model, we employ finite difference
methods to solve the system of equations shown in Equation 17. For the agent-based simulations, we
set the number n of agents to 1, 000, and consider two cases of the number m of opponents per time
step: m “ 0.05n and m “ n´ 1. To smooth out the randomness, we run 100 simulations for each
setting. For comparison, the learning rate η is set to 0.1 and the exploration temperature τ is set to 2
in both the model and the simulations.
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Figure 2: Evolution of the expected Q-values derived from our model and that of the mean Q-values
in agent-based simulations.

Figure 3: Evolution of the expected policy derived from our model and that of the mean policy in
agent-based simulations.

To validate if our model can well reflect the diverse population dynamics caused by different
game settings, we select four typical types of symmetric bimatrix games to experiment on, namely,
prisoner’s dilemma (PD), choosing side (CS), stag hunt (SH) and hawk dove (HD) games. The payoff
bimatrices of these games are shown in Table 2. In PD game, the dominant strategy is for both players
to play D, and hence pD,Dq is the unique Nash equilibrium. In CS game, there are two equally
good symmetric Nash equilibria pL,Lq and pR,Rq. In SH game, there are also two symmetric Nash
equilibria, i.e., pS, Sq and pH,Hq. However, while pS, Sq Pareto dominates pH,Hq and maximizes
the social welfare, pH,Hq risk dominates pS, Sq. In HD game, the two Nash equilibria pD,Hq and
pH,Dq are asymmetric, such that it is unfair for the player taking H in these two equilibria.

C D
C 3,3 0,5
D 0,5 1,1

(a) Prisoner’s
Dilemma, C: co-
operate, D: defect

L R
L 1,1 -1,-1
R -1,-1 1,1

(b) Choosing Side, L: left,
R: right

H S
H 1,1 2,0
S 0,2 4,4

(c) Stag Hunt, S: stag,
H: hare

D H
D 1,1 0,2
H 2,0 -1,-1

(d) Hawk Dove, D: dove,
H: hawk

Table 2: The typical symmetric bimatrix games that we experiment on.

Without loss of generality, for each game, we assume the initial Q-value of the first action and the
second action follow Beta distributions Betap20, 80, rmin, rmaxq and Betap10, 90, rmin, rmaxq, respec-
tively.The first two parameters control the shape of the probability density function, and the latter two
parameters prescribe the support to be rrmin, rmaxs, where rmin is the minimum payoff of the game
and rmax is the maximum payoff. Consequently, for every games, the initial expected Q-value of the
first action is slightly higher than that of the second action.

In Figures 2 and 3, we compare the expected Q-values ErQts and the expected policy Erxts obtained
by our model with the counterparts Q̄t and x̄t that are averaged over all of the agents in the agent-
based simulations. It is clear that our model well captures the qualitatively different patterns of
evolution in agent populations playing different kinds of games. In particular, as shown in Figure 2,
the dynamics of the expected Q-values generally overlap the dynamics of the mean Q-values, which
suggest our model almost precisely describes how the Q-value distribution of the population evolves
over time. Moreover, we note that in agent-based simulations, the agent behaviours with m “ 0.05n
match those with m “ n´ 1. This implies that, strictly speaking, Equation 8 holds if m,n Ñ 8,
however, our mean field theoretic model should be practically valid if the values of m and n are
sufficiently large.
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Figure 4: The probability density functions of different initialQ-value distribution that we experiment
on. Yellow (light) color indicates the first action H and purple (dark) color indicates the second
action S.

Figure 5: Evolution of the expected Q-values derived from our model and that of the mean Q-values
in agent-based simulations.

Figure 6: Evolution of the expected policy derived from our model and that of the mean policy in
agent-based simulations.

We proceed to change the initial Q-value distribution for stag hunt games. Given the equilibrium
pS, Sq is Pareto dominant but the other equilibrium pH,Hq is risk dominant, the population dynamics
should be highly susceptible to the initial proportion of agents using each action. As shown in Figure
4, we consider three different cases of the initial Q-value distribution : 1) Q0pa1q„Betap80, 20, 0, 3q
and Q0pa2q„Betap90, 10, 0, 3q; 2) Q0pa1q„Betap80, 20, 0, 3q and Q0pa2q„Betap20, 80, 0, 3q; and
3) Q0pa1q„Betap50, 50, 0, 3q and Q0pa2q„Betap5, 5, 0, 3q. In Figures 5 and 6, we compare the
expected Q-values and policy obtained by our model with the mean Q-values and policy in agent-
based simulations. We can easily observe that the different settings of initial Q-value distribution
results in diverse patterns of evolution in agent populations. Under each setting, the dynamics
obtained by our model match those in agent-based simulations, which again validates our model well
describes the population dynamics under different settings.

5 Conclusions and Future Work

In this paper, we model the dynamics of Q-learning in symmetric bimatrix games under an n-agent
setting where nÑ8. Using the mean field theory, we derive an equation that universally describes
the dynamics of Q-values for any individual agent. We also derive a Fokker-Planck equation that
describes the evolution of the distribution of Q-values in the agent population. We show the Q-
learning dynamics under the n-agent setting can be described by a system of only three equations.
The experiments on typical types of symmetric bimatrix games and different initial settings of Q-
values validate that the expected agent behaviours obtained by our model well match the counterparts
in agent-based simulations. As future work, we will extend our model to multiple-state games,
asymmetric games, and multiple populations. Other learning algorithms will also be investigated.
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