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Abstract

We propose and study a general framework for regularized Markov decision pro-
cesses (MDPs) where the goal is to find an optimal policy that maximizes the
expected discounted total reward plus a policy regularization term. The extant
entropy-regularized MDPs can be cast into our framework. Moreover, under our
framework, many regularization terms can bring multi-modality and sparsity, which
are potentially useful in reinforcement learning. In particular, we present sufficient
and necessary conditions that induce a sparse optimal policy. We also conduct a full
mathematical analysis of the proposed regularized MDPs, including the optimality
condition, performance error, and sparseness control. We provide a generic method
to devise regularization forms and propose off-policy actor critic algorithms in
complex environment settings. We empirically analyze the numerical properties of
optimal policies and compare the performance of different sparse regularization
forms in discrete and continuous environments.

1 Introduction

Reinforcement learning (RL) aims to find an optimal policy that maximizes the expected discounted
total reward in an MDP [4, 36]. It’s not an easy task to solve the nonlinear Bellman equation [2]
greedily in a high-dimension action space or when function approximation (such as neural networks)
is used. Even if the optimal policy is obtained precisely, it is often the case the optimal policy is
deterministic. Deterministic policies are bad to cope with unexpected situations when its suggested
action is suddenly unavailable or forbidden. By contrast, a multi-modal policy assigns positive
probability mass to both optimal and near optimal actions and hence has multiple alternatives to
handle this case. For example, an autonomous vehicle aims to do path planning with a pair of departure
and destination as the state. When a suggested routine is unfortunately congested, an alternative
routine could be provided by a multi-modal policy, which can’t be provided by a deterministic policy
without evoking a new computation. Therefore, in a real-life application, we hope the optimal policy
to possess thee property of multi-modality.
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Entropy-regularized RL methods have been proposed to handle the issue. More specifically, an
entropy bonus term is added to the expected long-term returns. As a result, it not only softens the
non-linearity of the original Bellman equation but also forces the optimal policy to be stochastic,
which is desirable in problems where dealing with unexpected situations is crucial. In prior work, the
Shannon entropy is usually used. The optimal policy is of the form of softmax, which has been shown
can encourage exploration [8, 40]. However, a softmax policy assigns a non-negligible probability
mass to all actions, including those really terrible and dismissible ones, which may result in an unsafe
policy. For RL problems with high dimensional action spaces, a sparse distribution is preferred in
modeling a policy function, because it implicitly does action filtration, i.e., weeds out suboptimal
actions and maintains near optimal actions. Thus, Lee et al. [19] proposed to use Tsallis entropy [39]
instead, giving rise to a sparse MDP where only few actions have non-zero probability at each state
in the optimal policy. Lee et al. [20] empirically showed that general Tsallis entropy? also leads to a
sparse MDP. Moreover, the Tsallis regularized RL has a lower performance error, i.e., the optimal
value of the Tsallis regularized RL is closer to the original optimal value than that of the Shannon
regularized RL.

The above discussions manifest that an entropy regularization characterizes the solution to the
corresponding regularized RL. From Neu et al. [28], any entropy-regularized MDP can be viewed
as a regularized convex optimization problem where the entropy serves as the regularizer and the
decision variable is a stationary policy. Geist et al. [10] proposed a framework in which the MDP is
regularized by a general strongly concave function. It analyzes some variants of classic algorithms
under that framework but does not provide insight into the choice of regularizers. On the other hand, a
sparse optimal policy distribution is more favored in large action space RL problems. Prior work Lee
et al. [19], Nachum et al. [27] obtains a sparse optimal policy by the Tsallis entropy regularization.
Considering the diversity and generality of regularization forms in convex optimization, it is natural
to ask whether other regularizations can lead to sparseness. The answer is that there does exist other
regularizers that induces sparsity.

In this paper, we propose a framework for regularized MDPs, where a general form of regularizers is
imposed on the expected discounted total reward. This framework includes the entropy regularized
MDP as a special case, implying certain regularizers can induce sparseness. We first give the
optimality condition in regularized MDPs under the framework and then give necessary and sufficient
conditions to show which kind of regularization can lead to a sparse optimal policy. Interestingly,
there are lots of regularization that can lead to the sparseness, and the degree of sparseness can be
controlled by the regularization coefficient. Furthermore, we show that regularized MDPs have a
regularization-dependent performance error caused by the regularization term, which could guide
us to choose an effective regularization when it comes to dealing with problems with a continuous
action space. To solve regularized MDPs, we employ the idea of generalized policy iteration and
propose an off-policy actor-critic algorithm to figure out the performance of different regularizers.

2 Notation and preliminaries

Markov Decision Processes In reinforcement learning (RL) problems, the agent’s interaction with
the environment is often modeled as an Markov decision process (MDP). An MDP is defined by
a tuple (S, A, P, r, Py, ), where S is the state space and A the action space with |.4| actions. We
use Ay to denote the simplex on any set X', which is defined as the set of distributions over X, i.e.,
Ay ={P: ) cxP(x) =1 P(x) > 0}. The vertex set of Ay is definedas Vx = {P € Ay :
Jz e X,st. P(x) =1}. P: S x A — Ag is the unknown state transition probability distribution
andr : S X A — [0, Riax] is the bounded reward on each transition. Py is the distribution of initial
state and v € [0, 1) is the discount factor.

Optimality Condition of MDP

The goal of RL is to find a stationary policy which maps from state space to a simplex over the actions
m: S — A4 that maximizes the expected discounted total reward, i.e.,
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The general Tsallis entropy is defined with an additional real-valued parameter, called an entropic index.
Lee et al. [20] shows that when this entropic index in large enough, the optimal policy is sparse.



where sg ~ Pg, a; ~ 7(+|s¢), and s;+1 ~ P(-|s¢, a¢). Given any policy , its state value and Q-value
functions are defined respectively as
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Any solution of the problem (1) is called an optimal policy and denoted by 7*. Optimal policies may
not be unique in an MDP, but the optimal state value is unique (denoted V*). Actually, V* is the
unique fixed point of the Bellman operator 7, i.e., V*(s) = TV*(s) and

TV (s) & m;lXEQN,,(,M [r(s, a) + fyIES,|S7aV(s')].

7* often is a deterministic policy which puts all probability mass on one action[31]. Actually, it can
be obtained as the greedy action w.r.t. the optimal Q-value function, i.e., 7*(s) € argmax, Q*(s, a)
3. The optimal Q-value can be obtained from the state value V*(s) by definition.

As a summary, any optimal policy 7* and its optimal state value V* and Q-value Q* satisfy the
following optimality condition for all states and actions,

Q*(s,a) =r(s,a) + 1Bys,a V" (s),
V*(s) = mng*(s,a), m*(s) € argmax Q* (s, a).

3 Regularized MDPs

To obtain a sparse but multi-modal optimal policy, we impose a general regularization term to the
objective (1) and solve the following regularized MDP problem
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where ¢(-) is a regularization function. Problem (2) can be seen as a RL problem in which the
reward function is the sum of the original reward function (s, a) and a term ¢(m(a|s)) that provides
regularization. If we take expectation to the regularization term ¢(7(a|s)), it can be found that the

quantity
H¢(7r) = EaNﬂ'(-\s)(b(ﬂ-(alS))v 3)

is entropy-like but not necessarily an entropy in our work. However, Problem (2) is not well-defined
since arbitrary regularizers would be more of a hindrance than a help. In the following, we make
some assumptions about ¢(-).

3.1 Assumption for regularizers

A regularizer ¢(-) characterizes solutions to Problem (2). In order to make Problems (2) analyzable,
a basic assumption (Assumption 1) is prerequisite. Explanation and examples will be provided to
show that such an assumption is reasonable and not strict.

Assumption 1 The regularizer ¢(x) is assumed to satisfy the following conditions on the interval
(0,1]: (1) Monotonicity: ¢(x) is non-increasing; (2) Non-negativity: ¢(1) = 0, (3) Differentiabil-
ity: ¢(x) is differentiable; (4) Expected Concavity: x¢(z) is strictly concave.

The assumptions of monotonicity and non-negativity make the regularizer be an positive exploration
bonus. The bonus for choosing an action of high probability is less than that of choosing an action of
low probability. When the policy becomes deterministic, the bonus is forced to zero. The assumption
of differentiability facilitates theoretic analysis and benefits practical implementation due to the widely
used automatic derivation in deep learning platforms. The last assumption of expected concavity
makes Hy () a concave function w.r.t. 7. Thus any solution to Eqn.(2) hardly lies in the vertex set of

37* is not necessarily deterministic. If there are two actions a1, az that obtain the maximum of 7V (s) for a

fixed s € S, one can show that the stochastic policy 7(a1|s) = 1 — w(az|s) = p € [0, 1] is also optimal.



the action simplex V4 (where the policy is deterministic). As a byproduct, let f;(x) = x¢(z). Then
its derivative f},(z) = ¢(x) + x¢/(x) is a strictly decreasing function on (0, 1) and thus (f;,)~"(z)
exists. For simplicity, we denote gy (x) = ( f(;)’l(x)

There are plenty of options for the regularizer ¢(-) that satisfy Assumption 1. First, entropy can be
recovered by Hy(m) with speciﬁc ¢(+). For example, when ¢(z) = — log x, the Shannon entropy is
recovered; when ¢(z) = =5 k_(1—29~1) with k > 0, the Tsallis entropy is recovered. Second, there
are many instances that are not viewed as an entropy but can serve as a regularizer. We find two
families of such functions, namely, the exponential function family ¢ — z*¢® with k > 0,¢ > 1 and
the trigonometric function family cos(fx) — cos(#) and sin(#) — sin(fx) both with hyper-parameter
6 € (0, 5]. Since these functions are simple, we term them basic functions.

Apart from the basic functions mentioned earlier, we come up with a generic method to combine
different basic functions. Let F be the set of all functions satisfying Assumption 1. By Proposition 1,
the operations of positive addition and minimum can preserve the properties shared among F.
Therefore, the finite-time application of such operations still leads to an available regularizer.

Proposition 1 Given ¢1,¢2 € F, we have ap1 + Boo € F forall ., § > 0 and min{¢1, ¢2} € F.

Here we only consider those differentiable min{¢;, ¢} in theoretical analysis, because the minimum
of any two functions in F may be non-differentiable on some points. For instance, given any ¢ > 1,
the minimum of — log(x) and ¢(1 — x) has a unique non-differentiable point on (0, 1).

3.2 Optimality and sparsity

Once the regularizer ¢(+) is given, similar to non-regularized case, the (regularized) state value and
Q-value functions of any given policy 7 in a regularized MDP are defined as

VR (6) = E[ 34 o) + Adr(arlsi))so = 3.7,
t=0
Q;\r(sv a) = T(S, a) + ’YEH.NW(»\S)ES’\S@V/\W(5/)- (4)

Any solution to Problem (2) is call the regularized optimal policy (denoted 7} ). The corresponding
regularized optimal state value and Q-value are also optimal and denoted by V" and Q5 respectively.
If the context is clear, we will omit the word regularized for simplicity. In this part, we aim to show
the optimality condition for the regularized MDPs (Theorem 1). The proof of Theorem 1 is given in
Appendix B.

Theorem 1 Any optimal policy w5 and its optimal state value V' and Q-value Q3 satisfy the
following optimality condition for all states and actions:

Qx(s,a) = r(s,a) + YEu s VX (),
75 (als) = maX{g¢ (,u}‘\(s)—Q;(s,a)) ’0} 7 5)
V3 (s) = mi(s /\Zm als)*¢' (3 (als)),

where g4(x) = (fé))_l(x) is strictly decreasing and 1 (s) is a normalization term so that
ZaEA 7Tf\(a|5) =

Theorem 1 shows how the regularization influences the optimality condition. Let f;(0) = lirgJr fo()
z—

for short. From (5), it can be shown that the optimal policy 7} assigns zero probability to the actions
whose Q-values Q3 (s, a) are below the threshold 3 (s) — Af;(0) and assigns positive probability to
near optimal actions in proportion to their Q-values (since g4 () is decreasing). The threshold involves
() and £5(0). pi3(s) can be uniquely solved from the equation obtained by plugging Eqn.(5) into

> aca Tx(als) = 1. Note that the resulting equation only involves {Q} (s, a)}ac.a. Thus p3 (s) is
actually always a multivariate finite-valued function of {Q3 (s, a) }ae.a. However, the value f;(0)
can be infinity, making the threshold out of function. To see this, if f (;(O) = 00, the threshold will be



—oo and all actions will be assigned positive probability in any optimal policy. To characterize the
number of zero probability actions, we define a d-sparse policy as Definition 1 shows. It is trivial that
I%H < § < 1. For instance, a deterministic optimal policy in non-regularized MDP is ‘—il—sparse.

Definition 1 A given policy m : S — A 4 is called §-sparse if it satisfies:

[{(s,a) € § x Aln(als) # 0}| _
|SIIA| T

(6)
If w(als) > 0 forall (s,a) € S x A, we call it has no sparsity.

Theorem 2 If 11I(I)1+ fy(x) = oo (or 0 & domf}), the optimal policy of regularized MDP is not
r—r
sparse.

Theorem 2 provides us a criteria to determine whether a regularization could render its corresponding

regularized optimal policy the property of sparseness. To facilitate understanding, let us see two

examples. When ¢(z) = —log(x), we have that lir(r)lJr fo(z) = li%lJr —log(z) — 1 = oo, which
Tr— r—

implies that the optimal policy of Shannon entropy-regularized MDP does not have sparsity. When

¢(x) = q_il(l — 297 1) for ¢ > 1 and ) is small enough, the corresponding optimal policy can

k

be spare if A is small enough because lir(IJlJr fé(:v) =1 What’s more, the sparseness property
r—r

of Tsallis entropy still keeps for 1 < ¢ < oo and small A, which is empirically proved true in
[20]. Additionally, when 0 < ¢ < 1, the Tsallis entropy could no longer lead to sparseness due to
i / — Lim £ (gr?~1_-1)=

i 1) = i st D) = oo

The sparseness property is first discussed in [19] which shows the Tsallis entropy with k = % and
q = 2 can devise a sparse MDP. However, we point out that any ¢(-) such that f}(0) < oo with a
proper A leads to a sparse MDP. Let G C F be the set that satisfies V¢ € G,0 € dom f q’b The positive
combination of any two regularizers belonging to G still belongs to G.

Proposition 2 Given ¢1, ¢po € G, we have that ap1 + Bpo € G forall o, B > 0. However, if p1 € G
but o2 ¢ G, a1 + Boo ¢ G for any positive B.

It is easily checked that the two families (i.e., exponential functions and trigonometric functions)
given in Section 3.1 can also induce a sparse MDP with a proper A. For convenience, we prefer to
term the function ¢(z) = % (1—29~1) that defines the Tsallis entropy as a polynomial function,
because when ¢ > 1 it is a polynomial function of degree g—1. Additionally, these three basic
families of functions could be combined to construct more complex regularizers (Propositions 1, 2).

Control the Sparsity of Optimal Policy. Theorem 2 shows 0 € dom f(; is necessary but not
sufficient for that the optimal policy 7} is sparse. The sparsity of optimal policy is also controlled by
A. Theorem 3 shows how the sparsity of optimal policy can be controlled by A when f (;(0) < 00.
The proof is detailed in Appendix E.

Theorem 3 Let Q3 (s, a) and 3 (s) be defined in Theorem 1 and assume f}(0) < oo. When A — 0,

the sparsity of the optimal policy w3 shrinks to 0 = ‘—1| When A — oo, the optimal policy has no

sparsity. More specifically, 7 (als) — ﬁfor all (s,a) € S x Aas A\ — oo

3.3 Properties of regularized MDPs

In this section, we present some properties of regularized MDPs. We first prove the uniqueness of the
optimal policy and value. Next, we give the bound of the performance error between 7} (the optimal
policy obtained by a regularized MDP) and 7* (the policy obtained by the original MDP). In the
proofs of this section, we need an additional assumption for regularizers. Assumption 2 is quite weak.
All the functions introduced in Section 3.1 satisfy it.

Assumption 2 The regularizer ¢(-) satisfies f,(0) £ 11I(I)1+ zo(x) = 0.
T—



Generic Bellman Operator 7, We define a new operator 7T, for regularized MDPs, which defines a
smoothed maximum. Given one state s € S and current value function V), 7 is defined as

TaVa(s) = mgxz m(als) [QA(s,a)+Ao(7(als))], @)

where Qx(s,a) = 7(s,a) + YEy|s,,Var(s') is Q-value function derived from one-step foreseeing
according to V. By definition, 7, maps V) (s) to its possible highest value which considers both
future discounted rewards and regularization term. We provide simple upper and lower bounds of 7T
w.rt. T, i.e.,

Theorem 4 Under Assumptions 1 and 2, for any value function V and s € S, we have

1
m) ®)

TV(s) TV (s) < TV(s) + Ag(
The bound (8) shows that 7, is a bounded and smooth approximation of 7. When A = 0, 7,
degenerates to the Bellman operator 7. Moreover, it can be proved that 7}, is a y-contraction. By the
Banach fixed point theorem [35], V', the fixed point of 7y, is unique. As a result of Theorem 1, Q3
and 7} are both unique. We formally state the conclusion and give the proof in Appendix C.

Performance Error Between V" and V* In general, V* # V. But their difference is controlled
by both A and ¢(+). The behavior of ¢(z) around the origin represents the regularization ability of
¢(x). Theorem 5 shows that when |.A| is quite large (which means (j)(ﬁ) is close to ¢(0) due to

its continuity), the closeness of ¢(0) to 0 also determines their difference. As a result, the Tsallis
entropy regularized MDPs have always tighter error bounds than the Shannon entropy regularized
MDPs, because the value at the origin of the concave function qfkl (1 — 2971)(¢ > 1) is much lower
than that of — log x, both function satisfying in Assumption 2. Our theory incorporates the result of

Lee et al. [19, 20] which shows a similar performance error for (general) Tsallis entropy RL. The
proof of Theorem 5 is detailed in Appendix D.
Theorem 5 Under Assumptions 1 and 2, the error between V' and V* can be bounded as

A 1
Vi =Vl € ——d(75)-
IV = Vol < 10 )

4 Regularized Actor-Critic

To solve the problem (2) in complex environments, we propose an off-policy algorithm Regularized
Actor-Critic (RAC), which alternates between policy evaluation and policy improvement. In practice,
we apply neural networks to parameterize the Q-value and policy to increase expressive power. In
particular, we model the regularized Q-value function Q4 (s, a) and a tractable policy 7y (a|s). We use
Adam [17] to optimize 1, 6. Actually, RAC is created by consulting the previous work SAC [13, 14]
and making some necessary changes so that it is able to be agnostic to the form of regularization.

The goal for training regularized Q-value parameters is to minimize the general Bellman residual:

Jo(0) = %ED(QG(Suat) —-y)%, )

where D is the replay buffer used to eliminate the correlation of sampled trajectory data and y is the
target function defined as follows

y = 1(st,at)+7 [Qa(st41, ary1)+AG(my(ars1lsi11))] -

The target involves a target regularized Q-value function with parameters 6 that are updated in a
moving average fashion, which can stabilize the training process [24, 13]. Thus the gradient of J(6)
w.r.t. f can be estimated by

@JQ(Q) = E’DVGQG(St; ar) (Qo(st,ar)—y) .
For training policy parameters, we minimize the negative total reward:

Ta (1) = Bp [Eanmy (150 [=A0(my (als0)) — Qo(se, ¢y (alse)))] - (10)



RAC is formally described in Algorithm 1. The method alternates between data collection and
parameter updating. Trajectory data is collected by executing the current policy in environments and
then stored in a replay buffer. Parameters of the function approximators are updated by descending
along the stochastic gradients computed from the batch sampled from that replay buffer. The
method makes use of two Q-functions to overcome the positive bias incurred by overestimation of
Q-value, which is known to yield a poor performance [15, 9]. Specifically, these two Q-functions
are parametrized by different parameters 6, and are independently trained to minimize Jg(6;). The
minimum of these two Q-functions is used to compute the target value y which is involved in the

computation of V.Jg (6) and V.J (1)).

S Experiments

We investigate the performance of different reg-
ularizers among diverse environments. We first
test basic and combined regularizers in two nu-

Algorithm 1 Regularized Actor-Critic (RAC)

merical environments. Then we test basic reg- Input: 6;, 65,9 ~

ularizers in Atari discrete problems. In the end, Initialization: 01 < 01,01 < 05,D < ()
we explore the possible application in Mujoco for each iteration do

control environments. for each environment step do

sample action, a; ~ 7y (+|s¢)
receive reward r; ~ 1¢(8¢, ay)

5.1 Numerical results receive next state s;,; from environment
. ) . D <+ D H(st,at, 74, 8041) }
The two discrete numerical environments we end for
consider include a simple random generated for each gradient step do
MDP (S = 50, A = 10) and a Gridworld en- 0; < 0, — UQ@JQ(QZ,) fori € {1,2}
vironment (S = 81, A = 4). Refer to Ap- o
. . . Qf <~ 1/) B UwVJw(¢)
pendix H.1 for more detail settings. 8, « 160; + (1 — 1)0; fori € {1,2}
Regularizers. Four basic regularizers include end for
shannon (—logz), tsallis (3(1 — z)), cos end for

(cos(5x)) and exp (exp(1) — exp(x)). Propo-  Output: 6;,0-,v
sition 1 and 2 allow three combined regulariz-
ers: (1) min: the minimum of tsallis and
shannon, i.e., min{—log(z), 2(1 — z)}, (2) poly: the positive addition of two polynomial func-
tions, i.e., %(1 — ) + (1 — 2?), and (3) mix: the positive addition of tsallis and shannon, i.e.,
—log(z) + 3(1 —a).

Sparsity and Convergence. From (a)(b) in Figure 1, when ) is extremely large, 6 = 1 for all
regularizers. (c) shows how the probability of each action in the optimal policy at a given state
varies with A (one curve represents one action). These results validate the Theorem 3. A reasonable
explanation is that large A reduces the importance of discounted reward sum and makes H ()
dominate the loss, which forces the optimal policy to put probability mass evenly on all actions in
order to maximize H,(m). We regard the ability to defend the tendency towards converging to a
uniform distribution as sparseness power. From our additional experiments in Appendix H, cos has
the strongest sparseness power. (d) shows the convergence speed of RPI on different regularizers. It

also shows that ||V* — V7X||, is bounded as Theorem 4 states.

5.2 Atari results

Regularizers. We test four basic regularizers across four discrete control tasks from OpenAl Gym
benchmark [5]. All the training details are in Appendix H.2.

Performance. Figure 2 shows the score during training for RAC with four regularization forms with
best performance over A = {0.01,0.1, 1.0}. Except Breakout, Shannon performs worse than other
three regularizers. Cos performs best in Alien and Seaquest while tsallis performs best in Boxing
and exp performs quite normally. Appendix H.2 gives all the results with different A and sensitive
analysis. In general, shannon is the most insensitive among others.
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Figure 1: (a) and (b) show the results of the sparsity § of optimal policies on Random MDP and
Gridworld. (c) shows the changing process of the probability of each action in optimal policy
regularized by cos(%m) on Random MDP. (d) shows the /. -error between V* and V.
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Figure 2: Training curves on Atari games. Each entry in the legend is named with the rule
the regularization form + A. The score is smoothed with 100 windows while the shaded
area is the one standard deviation.

5.3 Mujoco results

Regularizers. We explore basic regularizers across four continuous control tasks from OpenAl Gym
benchmark [5] with the MuJoCo simulator [38]. Unfortunately cos is quite unstable and prone
to gradient exploding problems in deep RL training process. We speculate it instableness roots in
numerical issues where the probability density function often diverges into infinity. What’s more,
the periodicity of cos( 7 x) makes the gradients vacillate and the algorithm hard to converge. All the
details of the following experiments are given in Appendix H.3.
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Figure 3: Training curves on continuous control benchmarks. Each curve is the average
of four experiments with different seeds. Each entry in the legend is named with the rule
the regularization form + A. The score is smoothed with 30 windows while the shaded
area is the one standard deviation.

Performance. Figure 3 shows the total average return of rollouts during training for RAC with
three regularization forms and different regularization coefficients ([0.01, 0.1, 1]). For each curve,
we train four different instances with different random seeds. Tsallis performs steadily better than
shannon given the same regularization coefficient A\. Tsallis is also more stable since its shaded
area is thinner than shannon. Exp performs almost as good as tsallis in Ant-v2 and Hopper-v2 but
performs badly in the rest two environments. From the sensitivity analysis provided in Appendix H.3,
tsallis is less sensitive to A than cos and shannon.



6 Conclusion

In this paper, we have proposed a unified framework for regularized reinforcement learning, which
includes entropy-regularized RL as a special case. Under this framework, the regularization function
characterizes the optimal policy and value of the corresponding regularized MDPs. We have shown
there are many regularization functions that can lead to a sparse but multi-modal optimal policy such
as trigonometric and exponential functions. We have specified a necessary and sufficient condition
for these regularization functions that could lead to sparse optimal policies and how the sparsity is
controlled with A\. We have presented the logical and mathematical foundations of these properties
and also conducted the experimental results.
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